• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69 
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73 
74 /*
75  * Modules' sections will be aligned on page boundaries
76  * to ensure complete separation of code and data, but
77  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78  */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84 
85 /*
86  * Given BASE and SIZE this macro calculates the number of pages the
87  * memory regions occupies
88  */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
90 		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
91 			 PFN_DOWN((unsigned long)BASE) + 1)	\
92 		: (0UL))
93 
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96 
97 /*
98  * Mutex protects:
99  * 1) List of modules (also safely readable with preempt_disable),
100  * 2) module_use links,
101  * 3) module_addr_min/module_addr_max.
102  * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109 
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115 
param_set_bool_enable_only(const char * val,const struct kernel_param * kp)116 static int param_set_bool_enable_only(const char *val,
117 				      const struct kernel_param *kp)
118 {
119 	int err;
120 	bool test;
121 	struct kernel_param dummy_kp = *kp;
122 
123 	dummy_kp.arg = &test;
124 
125 	err = param_set_bool(val, &dummy_kp);
126 	if (err)
127 		return err;
128 
129 	/* Don't let them unset it once it's set! */
130 	if (!test && sig_enforce)
131 		return -EROFS;
132 
133 	if (test)
134 		sig_enforce = true;
135 	return 0;
136 }
137 
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 	.set = param_set_bool_enable_only,
140 	.get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143 
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147 
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151 
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154 
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156 
157 /* Bounds of module allocation, for speeding __module_address.
158  * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160 
register_module_notifier(struct notifier_block * nb)161 int register_module_notifier(struct notifier_block * nb)
162 {
163 	return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166 
unregister_module_notifier(struct notifier_block * nb)167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172 
173 struct load_info {
174 	Elf_Ehdr *hdr;
175 	unsigned long len;
176 	Elf_Shdr *sechdrs;
177 	char *secstrings, *strtab;
178 	unsigned long symoffs, stroffs;
179 	struct _ddebug *debug;
180 	unsigned int num_debug;
181 	bool sig_ok;
182 	struct {
183 		unsigned int sym, str, mod, vers, info, pcpu;
184 	} index;
185 };
186 
187 /* We require a truly strong try_module_get(): 0 means failure due to
188    ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)189 static inline int strong_try_module_get(struct module *mod)
190 {
191 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
192 	if (mod && mod->state == MODULE_STATE_COMING)
193 		return -EBUSY;
194 	if (try_module_get(mod))
195 		return 0;
196 	else
197 		return -ENOENT;
198 }
199 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)200 static inline void add_taint_module(struct module *mod, unsigned flag,
201 				    enum lockdep_ok lockdep_ok)
202 {
203 	add_taint(flag, lockdep_ok);
204 	mod->taints |= (1U << flag);
205 }
206 
207 /*
208  * A thread that wants to hold a reference to a module only while it
209  * is running can call this to safely exit.  nfsd and lockd use this.
210  */
__module_put_and_exit(struct module * mod,long code)211 void __module_put_and_exit(struct module *mod, long code)
212 {
213 	module_put(mod);
214 	do_exit(code);
215 }
216 EXPORT_SYMBOL(__module_put_and_exit);
217 
218 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)219 static unsigned int find_sec(const struct load_info *info, const char *name)
220 {
221 	unsigned int i;
222 
223 	for (i = 1; i < info->hdr->e_shnum; i++) {
224 		Elf_Shdr *shdr = &info->sechdrs[i];
225 		/* Alloc bit cleared means "ignore it." */
226 		if ((shdr->sh_flags & SHF_ALLOC)
227 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
228 			return i;
229 	}
230 	return 0;
231 }
232 
233 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)234 static void *section_addr(const struct load_info *info, const char *name)
235 {
236 	/* Section 0 has sh_addr 0. */
237 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
238 }
239 
240 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)241 static void *section_objs(const struct load_info *info,
242 			  const char *name,
243 			  size_t object_size,
244 			  unsigned int *num)
245 {
246 	unsigned int sec = find_sec(info, name);
247 
248 	/* Section 0 has sh_addr 0 and sh_size 0. */
249 	*num = info->sechdrs[sec].sh_size / object_size;
250 	return (void *)info->sechdrs[sec].sh_addr;
251 }
252 
253 /* Provided by the linker */
254 extern const struct kernel_symbol __start___ksymtab[];
255 extern const struct kernel_symbol __stop___ksymtab[];
256 extern const struct kernel_symbol __start___ksymtab_gpl[];
257 extern const struct kernel_symbol __stop___ksymtab_gpl[];
258 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
259 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
260 extern const unsigned long __start___kcrctab[];
261 extern const unsigned long __start___kcrctab_gpl[];
262 extern const unsigned long __start___kcrctab_gpl_future[];
263 #ifdef CONFIG_UNUSED_SYMBOLS
264 extern const struct kernel_symbol __start___ksymtab_unused[];
265 extern const struct kernel_symbol __stop___ksymtab_unused[];
266 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
267 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
268 extern const unsigned long __start___kcrctab_unused[];
269 extern const unsigned long __start___kcrctab_unused_gpl[];
270 #endif
271 
272 #ifndef CONFIG_MODVERSIONS
273 #define symversion(base, idx) NULL
274 #else
275 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
276 #endif
277 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)278 static bool each_symbol_in_section(const struct symsearch *arr,
279 				   unsigned int arrsize,
280 				   struct module *owner,
281 				   bool (*fn)(const struct symsearch *syms,
282 					      struct module *owner,
283 					      void *data),
284 				   void *data)
285 {
286 	unsigned int j;
287 
288 	for (j = 0; j < arrsize; j++) {
289 		if (fn(&arr[j], owner, data))
290 			return true;
291 	}
292 
293 	return false;
294 }
295 
296 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)297 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
298 				    struct module *owner,
299 				    void *data),
300 			 void *data)
301 {
302 	struct module *mod;
303 	static const struct symsearch arr[] = {
304 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
305 		  NOT_GPL_ONLY, false },
306 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
307 		  __start___kcrctab_gpl,
308 		  GPL_ONLY, false },
309 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
310 		  __start___kcrctab_gpl_future,
311 		  WILL_BE_GPL_ONLY, false },
312 #ifdef CONFIG_UNUSED_SYMBOLS
313 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
314 		  __start___kcrctab_unused,
315 		  NOT_GPL_ONLY, true },
316 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
317 		  __start___kcrctab_unused_gpl,
318 		  GPL_ONLY, true },
319 #endif
320 	};
321 
322 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
323 		return true;
324 
325 	list_for_each_entry_rcu(mod, &modules, list) {
326 		struct symsearch arr[] = {
327 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
328 			  NOT_GPL_ONLY, false },
329 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
330 			  mod->gpl_crcs,
331 			  GPL_ONLY, false },
332 			{ mod->gpl_future_syms,
333 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
334 			  mod->gpl_future_crcs,
335 			  WILL_BE_GPL_ONLY, false },
336 #ifdef CONFIG_UNUSED_SYMBOLS
337 			{ mod->unused_syms,
338 			  mod->unused_syms + mod->num_unused_syms,
339 			  mod->unused_crcs,
340 			  NOT_GPL_ONLY, true },
341 			{ mod->unused_gpl_syms,
342 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
343 			  mod->unused_gpl_crcs,
344 			  GPL_ONLY, true },
345 #endif
346 		};
347 
348 		if (mod->state == MODULE_STATE_UNFORMED)
349 			continue;
350 
351 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
352 			return true;
353 	}
354 	return false;
355 }
356 EXPORT_SYMBOL_GPL(each_symbol_section);
357 
358 struct find_symbol_arg {
359 	/* Input */
360 	const char *name;
361 	bool gplok;
362 	bool warn;
363 
364 	/* Output */
365 	struct module *owner;
366 	const unsigned long *crc;
367 	const struct kernel_symbol *sym;
368 };
369 
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)370 static bool check_symbol(const struct symsearch *syms,
371 				 struct module *owner,
372 				 unsigned int symnum, void *data)
373 {
374 	struct find_symbol_arg *fsa = data;
375 
376 	if (!fsa->gplok) {
377 		if (syms->licence == GPL_ONLY)
378 			return false;
379 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
380 			printk(KERN_WARNING "Symbol %s is being used "
381 			       "by a non-GPL module, which will not "
382 			       "be allowed in the future\n", fsa->name);
383 		}
384 	}
385 
386 #ifdef CONFIG_UNUSED_SYMBOLS
387 	if (syms->unused && fsa->warn) {
388 		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
389 		       "however this module is using it.\n", fsa->name);
390 		printk(KERN_WARNING
391 		       "This symbol will go away in the future.\n");
392 		printk(KERN_WARNING
393 		       "Please evalute if this is the right api to use and if "
394 		       "it really is, submit a report the linux kernel "
395 		       "mailinglist together with submitting your code for "
396 		       "inclusion.\n");
397 	}
398 #endif
399 
400 	fsa->owner = owner;
401 	fsa->crc = symversion(syms->crcs, symnum);
402 	fsa->sym = &syms->start[symnum];
403 	return true;
404 }
405 
cmp_name(const void * va,const void * vb)406 static int cmp_name(const void *va, const void *vb)
407 {
408 	const char *a;
409 	const struct kernel_symbol *b;
410 	a = va; b = vb;
411 	return strcmp(a, b->name);
412 }
413 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)414 static bool find_symbol_in_section(const struct symsearch *syms,
415 				   struct module *owner,
416 				   void *data)
417 {
418 	struct find_symbol_arg *fsa = data;
419 	struct kernel_symbol *sym;
420 
421 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
422 			sizeof(struct kernel_symbol), cmp_name);
423 
424 	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
425 		return true;
426 
427 	return false;
428 }
429 
430 /* Find a symbol and return it, along with, (optional) crc and
431  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)432 const struct kernel_symbol *find_symbol(const char *name,
433 					struct module **owner,
434 					const unsigned long **crc,
435 					bool gplok,
436 					bool warn)
437 {
438 	struct find_symbol_arg fsa;
439 
440 	fsa.name = name;
441 	fsa.gplok = gplok;
442 	fsa.warn = warn;
443 
444 	if (each_symbol_section(find_symbol_in_section, &fsa)) {
445 		if (owner)
446 			*owner = fsa.owner;
447 		if (crc)
448 			*crc = fsa.crc;
449 		return fsa.sym;
450 	}
451 
452 	pr_debug("Failed to find symbol %s\n", name);
453 	return NULL;
454 }
455 EXPORT_SYMBOL_GPL(find_symbol);
456 
457 /* Search for module by name: must hold module_mutex. */
find_module_all(const char * name,bool even_unformed)458 static struct module *find_module_all(const char *name,
459 				      bool even_unformed)
460 {
461 	struct module *mod;
462 
463 	list_for_each_entry(mod, &modules, list) {
464 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
465 			continue;
466 		if (strcmp(mod->name, name) == 0)
467 			return mod;
468 	}
469 	return NULL;
470 }
471 
find_module(const char * name)472 struct module *find_module(const char *name)
473 {
474 	return find_module_all(name, false);
475 }
476 EXPORT_SYMBOL_GPL(find_module);
477 
478 #ifdef CONFIG_SMP
479 
mod_percpu(struct module * mod)480 static inline void __percpu *mod_percpu(struct module *mod)
481 {
482 	return mod->percpu;
483 }
484 
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)485 static int percpu_modalloc(struct module *mod,
486 			   unsigned long size, unsigned long align)
487 {
488 	if (align > PAGE_SIZE) {
489 		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
490 		       mod->name, align, PAGE_SIZE);
491 		align = PAGE_SIZE;
492 	}
493 
494 	mod->percpu = __alloc_reserved_percpu(size, align);
495 	if (!mod->percpu) {
496 		printk(KERN_WARNING
497 		       "%s: Could not allocate %lu bytes percpu data\n",
498 		       mod->name, size);
499 		return -ENOMEM;
500 	}
501 	mod->percpu_size = size;
502 	return 0;
503 }
504 
percpu_modfree(struct module * mod)505 static void percpu_modfree(struct module *mod)
506 {
507 	free_percpu(mod->percpu);
508 }
509 
find_pcpusec(struct load_info * info)510 static unsigned int find_pcpusec(struct load_info *info)
511 {
512 	return find_sec(info, ".data..percpu");
513 }
514 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)515 static void percpu_modcopy(struct module *mod,
516 			   const void *from, unsigned long size)
517 {
518 	int cpu;
519 
520 	for_each_possible_cpu(cpu)
521 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
522 }
523 
524 /**
525  * is_module_percpu_address - test whether address is from module static percpu
526  * @addr: address to test
527  *
528  * Test whether @addr belongs to module static percpu area.
529  *
530  * RETURNS:
531  * %true if @addr is from module static percpu area
532  */
is_module_percpu_address(unsigned long addr)533 bool is_module_percpu_address(unsigned long addr)
534 {
535 	struct module *mod;
536 	unsigned int cpu;
537 
538 	preempt_disable();
539 
540 	list_for_each_entry_rcu(mod, &modules, list) {
541 		if (mod->state == MODULE_STATE_UNFORMED)
542 			continue;
543 		if (!mod->percpu_size)
544 			continue;
545 		for_each_possible_cpu(cpu) {
546 			void *start = per_cpu_ptr(mod->percpu, cpu);
547 
548 			if ((void *)addr >= start &&
549 			    (void *)addr < start + mod->percpu_size) {
550 				preempt_enable();
551 				return true;
552 			}
553 		}
554 	}
555 
556 	preempt_enable();
557 	return false;
558 }
559 
560 #else /* ... !CONFIG_SMP */
561 
mod_percpu(struct module * mod)562 static inline void __percpu *mod_percpu(struct module *mod)
563 {
564 	return NULL;
565 }
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)566 static inline int percpu_modalloc(struct module *mod,
567 				  unsigned long size, unsigned long align)
568 {
569 	return -ENOMEM;
570 }
percpu_modfree(struct module * mod)571 static inline void percpu_modfree(struct module *mod)
572 {
573 }
find_pcpusec(struct load_info * info)574 static unsigned int find_pcpusec(struct load_info *info)
575 {
576 	return 0;
577 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)578 static inline void percpu_modcopy(struct module *mod,
579 				  const void *from, unsigned long size)
580 {
581 	/* pcpusec should be 0, and size of that section should be 0. */
582 	BUG_ON(size != 0);
583 }
is_module_percpu_address(unsigned long addr)584 bool is_module_percpu_address(unsigned long addr)
585 {
586 	return false;
587 }
588 
589 #endif /* CONFIG_SMP */
590 
591 #define MODINFO_ATTR(field)	\
592 static void setup_modinfo_##field(struct module *mod, const char *s)  \
593 {                                                                     \
594 	mod->field = kstrdup(s, GFP_KERNEL);                          \
595 }                                                                     \
596 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
597 			struct module_kobject *mk, char *buffer)      \
598 {                                                                     \
599 	return sprintf(buffer, "%s\n", mk->mod->field);               \
600 }                                                                     \
601 static int modinfo_##field##_exists(struct module *mod)               \
602 {                                                                     \
603 	return mod->field != NULL;                                    \
604 }                                                                     \
605 static void free_modinfo_##field(struct module *mod)                  \
606 {                                                                     \
607 	kfree(mod->field);                                            \
608 	mod->field = NULL;                                            \
609 }                                                                     \
610 static struct module_attribute modinfo_##field = {                    \
611 	.attr = { .name = __stringify(field), .mode = 0444 },         \
612 	.show = show_modinfo_##field,                                 \
613 	.setup = setup_modinfo_##field,                               \
614 	.test = modinfo_##field##_exists,                             \
615 	.free = free_modinfo_##field,                                 \
616 };
617 
618 MODINFO_ATTR(version);
619 MODINFO_ATTR(srcversion);
620 
621 static char last_unloaded_module[MODULE_NAME_LEN+1];
622 
623 #ifdef CONFIG_MODULE_UNLOAD
624 
625 EXPORT_TRACEPOINT_SYMBOL(module_get);
626 
627 /* Init the unload section of the module. */
module_unload_init(struct module * mod)628 static int module_unload_init(struct module *mod)
629 {
630 	mod->refptr = alloc_percpu(struct module_ref);
631 	if (!mod->refptr)
632 		return -ENOMEM;
633 
634 	INIT_LIST_HEAD(&mod->source_list);
635 	INIT_LIST_HEAD(&mod->target_list);
636 
637 	/* Hold reference count during initialization. */
638 	__this_cpu_write(mod->refptr->incs, 1);
639 	/* Backwards compatibility macros put refcount during init. */
640 	mod->waiter = current;
641 
642 	return 0;
643 }
644 
645 /* Does a already use b? */
already_uses(struct module * a,struct module * b)646 static int already_uses(struct module *a, struct module *b)
647 {
648 	struct module_use *use;
649 
650 	list_for_each_entry(use, &b->source_list, source_list) {
651 		if (use->source == a) {
652 			pr_debug("%s uses %s!\n", a->name, b->name);
653 			return 1;
654 		}
655 	}
656 	pr_debug("%s does not use %s!\n", a->name, b->name);
657 	return 0;
658 }
659 
660 /*
661  * Module a uses b
662  *  - we add 'a' as a "source", 'b' as a "target" of module use
663  *  - the module_use is added to the list of 'b' sources (so
664  *    'b' can walk the list to see who sourced them), and of 'a'
665  *    targets (so 'a' can see what modules it targets).
666  */
add_module_usage(struct module * a,struct module * b)667 static int add_module_usage(struct module *a, struct module *b)
668 {
669 	struct module_use *use;
670 
671 	pr_debug("Allocating new usage for %s.\n", a->name);
672 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
673 	if (!use) {
674 		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
675 		return -ENOMEM;
676 	}
677 
678 	use->source = a;
679 	use->target = b;
680 	list_add(&use->source_list, &b->source_list);
681 	list_add(&use->target_list, &a->target_list);
682 	return 0;
683 }
684 
685 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)686 int ref_module(struct module *a, struct module *b)
687 {
688 	int err;
689 
690 	if (b == NULL || already_uses(a, b))
691 		return 0;
692 
693 	/* If module isn't available, we fail. */
694 	err = strong_try_module_get(b);
695 	if (err)
696 		return err;
697 
698 	err = add_module_usage(a, b);
699 	if (err) {
700 		module_put(b);
701 		return err;
702 	}
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(ref_module);
706 
707 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)708 static void module_unload_free(struct module *mod)
709 {
710 	struct module_use *use, *tmp;
711 
712 	mutex_lock(&module_mutex);
713 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
714 		struct module *i = use->target;
715 		pr_debug("%s unusing %s\n", mod->name, i->name);
716 		module_put(i);
717 		list_del(&use->source_list);
718 		list_del(&use->target_list);
719 		kfree(use);
720 	}
721 	mutex_unlock(&module_mutex);
722 
723 	free_percpu(mod->refptr);
724 }
725 
726 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)727 static inline int try_force_unload(unsigned int flags)
728 {
729 	int ret = (flags & O_TRUNC);
730 	if (ret)
731 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
732 	return ret;
733 }
734 #else
try_force_unload(unsigned int flags)735 static inline int try_force_unload(unsigned int flags)
736 {
737 	return 0;
738 }
739 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
740 
741 struct stopref
742 {
743 	struct module *mod;
744 	int flags;
745 	int *forced;
746 };
747 
748 /* Whole machine is stopped with interrupts off when this runs. */
__try_stop_module(void * _sref)749 static int __try_stop_module(void *_sref)
750 {
751 	struct stopref *sref = _sref;
752 
753 	/* If it's not unused, quit unless we're forcing. */
754 	if (module_refcount(sref->mod) != 0) {
755 		if (!(*sref->forced = try_force_unload(sref->flags)))
756 			return -EWOULDBLOCK;
757 	}
758 
759 	/* Mark it as dying. */
760 	sref->mod->state = MODULE_STATE_GOING;
761 	return 0;
762 }
763 
try_stop_module(struct module * mod,int flags,int * forced)764 static int try_stop_module(struct module *mod, int flags, int *forced)
765 {
766 	if (flags & O_NONBLOCK) {
767 		struct stopref sref = { mod, flags, forced };
768 
769 		return stop_machine(__try_stop_module, &sref, NULL);
770 	} else {
771 		/* We don't need to stop the machine for this. */
772 		mod->state = MODULE_STATE_GOING;
773 		synchronize_sched();
774 		return 0;
775 	}
776 }
777 
module_refcount(struct module * mod)778 unsigned long module_refcount(struct module *mod)
779 {
780 	unsigned long incs = 0, decs = 0;
781 	int cpu;
782 
783 	for_each_possible_cpu(cpu)
784 		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
785 	/*
786 	 * ensure the incs are added up after the decs.
787 	 * module_put ensures incs are visible before decs with smp_wmb.
788 	 *
789 	 * This 2-count scheme avoids the situation where the refcount
790 	 * for CPU0 is read, then CPU0 increments the module refcount,
791 	 * then CPU1 drops that refcount, then the refcount for CPU1 is
792 	 * read. We would record a decrement but not its corresponding
793 	 * increment so we would see a low count (disaster).
794 	 *
795 	 * Rare situation? But module_refcount can be preempted, and we
796 	 * might be tallying up 4096+ CPUs. So it is not impossible.
797 	 */
798 	smp_rmb();
799 	for_each_possible_cpu(cpu)
800 		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
801 	return incs - decs;
802 }
803 EXPORT_SYMBOL(module_refcount);
804 
805 /* This exists whether we can unload or not */
806 static void free_module(struct module *mod);
807 
wait_for_zero_refcount(struct module * mod)808 static void wait_for_zero_refcount(struct module *mod)
809 {
810 	/* Since we might sleep for some time, release the mutex first */
811 	mutex_unlock(&module_mutex);
812 	for (;;) {
813 		pr_debug("Looking at refcount...\n");
814 		set_current_state(TASK_UNINTERRUPTIBLE);
815 		if (module_refcount(mod) == 0)
816 			break;
817 		schedule();
818 	}
819 	current->state = TASK_RUNNING;
820 	mutex_lock(&module_mutex);
821 }
822 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)823 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
824 		unsigned int, flags)
825 {
826 	struct module *mod;
827 	char name[MODULE_NAME_LEN];
828 	int ret, forced = 0;
829 
830 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
831 		return -EPERM;
832 
833 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
834 		return -EFAULT;
835 	name[MODULE_NAME_LEN-1] = '\0';
836 
837 	if (mutex_lock_interruptible(&module_mutex) != 0)
838 		return -EINTR;
839 
840 	mod = find_module(name);
841 	if (!mod) {
842 		ret = -ENOENT;
843 		goto out;
844 	}
845 
846 	if (!list_empty(&mod->source_list)) {
847 		/* Other modules depend on us: get rid of them first. */
848 		ret = -EWOULDBLOCK;
849 		goto out;
850 	}
851 
852 	/* Doing init or already dying? */
853 	if (mod->state != MODULE_STATE_LIVE) {
854 		/* FIXME: if (force), slam module count and wake up
855                    waiter --RR */
856 		pr_debug("%s already dying\n", mod->name);
857 		ret = -EBUSY;
858 		goto out;
859 	}
860 
861 	/* If it has an init func, it must have an exit func to unload */
862 	if (mod->init && !mod->exit) {
863 		forced = try_force_unload(flags);
864 		if (!forced) {
865 			/* This module can't be removed */
866 			ret = -EBUSY;
867 			goto out;
868 		}
869 	}
870 
871 	/* Set this up before setting mod->state */
872 	mod->waiter = current;
873 
874 	/* Stop the machine so refcounts can't move and disable module. */
875 	ret = try_stop_module(mod, flags, &forced);
876 	if (ret != 0)
877 		goto out;
878 
879 	/* Never wait if forced. */
880 	if (!forced && module_refcount(mod) != 0)
881 		wait_for_zero_refcount(mod);
882 
883 	mutex_unlock(&module_mutex);
884 	/* Final destruction now no one is using it. */
885 	if (mod->exit != NULL)
886 		mod->exit();
887 	blocking_notifier_call_chain(&module_notify_list,
888 				     MODULE_STATE_GOING, mod);
889 	async_synchronize_full();
890 
891 	/* Store the name of the last unloaded module for diagnostic purposes */
892 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
893 
894 	free_module(mod);
895 	return 0;
896 out:
897 	mutex_unlock(&module_mutex);
898 	return ret;
899 }
900 
print_unload_info(struct seq_file * m,struct module * mod)901 static inline void print_unload_info(struct seq_file *m, struct module *mod)
902 {
903 	struct module_use *use;
904 	int printed_something = 0;
905 
906 	seq_printf(m, " %lu ", module_refcount(mod));
907 
908 	/* Always include a trailing , so userspace can differentiate
909            between this and the old multi-field proc format. */
910 	list_for_each_entry(use, &mod->source_list, source_list) {
911 		printed_something = 1;
912 		seq_printf(m, "%s,", use->source->name);
913 	}
914 
915 	if (mod->init != NULL && mod->exit == NULL) {
916 		printed_something = 1;
917 		seq_printf(m, "[permanent],");
918 	}
919 
920 	if (!printed_something)
921 		seq_printf(m, "-");
922 }
923 
__symbol_put(const char * symbol)924 void __symbol_put(const char *symbol)
925 {
926 	struct module *owner;
927 
928 	preempt_disable();
929 	if (!find_symbol(symbol, &owner, NULL, true, false))
930 		BUG();
931 	module_put(owner);
932 	preempt_enable();
933 }
934 EXPORT_SYMBOL(__symbol_put);
935 
936 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)937 void symbol_put_addr(void *addr)
938 {
939 	struct module *modaddr;
940 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
941 
942 	if (core_kernel_text(a))
943 		return;
944 
945 	/* module_text_address is safe here: we're supposed to have reference
946 	 * to module from symbol_get, so it can't go away. */
947 	modaddr = __module_text_address(a);
948 	BUG_ON(!modaddr);
949 	module_put(modaddr);
950 }
951 EXPORT_SYMBOL_GPL(symbol_put_addr);
952 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)953 static ssize_t show_refcnt(struct module_attribute *mattr,
954 			   struct module_kobject *mk, char *buffer)
955 {
956 	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
957 }
958 
959 static struct module_attribute modinfo_refcnt =
960 	__ATTR(refcnt, 0444, show_refcnt, NULL);
961 
__module_get(struct module * module)962 void __module_get(struct module *module)
963 {
964 	if (module) {
965 		preempt_disable();
966 		__this_cpu_inc(module->refptr->incs);
967 		trace_module_get(module, _RET_IP_);
968 		preempt_enable();
969 	}
970 }
971 EXPORT_SYMBOL(__module_get);
972 
try_module_get(struct module * module)973 bool try_module_get(struct module *module)
974 {
975 	bool ret = true;
976 
977 	if (module) {
978 		preempt_disable();
979 
980 		if (likely(module_is_live(module))) {
981 			__this_cpu_inc(module->refptr->incs);
982 			trace_module_get(module, _RET_IP_);
983 		} else
984 			ret = false;
985 
986 		preempt_enable();
987 	}
988 	return ret;
989 }
990 EXPORT_SYMBOL(try_module_get);
991 
module_put(struct module * module)992 void module_put(struct module *module)
993 {
994 	if (module) {
995 		preempt_disable();
996 		smp_wmb(); /* see comment in module_refcount */
997 		__this_cpu_inc(module->refptr->decs);
998 
999 		trace_module_put(module, _RET_IP_);
1000 		/* Maybe they're waiting for us to drop reference? */
1001 		if (unlikely(!module_is_live(module)))
1002 			wake_up_process(module->waiter);
1003 		preempt_enable();
1004 	}
1005 }
1006 EXPORT_SYMBOL(module_put);
1007 
1008 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1009 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1010 {
1011 	/* We don't know the usage count, or what modules are using. */
1012 	seq_printf(m, " - -");
1013 }
1014 
module_unload_free(struct module * mod)1015 static inline void module_unload_free(struct module *mod)
1016 {
1017 }
1018 
ref_module(struct module * a,struct module * b)1019 int ref_module(struct module *a, struct module *b)
1020 {
1021 	return strong_try_module_get(b);
1022 }
1023 EXPORT_SYMBOL_GPL(ref_module);
1024 
module_unload_init(struct module * mod)1025 static inline int module_unload_init(struct module *mod)
1026 {
1027 	return 0;
1028 }
1029 #endif /* CONFIG_MODULE_UNLOAD */
1030 
module_flags_taint(struct module * mod,char * buf)1031 static size_t module_flags_taint(struct module *mod, char *buf)
1032 {
1033 	size_t l = 0;
1034 
1035 	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1036 		buf[l++] = 'P';
1037 	if (mod->taints & (1 << TAINT_OOT_MODULE))
1038 		buf[l++] = 'O';
1039 	if (mod->taints & (1 << TAINT_FORCED_MODULE))
1040 		buf[l++] = 'F';
1041 	if (mod->taints & (1 << TAINT_CRAP))
1042 		buf[l++] = 'C';
1043 	/*
1044 	 * TAINT_FORCED_RMMOD: could be added.
1045 	 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1046 	 * apply to modules.
1047 	 */
1048 	return l;
1049 }
1050 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1051 static ssize_t show_initstate(struct module_attribute *mattr,
1052 			      struct module_kobject *mk, char *buffer)
1053 {
1054 	const char *state = "unknown";
1055 
1056 	switch (mk->mod->state) {
1057 	case MODULE_STATE_LIVE:
1058 		state = "live";
1059 		break;
1060 	case MODULE_STATE_COMING:
1061 		state = "coming";
1062 		break;
1063 	case MODULE_STATE_GOING:
1064 		state = "going";
1065 		break;
1066 	default:
1067 		BUG();
1068 	}
1069 	return sprintf(buffer, "%s\n", state);
1070 }
1071 
1072 static struct module_attribute modinfo_initstate =
1073 	__ATTR(initstate, 0444, show_initstate, NULL);
1074 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1075 static ssize_t store_uevent(struct module_attribute *mattr,
1076 			    struct module_kobject *mk,
1077 			    const char *buffer, size_t count)
1078 {
1079 	enum kobject_action action;
1080 
1081 	if (kobject_action_type(buffer, count, &action) == 0)
1082 		kobject_uevent(&mk->kobj, action);
1083 	return count;
1084 }
1085 
1086 struct module_attribute module_uevent =
1087 	__ATTR(uevent, 0200, NULL, store_uevent);
1088 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1089 static ssize_t show_coresize(struct module_attribute *mattr,
1090 			     struct module_kobject *mk, char *buffer)
1091 {
1092 	return sprintf(buffer, "%u\n", mk->mod->core_size);
1093 }
1094 
1095 static struct module_attribute modinfo_coresize =
1096 	__ATTR(coresize, 0444, show_coresize, NULL);
1097 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1098 static ssize_t show_initsize(struct module_attribute *mattr,
1099 			     struct module_kobject *mk, char *buffer)
1100 {
1101 	return sprintf(buffer, "%u\n", mk->mod->init_size);
1102 }
1103 
1104 static struct module_attribute modinfo_initsize =
1105 	__ATTR(initsize, 0444, show_initsize, NULL);
1106 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1107 static ssize_t show_taint(struct module_attribute *mattr,
1108 			  struct module_kobject *mk, char *buffer)
1109 {
1110 	size_t l;
1111 
1112 	l = module_flags_taint(mk->mod, buffer);
1113 	buffer[l++] = '\n';
1114 	return l;
1115 }
1116 
1117 static struct module_attribute modinfo_taint =
1118 	__ATTR(taint, 0444, show_taint, NULL);
1119 
1120 static struct module_attribute *modinfo_attrs[] = {
1121 	&module_uevent,
1122 	&modinfo_version,
1123 	&modinfo_srcversion,
1124 	&modinfo_initstate,
1125 	&modinfo_coresize,
1126 	&modinfo_initsize,
1127 	&modinfo_taint,
1128 #ifdef CONFIG_MODULE_UNLOAD
1129 	&modinfo_refcnt,
1130 #endif
1131 	NULL,
1132 };
1133 
1134 static const char vermagic[] = VERMAGIC_STRING;
1135 
try_to_force_load(struct module * mod,const char * reason)1136 static int try_to_force_load(struct module *mod, const char *reason)
1137 {
1138 #ifdef CONFIG_MODULE_FORCE_LOAD
1139 	if (!test_taint(TAINT_FORCED_MODULE))
1140 		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1141 		       mod->name, reason);
1142 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1143 	return 0;
1144 #else
1145 	return -ENOEXEC;
1146 #endif
1147 }
1148 
1149 #ifdef CONFIG_MODVERSIONS
1150 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1151 static unsigned long maybe_relocated(unsigned long crc,
1152 				     const struct module *crc_owner)
1153 {
1154 #ifdef ARCH_RELOCATES_KCRCTAB
1155 	if (crc_owner == NULL)
1156 		return crc - (unsigned long)reloc_start;
1157 #endif
1158 	return crc;
1159 }
1160 
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1161 static int check_version(Elf_Shdr *sechdrs,
1162 			 unsigned int versindex,
1163 			 const char *symname,
1164 			 struct module *mod,
1165 			 const unsigned long *crc,
1166 			 const struct module *crc_owner)
1167 {
1168 	unsigned int i, num_versions;
1169 	struct modversion_info *versions;
1170 
1171 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1172 	if (!crc)
1173 		return 1;
1174 
1175 	/* No versions at all?  modprobe --force does this. */
1176 	if (versindex == 0)
1177 		return try_to_force_load(mod, symname) == 0;
1178 
1179 	versions = (void *) sechdrs[versindex].sh_addr;
1180 	num_versions = sechdrs[versindex].sh_size
1181 		/ sizeof(struct modversion_info);
1182 
1183 	for (i = 0; i < num_versions; i++) {
1184 		if (strcmp(versions[i].name, symname) != 0)
1185 			continue;
1186 
1187 		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1188 			return 1;
1189 		pr_debug("Found checksum %lX vs module %lX\n",
1190 		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1191 		goto bad_version;
1192 	}
1193 
1194 	printk(KERN_WARNING "%s: no symbol version for %s\n",
1195 	       mod->name, symname);
1196 	return 0;
1197 
1198 bad_version:
1199 	printk("%s: disagrees about version of symbol %s\n",
1200 	       mod->name, symname);
1201 	return 0;
1202 }
1203 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1204 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1205 					  unsigned int versindex,
1206 					  struct module *mod)
1207 {
1208 	const unsigned long *crc;
1209 
1210 	/* Since this should be found in kernel (which can't be removed),
1211 	 * no locking is necessary. */
1212 	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1213 			 &crc, true, false))
1214 		BUG();
1215 	return check_version(sechdrs, versindex,
1216 			     VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1217 			     NULL);
1218 }
1219 
1220 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1221 static inline int same_magic(const char *amagic, const char *bmagic,
1222 			     bool has_crcs)
1223 {
1224 	if (has_crcs) {
1225 		amagic += strcspn(amagic, " ");
1226 		bmagic += strcspn(bmagic, " ");
1227 	}
1228 	return strcmp(amagic, bmagic) == 0;
1229 }
1230 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1231 static inline int check_version(Elf_Shdr *sechdrs,
1232 				unsigned int versindex,
1233 				const char *symname,
1234 				struct module *mod,
1235 				const unsigned long *crc,
1236 				const struct module *crc_owner)
1237 {
1238 	return 1;
1239 }
1240 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1241 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1242 					  unsigned int versindex,
1243 					  struct module *mod)
1244 {
1245 	return 1;
1246 }
1247 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1248 static inline int same_magic(const char *amagic, const char *bmagic,
1249 			     bool has_crcs)
1250 {
1251 	return strcmp(amagic, bmagic) == 0;
1252 }
1253 #endif /* CONFIG_MODVERSIONS */
1254 
1255 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1256 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1257 						  const struct load_info *info,
1258 						  const char *name,
1259 						  char ownername[])
1260 {
1261 	struct module *owner;
1262 	const struct kernel_symbol *sym;
1263 	const unsigned long *crc;
1264 	int err;
1265 
1266 	mutex_lock(&module_mutex);
1267 	sym = find_symbol(name, &owner, &crc,
1268 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1269 	if (!sym)
1270 		goto unlock;
1271 
1272 	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1273 			   owner)) {
1274 		sym = ERR_PTR(-EINVAL);
1275 		goto getname;
1276 	}
1277 
1278 	err = ref_module(mod, owner);
1279 	if (err) {
1280 		sym = ERR_PTR(err);
1281 		goto getname;
1282 	}
1283 
1284 getname:
1285 	/* We must make copy under the lock if we failed to get ref. */
1286 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1287 unlock:
1288 	mutex_unlock(&module_mutex);
1289 	return sym;
1290 }
1291 
1292 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1293 resolve_symbol_wait(struct module *mod,
1294 		    const struct load_info *info,
1295 		    const char *name)
1296 {
1297 	const struct kernel_symbol *ksym;
1298 	char owner[MODULE_NAME_LEN];
1299 
1300 	if (wait_event_interruptible_timeout(module_wq,
1301 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1302 			|| PTR_ERR(ksym) != -EBUSY,
1303 					     30 * HZ) <= 0) {
1304 		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1305 		       mod->name, owner);
1306 	}
1307 	return ksym;
1308 }
1309 
1310 /*
1311  * /sys/module/foo/sections stuff
1312  * J. Corbet <corbet@lwn.net>
1313  */
1314 #ifdef CONFIG_SYSFS
1315 
1316 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1317 static inline bool sect_empty(const Elf_Shdr *sect)
1318 {
1319 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1320 }
1321 
1322 struct module_sect_attr
1323 {
1324 	struct module_attribute mattr;
1325 	char *name;
1326 	unsigned long address;
1327 };
1328 
1329 struct module_sect_attrs
1330 {
1331 	struct attribute_group grp;
1332 	unsigned int nsections;
1333 	struct module_sect_attr attrs[0];
1334 };
1335 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1336 static ssize_t module_sect_show(struct module_attribute *mattr,
1337 				struct module_kobject *mk, char *buf)
1338 {
1339 	struct module_sect_attr *sattr =
1340 		container_of(mattr, struct module_sect_attr, mattr);
1341 	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1342 }
1343 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1344 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1345 {
1346 	unsigned int section;
1347 
1348 	for (section = 0; section < sect_attrs->nsections; section++)
1349 		kfree(sect_attrs->attrs[section].name);
1350 	kfree(sect_attrs);
1351 }
1352 
add_sect_attrs(struct module * mod,const struct load_info * info)1353 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1354 {
1355 	unsigned int nloaded = 0, i, size[2];
1356 	struct module_sect_attrs *sect_attrs;
1357 	struct module_sect_attr *sattr;
1358 	struct attribute **gattr;
1359 
1360 	/* Count loaded sections and allocate structures */
1361 	for (i = 0; i < info->hdr->e_shnum; i++)
1362 		if (!sect_empty(&info->sechdrs[i]))
1363 			nloaded++;
1364 	size[0] = ALIGN(sizeof(*sect_attrs)
1365 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1366 			sizeof(sect_attrs->grp.attrs[0]));
1367 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1368 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1369 	if (sect_attrs == NULL)
1370 		return;
1371 
1372 	/* Setup section attributes. */
1373 	sect_attrs->grp.name = "sections";
1374 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1375 
1376 	sect_attrs->nsections = 0;
1377 	sattr = &sect_attrs->attrs[0];
1378 	gattr = &sect_attrs->grp.attrs[0];
1379 	for (i = 0; i < info->hdr->e_shnum; i++) {
1380 		Elf_Shdr *sec = &info->sechdrs[i];
1381 		if (sect_empty(sec))
1382 			continue;
1383 		sattr->address = sec->sh_addr;
1384 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1385 					GFP_KERNEL);
1386 		if (sattr->name == NULL)
1387 			goto out;
1388 		sect_attrs->nsections++;
1389 		sysfs_attr_init(&sattr->mattr.attr);
1390 		sattr->mattr.show = module_sect_show;
1391 		sattr->mattr.store = NULL;
1392 		sattr->mattr.attr.name = sattr->name;
1393 		sattr->mattr.attr.mode = S_IRUGO;
1394 		*(gattr++) = &(sattr++)->mattr.attr;
1395 	}
1396 	*gattr = NULL;
1397 
1398 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1399 		goto out;
1400 
1401 	mod->sect_attrs = sect_attrs;
1402 	return;
1403   out:
1404 	free_sect_attrs(sect_attrs);
1405 }
1406 
remove_sect_attrs(struct module * mod)1407 static void remove_sect_attrs(struct module *mod)
1408 {
1409 	if (mod->sect_attrs) {
1410 		sysfs_remove_group(&mod->mkobj.kobj,
1411 				   &mod->sect_attrs->grp);
1412 		/* We are positive that no one is using any sect attrs
1413 		 * at this point.  Deallocate immediately. */
1414 		free_sect_attrs(mod->sect_attrs);
1415 		mod->sect_attrs = NULL;
1416 	}
1417 }
1418 
1419 /*
1420  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1421  */
1422 
1423 struct module_notes_attrs {
1424 	struct kobject *dir;
1425 	unsigned int notes;
1426 	struct bin_attribute attrs[0];
1427 };
1428 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1429 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1430 				 struct bin_attribute *bin_attr,
1431 				 char *buf, loff_t pos, size_t count)
1432 {
1433 	/*
1434 	 * The caller checked the pos and count against our size.
1435 	 */
1436 	memcpy(buf, bin_attr->private + pos, count);
1437 	return count;
1438 }
1439 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1440 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1441 			     unsigned int i)
1442 {
1443 	if (notes_attrs->dir) {
1444 		while (i-- > 0)
1445 			sysfs_remove_bin_file(notes_attrs->dir,
1446 					      &notes_attrs->attrs[i]);
1447 		kobject_put(notes_attrs->dir);
1448 	}
1449 	kfree(notes_attrs);
1450 }
1451 
add_notes_attrs(struct module * mod,const struct load_info * info)1452 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1453 {
1454 	unsigned int notes, loaded, i;
1455 	struct module_notes_attrs *notes_attrs;
1456 	struct bin_attribute *nattr;
1457 
1458 	/* failed to create section attributes, so can't create notes */
1459 	if (!mod->sect_attrs)
1460 		return;
1461 
1462 	/* Count notes sections and allocate structures.  */
1463 	notes = 0;
1464 	for (i = 0; i < info->hdr->e_shnum; i++)
1465 		if (!sect_empty(&info->sechdrs[i]) &&
1466 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1467 			++notes;
1468 
1469 	if (notes == 0)
1470 		return;
1471 
1472 	notes_attrs = kzalloc(sizeof(*notes_attrs)
1473 			      + notes * sizeof(notes_attrs->attrs[0]),
1474 			      GFP_KERNEL);
1475 	if (notes_attrs == NULL)
1476 		return;
1477 
1478 	notes_attrs->notes = notes;
1479 	nattr = &notes_attrs->attrs[0];
1480 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1481 		if (sect_empty(&info->sechdrs[i]))
1482 			continue;
1483 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1484 			sysfs_bin_attr_init(nattr);
1485 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1486 			nattr->attr.mode = S_IRUGO;
1487 			nattr->size = info->sechdrs[i].sh_size;
1488 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1489 			nattr->read = module_notes_read;
1490 			++nattr;
1491 		}
1492 		++loaded;
1493 	}
1494 
1495 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1496 	if (!notes_attrs->dir)
1497 		goto out;
1498 
1499 	for (i = 0; i < notes; ++i)
1500 		if (sysfs_create_bin_file(notes_attrs->dir,
1501 					  &notes_attrs->attrs[i]))
1502 			goto out;
1503 
1504 	mod->notes_attrs = notes_attrs;
1505 	return;
1506 
1507   out:
1508 	free_notes_attrs(notes_attrs, i);
1509 }
1510 
remove_notes_attrs(struct module * mod)1511 static void remove_notes_attrs(struct module *mod)
1512 {
1513 	if (mod->notes_attrs)
1514 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1515 }
1516 
1517 #else
1518 
add_sect_attrs(struct module * mod,const struct load_info * info)1519 static inline void add_sect_attrs(struct module *mod,
1520 				  const struct load_info *info)
1521 {
1522 }
1523 
remove_sect_attrs(struct module * mod)1524 static inline void remove_sect_attrs(struct module *mod)
1525 {
1526 }
1527 
add_notes_attrs(struct module * mod,const struct load_info * info)1528 static inline void add_notes_attrs(struct module *mod,
1529 				   const struct load_info *info)
1530 {
1531 }
1532 
remove_notes_attrs(struct module * mod)1533 static inline void remove_notes_attrs(struct module *mod)
1534 {
1535 }
1536 #endif /* CONFIG_KALLSYMS */
1537 
add_usage_links(struct module * mod)1538 static void add_usage_links(struct module *mod)
1539 {
1540 #ifdef CONFIG_MODULE_UNLOAD
1541 	struct module_use *use;
1542 	int nowarn;
1543 
1544 	mutex_lock(&module_mutex);
1545 	list_for_each_entry(use, &mod->target_list, target_list) {
1546 		nowarn = sysfs_create_link(use->target->holders_dir,
1547 					   &mod->mkobj.kobj, mod->name);
1548 	}
1549 	mutex_unlock(&module_mutex);
1550 #endif
1551 }
1552 
del_usage_links(struct module * mod)1553 static void del_usage_links(struct module *mod)
1554 {
1555 #ifdef CONFIG_MODULE_UNLOAD
1556 	struct module_use *use;
1557 
1558 	mutex_lock(&module_mutex);
1559 	list_for_each_entry(use, &mod->target_list, target_list)
1560 		sysfs_remove_link(use->target->holders_dir, mod->name);
1561 	mutex_unlock(&module_mutex);
1562 #endif
1563 }
1564 
module_add_modinfo_attrs(struct module * mod)1565 static int module_add_modinfo_attrs(struct module *mod)
1566 {
1567 	struct module_attribute *attr;
1568 	struct module_attribute *temp_attr;
1569 	int error = 0;
1570 	int i;
1571 
1572 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1573 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1574 					GFP_KERNEL);
1575 	if (!mod->modinfo_attrs)
1576 		return -ENOMEM;
1577 
1578 	temp_attr = mod->modinfo_attrs;
1579 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1580 		if (!attr->test ||
1581 		    (attr->test && attr->test(mod))) {
1582 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1583 			sysfs_attr_init(&temp_attr->attr);
1584 			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1585 			++temp_attr;
1586 		}
1587 	}
1588 	return error;
1589 }
1590 
module_remove_modinfo_attrs(struct module * mod)1591 static void module_remove_modinfo_attrs(struct module *mod)
1592 {
1593 	struct module_attribute *attr;
1594 	int i;
1595 
1596 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1597 		/* pick a field to test for end of list */
1598 		if (!attr->attr.name)
1599 			break;
1600 		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1601 		if (attr->free)
1602 			attr->free(mod);
1603 	}
1604 	kfree(mod->modinfo_attrs);
1605 }
1606 
mod_sysfs_init(struct module * mod)1607 static int mod_sysfs_init(struct module *mod)
1608 {
1609 	int err;
1610 	struct kobject *kobj;
1611 
1612 	if (!module_sysfs_initialized) {
1613 		printk(KERN_ERR "%s: module sysfs not initialized\n",
1614 		       mod->name);
1615 		err = -EINVAL;
1616 		goto out;
1617 	}
1618 
1619 	kobj = kset_find_obj(module_kset, mod->name);
1620 	if (kobj) {
1621 		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1622 		kobject_put(kobj);
1623 		err = -EINVAL;
1624 		goto out;
1625 	}
1626 
1627 	mod->mkobj.mod = mod;
1628 
1629 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1630 	mod->mkobj.kobj.kset = module_kset;
1631 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1632 				   "%s", mod->name);
1633 	if (err)
1634 		kobject_put(&mod->mkobj.kobj);
1635 
1636 	/* delay uevent until full sysfs population */
1637 out:
1638 	return err;
1639 }
1640 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1641 static int mod_sysfs_setup(struct module *mod,
1642 			   const struct load_info *info,
1643 			   struct kernel_param *kparam,
1644 			   unsigned int num_params)
1645 {
1646 	int err;
1647 
1648 	err = mod_sysfs_init(mod);
1649 	if (err)
1650 		goto out;
1651 
1652 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1653 	if (!mod->holders_dir) {
1654 		err = -ENOMEM;
1655 		goto out_unreg;
1656 	}
1657 
1658 	err = module_param_sysfs_setup(mod, kparam, num_params);
1659 	if (err)
1660 		goto out_unreg_holders;
1661 
1662 	err = module_add_modinfo_attrs(mod);
1663 	if (err)
1664 		goto out_unreg_param;
1665 
1666 	add_usage_links(mod);
1667 	add_sect_attrs(mod, info);
1668 	add_notes_attrs(mod, info);
1669 
1670 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1671 	return 0;
1672 
1673 out_unreg_param:
1674 	module_param_sysfs_remove(mod);
1675 out_unreg_holders:
1676 	kobject_put(mod->holders_dir);
1677 out_unreg:
1678 	kobject_put(&mod->mkobj.kobj);
1679 out:
1680 	return err;
1681 }
1682 
mod_sysfs_fini(struct module * mod)1683 static void mod_sysfs_fini(struct module *mod)
1684 {
1685 	remove_notes_attrs(mod);
1686 	remove_sect_attrs(mod);
1687 	kobject_put(&mod->mkobj.kobj);
1688 }
1689 
1690 #else /* !CONFIG_SYSFS */
1691 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1692 static int mod_sysfs_setup(struct module *mod,
1693 			   const struct load_info *info,
1694 			   struct kernel_param *kparam,
1695 			   unsigned int num_params)
1696 {
1697 	return 0;
1698 }
1699 
mod_sysfs_fini(struct module * mod)1700 static void mod_sysfs_fini(struct module *mod)
1701 {
1702 }
1703 
module_remove_modinfo_attrs(struct module * mod)1704 static void module_remove_modinfo_attrs(struct module *mod)
1705 {
1706 }
1707 
del_usage_links(struct module * mod)1708 static void del_usage_links(struct module *mod)
1709 {
1710 }
1711 
1712 #endif /* CONFIG_SYSFS */
1713 
mod_sysfs_teardown(struct module * mod)1714 static void mod_sysfs_teardown(struct module *mod)
1715 {
1716 	del_usage_links(mod);
1717 	module_remove_modinfo_attrs(mod);
1718 	module_param_sysfs_remove(mod);
1719 	kobject_put(mod->mkobj.drivers_dir);
1720 	kobject_put(mod->holders_dir);
1721 	mod_sysfs_fini(mod);
1722 }
1723 
1724 /*
1725  * unlink the module with the whole machine is stopped with interrupts off
1726  * - this defends against kallsyms not taking locks
1727  */
__unlink_module(void * _mod)1728 static int __unlink_module(void *_mod)
1729 {
1730 	struct module *mod = _mod;
1731 	list_del(&mod->list);
1732 	module_bug_cleanup(mod);
1733 	return 0;
1734 }
1735 
1736 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1737 /*
1738  * LKM RO/NX protection: protect module's text/ro-data
1739  * from modification and any data from execution.
1740  */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1741 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1742 {
1743 	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1744 	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1745 
1746 	if (end_pfn > begin_pfn)
1747 		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1748 }
1749 
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1750 static void set_section_ro_nx(void *base,
1751 			unsigned long text_size,
1752 			unsigned long ro_size,
1753 			unsigned long total_size)
1754 {
1755 	/* begin and end PFNs of the current subsection */
1756 	unsigned long begin_pfn;
1757 	unsigned long end_pfn;
1758 
1759 	/*
1760 	 * Set RO for module text and RO-data:
1761 	 * - Always protect first page.
1762 	 * - Do not protect last partial page.
1763 	 */
1764 	if (ro_size > 0)
1765 		set_page_attributes(base, base + ro_size, set_memory_ro);
1766 
1767 	/*
1768 	 * Set NX permissions for module data:
1769 	 * - Do not protect first partial page.
1770 	 * - Always protect last page.
1771 	 */
1772 	if (total_size > text_size) {
1773 		begin_pfn = PFN_UP((unsigned long)base + text_size);
1774 		end_pfn = PFN_UP((unsigned long)base + total_size);
1775 		if (end_pfn > begin_pfn)
1776 			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1777 	}
1778 }
1779 
unset_module_core_ro_nx(struct module * mod)1780 static void unset_module_core_ro_nx(struct module *mod)
1781 {
1782 	set_page_attributes(mod->module_core + mod->core_text_size,
1783 		mod->module_core + mod->core_size,
1784 		set_memory_x);
1785 	set_page_attributes(mod->module_core,
1786 		mod->module_core + mod->core_ro_size,
1787 		set_memory_rw);
1788 }
1789 
unset_module_init_ro_nx(struct module * mod)1790 static void unset_module_init_ro_nx(struct module *mod)
1791 {
1792 	set_page_attributes(mod->module_init + mod->init_text_size,
1793 		mod->module_init + mod->init_size,
1794 		set_memory_x);
1795 	set_page_attributes(mod->module_init,
1796 		mod->module_init + mod->init_ro_size,
1797 		set_memory_rw);
1798 }
1799 
1800 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1801 void set_all_modules_text_rw(void)
1802 {
1803 	struct module *mod;
1804 
1805 	mutex_lock(&module_mutex);
1806 	list_for_each_entry_rcu(mod, &modules, list) {
1807 		if (mod->state == MODULE_STATE_UNFORMED)
1808 			continue;
1809 		if ((mod->module_core) && (mod->core_text_size)) {
1810 			set_page_attributes(mod->module_core,
1811 						mod->module_core + mod->core_text_size,
1812 						set_memory_rw);
1813 		}
1814 		if ((mod->module_init) && (mod->init_text_size)) {
1815 			set_page_attributes(mod->module_init,
1816 						mod->module_init + mod->init_text_size,
1817 						set_memory_rw);
1818 		}
1819 	}
1820 	mutex_unlock(&module_mutex);
1821 }
1822 
1823 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1824 void set_all_modules_text_ro(void)
1825 {
1826 	struct module *mod;
1827 
1828 	mutex_lock(&module_mutex);
1829 	list_for_each_entry_rcu(mod, &modules, list) {
1830 		if (mod->state == MODULE_STATE_UNFORMED)
1831 			continue;
1832 		if ((mod->module_core) && (mod->core_text_size)) {
1833 			set_page_attributes(mod->module_core,
1834 						mod->module_core + mod->core_text_size,
1835 						set_memory_ro);
1836 		}
1837 		if ((mod->module_init) && (mod->init_text_size)) {
1838 			set_page_attributes(mod->module_init,
1839 						mod->module_init + mod->init_text_size,
1840 						set_memory_ro);
1841 		}
1842 	}
1843 	mutex_unlock(&module_mutex);
1844 }
1845 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1846 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1847 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1848 static void unset_module_init_ro_nx(struct module *mod) { }
1849 #endif
1850 
module_free(struct module * mod,void * module_region)1851 void __weak module_free(struct module *mod, void *module_region)
1852 {
1853 	vfree(module_region);
1854 }
1855 
module_arch_cleanup(struct module * mod)1856 void __weak module_arch_cleanup(struct module *mod)
1857 {
1858 }
1859 
1860 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1861 static void free_module(struct module *mod)
1862 {
1863 	trace_module_free(mod);
1864 
1865 	mod_sysfs_teardown(mod);
1866 
1867 	/* We leave it in list to prevent duplicate loads, but make sure
1868 	 * that noone uses it while it's being deconstructed. */
1869 	mod->state = MODULE_STATE_UNFORMED;
1870 
1871 	/* Remove dynamic debug info */
1872 	ddebug_remove_module(mod->name);
1873 
1874 	/* Arch-specific cleanup. */
1875 	module_arch_cleanup(mod);
1876 
1877 	/* Module unload stuff */
1878 	module_unload_free(mod);
1879 
1880 	/* Free any allocated parameters. */
1881 	destroy_params(mod->kp, mod->num_kp);
1882 
1883 	/* Now we can delete it from the lists */
1884 	mutex_lock(&module_mutex);
1885 	stop_machine(__unlink_module, mod, NULL);
1886 	mutex_unlock(&module_mutex);
1887 
1888 	/* This may be NULL, but that's OK */
1889 	unset_module_init_ro_nx(mod);
1890 	module_free(mod, mod->module_init);
1891 	kfree(mod->args);
1892 	percpu_modfree(mod);
1893 
1894 	/* Free lock-classes: */
1895 	lockdep_free_key_range(mod->module_core, mod->core_size);
1896 
1897 	/* Finally, free the core (containing the module structure) */
1898 	unset_module_core_ro_nx(mod);
1899 	module_free(mod, mod->module_core);
1900 
1901 #ifdef CONFIG_MPU
1902 	update_protections(current->mm);
1903 #endif
1904 }
1905 
__symbol_get(const char * symbol)1906 void *__symbol_get(const char *symbol)
1907 {
1908 	struct module *owner;
1909 	const struct kernel_symbol *sym;
1910 
1911 	preempt_disable();
1912 	sym = find_symbol(symbol, &owner, NULL, true, true);
1913 	if (sym && strong_try_module_get(owner))
1914 		sym = NULL;
1915 	preempt_enable();
1916 
1917 	return sym ? (void *)sym->value : NULL;
1918 }
1919 EXPORT_SYMBOL_GPL(__symbol_get);
1920 
1921 /*
1922  * Ensure that an exported symbol [global namespace] does not already exist
1923  * in the kernel or in some other module's exported symbol table.
1924  *
1925  * You must hold the module_mutex.
1926  */
verify_export_symbols(struct module * mod)1927 static int verify_export_symbols(struct module *mod)
1928 {
1929 	unsigned int i;
1930 	struct module *owner;
1931 	const struct kernel_symbol *s;
1932 	struct {
1933 		const struct kernel_symbol *sym;
1934 		unsigned int num;
1935 	} arr[] = {
1936 		{ mod->syms, mod->num_syms },
1937 		{ mod->gpl_syms, mod->num_gpl_syms },
1938 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1939 #ifdef CONFIG_UNUSED_SYMBOLS
1940 		{ mod->unused_syms, mod->num_unused_syms },
1941 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1942 #endif
1943 	};
1944 
1945 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1946 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1947 			if (find_symbol(s->name, &owner, NULL, true, false)) {
1948 				printk(KERN_ERR
1949 				       "%s: exports duplicate symbol %s"
1950 				       " (owned by %s)\n",
1951 				       mod->name, s->name, module_name(owner));
1952 				return -ENOEXEC;
1953 			}
1954 		}
1955 	}
1956 	return 0;
1957 }
1958 
1959 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1960 static int simplify_symbols(struct module *mod, const struct load_info *info)
1961 {
1962 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1963 	Elf_Sym *sym = (void *)symsec->sh_addr;
1964 	unsigned long secbase;
1965 	unsigned int i;
1966 	int ret = 0;
1967 	const struct kernel_symbol *ksym;
1968 
1969 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1970 		const char *name = info->strtab + sym[i].st_name;
1971 
1972 		switch (sym[i].st_shndx) {
1973 		case SHN_COMMON:
1974 			/* We compiled with -fno-common.  These are not
1975 			   supposed to happen.  */
1976 			pr_debug("Common symbol: %s\n", name);
1977 			printk("%s: please compile with -fno-common\n",
1978 			       mod->name);
1979 			ret = -ENOEXEC;
1980 			break;
1981 
1982 		case SHN_ABS:
1983 			/* Don't need to do anything */
1984 			pr_debug("Absolute symbol: 0x%08lx\n",
1985 			       (long)sym[i].st_value);
1986 			break;
1987 
1988 		case SHN_UNDEF:
1989 			ksym = resolve_symbol_wait(mod, info, name);
1990 			/* Ok if resolved.  */
1991 			if (ksym && !IS_ERR(ksym)) {
1992 				sym[i].st_value = ksym->value;
1993 				break;
1994 			}
1995 
1996 			/* Ok if weak.  */
1997 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1998 				break;
1999 
2000 			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
2001 			       mod->name, name, PTR_ERR(ksym));
2002 			ret = PTR_ERR(ksym) ?: -ENOENT;
2003 			break;
2004 
2005 		default:
2006 			/* Divert to percpu allocation if a percpu var. */
2007 			if (sym[i].st_shndx == info->index.pcpu)
2008 				secbase = (unsigned long)mod_percpu(mod);
2009 			else
2010 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2011 			sym[i].st_value += secbase;
2012 			break;
2013 		}
2014 	}
2015 
2016 	return ret;
2017 }
2018 
apply_relocations(struct module * mod,const struct load_info * info)2019 static int apply_relocations(struct module *mod, const struct load_info *info)
2020 {
2021 	unsigned int i;
2022 	int err = 0;
2023 
2024 	/* Now do relocations. */
2025 	for (i = 1; i < info->hdr->e_shnum; i++) {
2026 		unsigned int infosec = info->sechdrs[i].sh_info;
2027 
2028 		/* Not a valid relocation section? */
2029 		if (infosec >= info->hdr->e_shnum)
2030 			continue;
2031 
2032 		/* Don't bother with non-allocated sections */
2033 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2034 			continue;
2035 
2036 		if (info->sechdrs[i].sh_type == SHT_REL)
2037 			err = apply_relocate(info->sechdrs, info->strtab,
2038 					     info->index.sym, i, mod);
2039 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2040 			err = apply_relocate_add(info->sechdrs, info->strtab,
2041 						 info->index.sym, i, mod);
2042 		if (err < 0)
2043 			break;
2044 	}
2045 	return err;
2046 }
2047 
2048 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2049 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2050 					     unsigned int section)
2051 {
2052 	/* default implementation just returns zero */
2053 	return 0;
2054 }
2055 
2056 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2057 static long get_offset(struct module *mod, unsigned int *size,
2058 		       Elf_Shdr *sechdr, unsigned int section)
2059 {
2060 	long ret;
2061 
2062 	*size += arch_mod_section_prepend(mod, section);
2063 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2064 	*size = ret + sechdr->sh_size;
2065 	return ret;
2066 }
2067 
2068 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2069    might -- code, read-only data, read-write data, small data.  Tally
2070    sizes, and place the offsets into sh_entsize fields: high bit means it
2071    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2072 static void layout_sections(struct module *mod, struct load_info *info)
2073 {
2074 	static unsigned long const masks[][2] = {
2075 		/* NOTE: all executable code must be the first section
2076 		 * in this array; otherwise modify the text_size
2077 		 * finder in the two loops below */
2078 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2079 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2080 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2081 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2082 	};
2083 	unsigned int m, i;
2084 
2085 	for (i = 0; i < info->hdr->e_shnum; i++)
2086 		info->sechdrs[i].sh_entsize = ~0UL;
2087 
2088 	pr_debug("Core section allocation order:\n");
2089 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2090 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2091 			Elf_Shdr *s = &info->sechdrs[i];
2092 			const char *sname = info->secstrings + s->sh_name;
2093 
2094 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2095 			    || (s->sh_flags & masks[m][1])
2096 			    || s->sh_entsize != ~0UL
2097 			    || strstarts(sname, ".init"))
2098 				continue;
2099 			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2100 			pr_debug("\t%s\n", sname);
2101 		}
2102 		switch (m) {
2103 		case 0: /* executable */
2104 			mod->core_size = debug_align(mod->core_size);
2105 			mod->core_text_size = mod->core_size;
2106 			break;
2107 		case 1: /* RO: text and ro-data */
2108 			mod->core_size = debug_align(mod->core_size);
2109 			mod->core_ro_size = mod->core_size;
2110 			break;
2111 		case 3: /* whole core */
2112 			mod->core_size = debug_align(mod->core_size);
2113 			break;
2114 		}
2115 	}
2116 
2117 	pr_debug("Init section allocation order:\n");
2118 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2119 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2120 			Elf_Shdr *s = &info->sechdrs[i];
2121 			const char *sname = info->secstrings + s->sh_name;
2122 
2123 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2124 			    || (s->sh_flags & masks[m][1])
2125 			    || s->sh_entsize != ~0UL
2126 			    || !strstarts(sname, ".init"))
2127 				continue;
2128 			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2129 					 | INIT_OFFSET_MASK);
2130 			pr_debug("\t%s\n", sname);
2131 		}
2132 		switch (m) {
2133 		case 0: /* executable */
2134 			mod->init_size = debug_align(mod->init_size);
2135 			mod->init_text_size = mod->init_size;
2136 			break;
2137 		case 1: /* RO: text and ro-data */
2138 			mod->init_size = debug_align(mod->init_size);
2139 			mod->init_ro_size = mod->init_size;
2140 			break;
2141 		case 3: /* whole init */
2142 			mod->init_size = debug_align(mod->init_size);
2143 			break;
2144 		}
2145 	}
2146 }
2147 
set_license(struct module * mod,const char * license)2148 static void set_license(struct module *mod, const char *license)
2149 {
2150 	if (!license)
2151 		license = "unspecified";
2152 
2153 	if (!license_is_gpl_compatible(license)) {
2154 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2155 			printk(KERN_WARNING "%s: module license '%s' taints "
2156 				"kernel.\n", mod->name, license);
2157 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2158 				 LOCKDEP_NOW_UNRELIABLE);
2159 	}
2160 }
2161 
2162 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2163 static char *next_string(char *string, unsigned long *secsize)
2164 {
2165 	/* Skip non-zero chars */
2166 	while (string[0]) {
2167 		string++;
2168 		if ((*secsize)-- <= 1)
2169 			return NULL;
2170 	}
2171 
2172 	/* Skip any zero padding. */
2173 	while (!string[0]) {
2174 		string++;
2175 		if ((*secsize)-- <= 1)
2176 			return NULL;
2177 	}
2178 	return string;
2179 }
2180 
get_modinfo(struct load_info * info,const char * tag)2181 static char *get_modinfo(struct load_info *info, const char *tag)
2182 {
2183 	char *p;
2184 	unsigned int taglen = strlen(tag);
2185 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2186 	unsigned long size = infosec->sh_size;
2187 
2188 	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2189 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2190 			return p + taglen + 1;
2191 	}
2192 	return NULL;
2193 }
2194 
setup_modinfo(struct module * mod,struct load_info * info)2195 static void setup_modinfo(struct module *mod, struct load_info *info)
2196 {
2197 	struct module_attribute *attr;
2198 	int i;
2199 
2200 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2201 		if (attr->setup)
2202 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2203 	}
2204 }
2205 
free_modinfo(struct module * mod)2206 static void free_modinfo(struct module *mod)
2207 {
2208 	struct module_attribute *attr;
2209 	int i;
2210 
2211 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2212 		if (attr->free)
2213 			attr->free(mod);
2214 	}
2215 }
2216 
2217 #ifdef CONFIG_KALLSYMS
2218 
2219 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2220 static const struct kernel_symbol *lookup_symbol(const char *name,
2221 	const struct kernel_symbol *start,
2222 	const struct kernel_symbol *stop)
2223 {
2224 	return bsearch(name, start, stop - start,
2225 			sizeof(struct kernel_symbol), cmp_name);
2226 }
2227 
is_exported(const char * name,unsigned long value,const struct module * mod)2228 static int is_exported(const char *name, unsigned long value,
2229 		       const struct module *mod)
2230 {
2231 	const struct kernel_symbol *ks;
2232 	if (!mod)
2233 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2234 	else
2235 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2236 	return ks != NULL && ks->value == value;
2237 }
2238 
2239 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2240 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2241 {
2242 	const Elf_Shdr *sechdrs = info->sechdrs;
2243 
2244 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2245 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2246 			return 'v';
2247 		else
2248 			return 'w';
2249 	}
2250 	if (sym->st_shndx == SHN_UNDEF)
2251 		return 'U';
2252 	if (sym->st_shndx == SHN_ABS)
2253 		return 'a';
2254 	if (sym->st_shndx >= SHN_LORESERVE)
2255 		return '?';
2256 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2257 		return 't';
2258 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2259 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2260 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2261 			return 'r';
2262 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2263 			return 'g';
2264 		else
2265 			return 'd';
2266 	}
2267 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2268 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2269 			return 's';
2270 		else
2271 			return 'b';
2272 	}
2273 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2274 		      ".debug")) {
2275 		return 'n';
2276 	}
2277 	return '?';
2278 }
2279 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum)2280 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2281                            unsigned int shnum)
2282 {
2283 	const Elf_Shdr *sec;
2284 
2285 	if (src->st_shndx == SHN_UNDEF
2286 	    || src->st_shndx >= shnum
2287 	    || !src->st_name)
2288 		return false;
2289 
2290 	sec = sechdrs + src->st_shndx;
2291 	if (!(sec->sh_flags & SHF_ALLOC)
2292 #ifndef CONFIG_KALLSYMS_ALL
2293 	    || !(sec->sh_flags & SHF_EXECINSTR)
2294 #endif
2295 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2296 		return false;
2297 
2298 	return true;
2299 }
2300 
2301 /*
2302  * We only allocate and copy the strings needed by the parts of symtab
2303  * we keep.  This is simple, but has the effect of making multiple
2304  * copies of duplicates.  We could be more sophisticated, see
2305  * linux-kernel thread starting with
2306  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2307  */
layout_symtab(struct module * mod,struct load_info * info)2308 static void layout_symtab(struct module *mod, struct load_info *info)
2309 {
2310 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2311 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2312 	const Elf_Sym *src;
2313 	unsigned int i, nsrc, ndst, strtab_size = 0;
2314 
2315 	/* Put symbol section at end of init part of module. */
2316 	symsect->sh_flags |= SHF_ALLOC;
2317 	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2318 					 info->index.sym) | INIT_OFFSET_MASK;
2319 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2320 
2321 	src = (void *)info->hdr + symsect->sh_offset;
2322 	nsrc = symsect->sh_size / sizeof(*src);
2323 
2324 	/* Compute total space required for the core symbols' strtab. */
2325 	for (ndst = i = 0; i < nsrc; i++) {
2326 		if (i == 0 ||
2327 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2328 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2329 			ndst++;
2330 		}
2331 	}
2332 
2333 	/* Append room for core symbols at end of core part. */
2334 	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2335 	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2336 	mod->core_size += strtab_size;
2337 
2338 	/* Put string table section at end of init part of module. */
2339 	strsect->sh_flags |= SHF_ALLOC;
2340 	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2341 					 info->index.str) | INIT_OFFSET_MASK;
2342 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2343 }
2344 
add_kallsyms(struct module * mod,const struct load_info * info)2345 static void add_kallsyms(struct module *mod, const struct load_info *info)
2346 {
2347 	unsigned int i, ndst;
2348 	const Elf_Sym *src;
2349 	Elf_Sym *dst;
2350 	char *s;
2351 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2352 
2353 	mod->symtab = (void *)symsec->sh_addr;
2354 	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2355 	/* Make sure we get permanent strtab: don't use info->strtab. */
2356 	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2357 
2358 	/* Set types up while we still have access to sections. */
2359 	for (i = 0; i < mod->num_symtab; i++)
2360 		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2361 
2362 	mod->core_symtab = dst = mod->module_core + info->symoffs;
2363 	mod->core_strtab = s = mod->module_core + info->stroffs;
2364 	src = mod->symtab;
2365 	for (ndst = i = 0; i < mod->num_symtab; i++) {
2366 		if (i == 0 ||
2367 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2368 			dst[ndst] = src[i];
2369 			dst[ndst++].st_name = s - mod->core_strtab;
2370 			s += strlcpy(s, &mod->strtab[src[i].st_name],
2371 				     KSYM_NAME_LEN) + 1;
2372 		}
2373 	}
2374 	mod->core_num_syms = ndst;
2375 }
2376 #else
layout_symtab(struct module * mod,struct load_info * info)2377 static inline void layout_symtab(struct module *mod, struct load_info *info)
2378 {
2379 }
2380 
add_kallsyms(struct module * mod,const struct load_info * info)2381 static void add_kallsyms(struct module *mod, const struct load_info *info)
2382 {
2383 }
2384 #endif /* CONFIG_KALLSYMS */
2385 
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2386 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2387 {
2388 	if (!debug)
2389 		return;
2390 #ifdef CONFIG_DYNAMIC_DEBUG
2391 	if (ddebug_add_module(debug, num, debug->modname))
2392 		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2393 					debug->modname);
2394 #endif
2395 }
2396 
dynamic_debug_remove(struct _ddebug * debug)2397 static void dynamic_debug_remove(struct _ddebug *debug)
2398 {
2399 	if (debug)
2400 		ddebug_remove_module(debug->modname);
2401 }
2402 
module_alloc(unsigned long size)2403 void * __weak module_alloc(unsigned long size)
2404 {
2405 	return vmalloc_exec(size);
2406 }
2407 
module_alloc_update_bounds(unsigned long size)2408 static void *module_alloc_update_bounds(unsigned long size)
2409 {
2410 	void *ret = module_alloc(size);
2411 
2412 	if (ret) {
2413 		mutex_lock(&module_mutex);
2414 		/* Update module bounds. */
2415 		if ((unsigned long)ret < module_addr_min)
2416 			module_addr_min = (unsigned long)ret;
2417 		if ((unsigned long)ret + size > module_addr_max)
2418 			module_addr_max = (unsigned long)ret + size;
2419 		mutex_unlock(&module_mutex);
2420 	}
2421 	return ret;
2422 }
2423 
2424 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2425 static void kmemleak_load_module(const struct module *mod,
2426 				 const struct load_info *info)
2427 {
2428 	unsigned int i;
2429 
2430 	/* only scan the sections containing data */
2431 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2432 
2433 	for (i = 1; i < info->hdr->e_shnum; i++) {
2434 		/* Scan all writable sections that's not executable */
2435 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2436 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2437 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2438 			continue;
2439 
2440 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2441 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2442 	}
2443 }
2444 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2445 static inline void kmemleak_load_module(const struct module *mod,
2446 					const struct load_info *info)
2447 {
2448 }
2449 #endif
2450 
2451 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info)2452 static int module_sig_check(struct load_info *info)
2453 {
2454 	int err = -ENOKEY;
2455 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2456 	const void *mod = info->hdr;
2457 
2458 	if (info->len > markerlen &&
2459 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2460 		/* We truncate the module to discard the signature */
2461 		info->len -= markerlen;
2462 		err = mod_verify_sig(mod, &info->len);
2463 	}
2464 
2465 	if (!err) {
2466 		info->sig_ok = true;
2467 		return 0;
2468 	}
2469 
2470 	/* Not having a signature is only an error if we're strict. */
2471 	if (err < 0 && fips_enabled)
2472 		panic("Module verification failed with error %d in FIPS mode\n",
2473 		      err);
2474 	if (err == -ENOKEY && !sig_enforce)
2475 		err = 0;
2476 
2477 	return err;
2478 }
2479 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info)2480 static int module_sig_check(struct load_info *info)
2481 {
2482 	return 0;
2483 }
2484 #endif /* !CONFIG_MODULE_SIG */
2485 
2486 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2487 static int elf_header_check(struct load_info *info)
2488 {
2489 	if (info->len < sizeof(*(info->hdr)))
2490 		return -ENOEXEC;
2491 
2492 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2493 	    || info->hdr->e_type != ET_REL
2494 	    || !elf_check_arch(info->hdr)
2495 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2496 		return -ENOEXEC;
2497 
2498 	if (info->hdr->e_shoff >= info->len
2499 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2500 		info->len - info->hdr->e_shoff))
2501 		return -ENOEXEC;
2502 
2503 	return 0;
2504 }
2505 
2506 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2507 static int copy_module_from_user(const void __user *umod, unsigned long len,
2508 				  struct load_info *info)
2509 {
2510 	int err;
2511 
2512 	info->len = len;
2513 	if (info->len < sizeof(*(info->hdr)))
2514 		return -ENOEXEC;
2515 
2516 	err = security_kernel_module_from_file(NULL);
2517 	if (err)
2518 		return err;
2519 
2520 	/* Suck in entire file: we'll want most of it. */
2521 	info->hdr = vmalloc(info->len);
2522 	if (!info->hdr)
2523 		return -ENOMEM;
2524 
2525 	if (copy_from_user(info->hdr, umod, info->len) != 0) {
2526 		vfree(info->hdr);
2527 		return -EFAULT;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 /* Sets info->hdr and info->len. */
copy_module_from_fd(int fd,struct load_info * info)2534 static int copy_module_from_fd(int fd, struct load_info *info)
2535 {
2536 	struct file *file;
2537 	int err;
2538 	struct kstat stat;
2539 	loff_t pos;
2540 	ssize_t bytes = 0;
2541 
2542 	file = fget(fd);
2543 	if (!file)
2544 		return -ENOEXEC;
2545 
2546 	err = security_kernel_module_from_file(file);
2547 	if (err)
2548 		goto out;
2549 
2550 	err = vfs_getattr(&file->f_path, &stat);
2551 	if (err)
2552 		goto out;
2553 
2554 	if (stat.size > INT_MAX) {
2555 		err = -EFBIG;
2556 		goto out;
2557 	}
2558 
2559 	/* Don't hand 0 to vmalloc, it whines. */
2560 	if (stat.size == 0) {
2561 		err = -EINVAL;
2562 		goto out;
2563 	}
2564 
2565 	info->hdr = vmalloc(stat.size);
2566 	if (!info->hdr) {
2567 		err = -ENOMEM;
2568 		goto out;
2569 	}
2570 
2571 	pos = 0;
2572 	while (pos < stat.size) {
2573 		bytes = kernel_read(file, pos, (char *)(info->hdr) + pos,
2574 				    stat.size - pos);
2575 		if (bytes < 0) {
2576 			vfree(info->hdr);
2577 			err = bytes;
2578 			goto out;
2579 		}
2580 		if (bytes == 0)
2581 			break;
2582 		pos += bytes;
2583 	}
2584 	info->len = pos;
2585 
2586 out:
2587 	fput(file);
2588 	return err;
2589 }
2590 
free_copy(struct load_info * info)2591 static void free_copy(struct load_info *info)
2592 {
2593 	vfree(info->hdr);
2594 }
2595 
rewrite_section_headers(struct load_info * info,int flags)2596 static int rewrite_section_headers(struct load_info *info, int flags)
2597 {
2598 	unsigned int i;
2599 
2600 	/* This should always be true, but let's be sure. */
2601 	info->sechdrs[0].sh_addr = 0;
2602 
2603 	for (i = 1; i < info->hdr->e_shnum; i++) {
2604 		Elf_Shdr *shdr = &info->sechdrs[i];
2605 		if (shdr->sh_type != SHT_NOBITS
2606 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2607 			printk(KERN_ERR "Module len %lu truncated\n",
2608 			       info->len);
2609 			return -ENOEXEC;
2610 		}
2611 
2612 		/* Mark all sections sh_addr with their address in the
2613 		   temporary image. */
2614 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2615 
2616 #ifndef CONFIG_MODULE_UNLOAD
2617 		/* Don't load .exit sections */
2618 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2619 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2620 #endif
2621 	}
2622 
2623 	/* Track but don't keep modinfo and version sections. */
2624 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2625 		info->index.vers = 0; /* Pretend no __versions section! */
2626 	else
2627 		info->index.vers = find_sec(info, "__versions");
2628 	info->index.info = find_sec(info, ".modinfo");
2629 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2630 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2631 	return 0;
2632 }
2633 
2634 /*
2635  * Set up our basic convenience variables (pointers to section headers,
2636  * search for module section index etc), and do some basic section
2637  * verification.
2638  *
2639  * Return the temporary module pointer (we'll replace it with the final
2640  * one when we move the module sections around).
2641  */
setup_load_info(struct load_info * info,int flags)2642 static struct module *setup_load_info(struct load_info *info, int flags)
2643 {
2644 	unsigned int i;
2645 	int err;
2646 	struct module *mod;
2647 
2648 	/* Set up the convenience variables */
2649 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2650 	info->secstrings = (void *)info->hdr
2651 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2652 
2653 	err = rewrite_section_headers(info, flags);
2654 	if (err)
2655 		return ERR_PTR(err);
2656 
2657 	/* Find internal symbols and strings. */
2658 	for (i = 1; i < info->hdr->e_shnum; i++) {
2659 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2660 			info->index.sym = i;
2661 			info->index.str = info->sechdrs[i].sh_link;
2662 			info->strtab = (char *)info->hdr
2663 				+ info->sechdrs[info->index.str].sh_offset;
2664 			break;
2665 		}
2666 	}
2667 
2668 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2669 	if (!info->index.mod) {
2670 		printk(KERN_WARNING "No module found in object\n");
2671 		return ERR_PTR(-ENOEXEC);
2672 	}
2673 	/* This is temporary: point mod into copy of data. */
2674 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2675 
2676 	if (info->index.sym == 0) {
2677 		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2678 		       mod->name);
2679 		return ERR_PTR(-ENOEXEC);
2680 	}
2681 
2682 	info->index.pcpu = find_pcpusec(info);
2683 
2684 	/* Check module struct version now, before we try to use module. */
2685 	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2686 		return ERR_PTR(-ENOEXEC);
2687 
2688 	return mod;
2689 }
2690 
check_modinfo(struct module * mod,struct load_info * info,int flags)2691 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2692 {
2693 	const char *modmagic = get_modinfo(info, "vermagic");
2694 	int err;
2695 
2696 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2697 		modmagic = NULL;
2698 
2699 	/* This is allowed: modprobe --force will invalidate it. */
2700 	if (!modmagic) {
2701 		err = try_to_force_load(mod, "bad vermagic");
2702 		if (err)
2703 			return err;
2704 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2705 		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2706 		       mod->name, modmagic, vermagic);
2707 		return -ENOEXEC;
2708 	}
2709 
2710 	if (!get_modinfo(info, "intree"))
2711 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2712 
2713 	if (get_modinfo(info, "staging")) {
2714 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2715 		printk(KERN_WARNING "%s: module is from the staging directory,"
2716 		       " the quality is unknown, you have been warned.\n",
2717 		       mod->name);
2718 	}
2719 
2720 	/* Set up license info based on the info section */
2721 	set_license(mod, get_modinfo(info, "license"));
2722 
2723 	return 0;
2724 }
2725 
find_module_sections(struct module * mod,struct load_info * info)2726 static void find_module_sections(struct module *mod, struct load_info *info)
2727 {
2728 	mod->kp = section_objs(info, "__param",
2729 			       sizeof(*mod->kp), &mod->num_kp);
2730 	mod->syms = section_objs(info, "__ksymtab",
2731 				 sizeof(*mod->syms), &mod->num_syms);
2732 	mod->crcs = section_addr(info, "__kcrctab");
2733 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2734 				     sizeof(*mod->gpl_syms),
2735 				     &mod->num_gpl_syms);
2736 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2737 	mod->gpl_future_syms = section_objs(info,
2738 					    "__ksymtab_gpl_future",
2739 					    sizeof(*mod->gpl_future_syms),
2740 					    &mod->num_gpl_future_syms);
2741 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2742 
2743 #ifdef CONFIG_UNUSED_SYMBOLS
2744 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2745 					sizeof(*mod->unused_syms),
2746 					&mod->num_unused_syms);
2747 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2748 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2749 					    sizeof(*mod->unused_gpl_syms),
2750 					    &mod->num_unused_gpl_syms);
2751 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2752 #endif
2753 #ifdef CONFIG_CONSTRUCTORS
2754 	mod->ctors = section_objs(info, ".ctors",
2755 				  sizeof(*mod->ctors), &mod->num_ctors);
2756 #endif
2757 
2758 #ifdef CONFIG_TRACEPOINTS
2759 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2760 					     sizeof(*mod->tracepoints_ptrs),
2761 					     &mod->num_tracepoints);
2762 #endif
2763 #ifdef HAVE_JUMP_LABEL
2764 	mod->jump_entries = section_objs(info, "__jump_table",
2765 					sizeof(*mod->jump_entries),
2766 					&mod->num_jump_entries);
2767 #endif
2768 #ifdef CONFIG_EVENT_TRACING
2769 	mod->trace_events = section_objs(info, "_ftrace_events",
2770 					 sizeof(*mod->trace_events),
2771 					 &mod->num_trace_events);
2772 #endif
2773 #ifdef CONFIG_TRACING
2774 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2775 					 sizeof(*mod->trace_bprintk_fmt_start),
2776 					 &mod->num_trace_bprintk_fmt);
2777 #endif
2778 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2779 	/* sechdrs[0].sh_size is always zero */
2780 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2781 					     sizeof(*mod->ftrace_callsites),
2782 					     &mod->num_ftrace_callsites);
2783 #endif
2784 
2785 	mod->extable = section_objs(info, "__ex_table",
2786 				    sizeof(*mod->extable), &mod->num_exentries);
2787 
2788 	if (section_addr(info, "__obsparm"))
2789 		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2790 		       mod->name);
2791 
2792 	info->debug = section_objs(info, "__verbose",
2793 				   sizeof(*info->debug), &info->num_debug);
2794 }
2795 
move_module(struct module * mod,struct load_info * info)2796 static int move_module(struct module *mod, struct load_info *info)
2797 {
2798 	int i;
2799 	void *ptr;
2800 
2801 	/* Do the allocs. */
2802 	ptr = module_alloc_update_bounds(mod->core_size);
2803 	/*
2804 	 * The pointer to this block is stored in the module structure
2805 	 * which is inside the block. Just mark it as not being a
2806 	 * leak.
2807 	 */
2808 	kmemleak_not_leak(ptr);
2809 	if (!ptr)
2810 		return -ENOMEM;
2811 
2812 	memset(ptr, 0, mod->core_size);
2813 	mod->module_core = ptr;
2814 
2815 	if (mod->init_size) {
2816 		ptr = module_alloc_update_bounds(mod->init_size);
2817 		/*
2818 		 * The pointer to this block is stored in the module structure
2819 		 * which is inside the block. This block doesn't need to be
2820 		 * scanned as it contains data and code that will be freed
2821 		 * after the module is initialized.
2822 		 */
2823 		kmemleak_ignore(ptr);
2824 		if (!ptr) {
2825 			module_free(mod, mod->module_core);
2826 			return -ENOMEM;
2827 		}
2828 		memset(ptr, 0, mod->init_size);
2829 		mod->module_init = ptr;
2830 	} else
2831 		mod->module_init = NULL;
2832 
2833 	/* Transfer each section which specifies SHF_ALLOC */
2834 	pr_debug("final section addresses:\n");
2835 	for (i = 0; i < info->hdr->e_shnum; i++) {
2836 		void *dest;
2837 		Elf_Shdr *shdr = &info->sechdrs[i];
2838 
2839 		if (!(shdr->sh_flags & SHF_ALLOC))
2840 			continue;
2841 
2842 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2843 			dest = mod->module_init
2844 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2845 		else
2846 			dest = mod->module_core + shdr->sh_entsize;
2847 
2848 		if (shdr->sh_type != SHT_NOBITS)
2849 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2850 		/* Update sh_addr to point to copy in image. */
2851 		shdr->sh_addr = (unsigned long)dest;
2852 		pr_debug("\t0x%lx %s\n",
2853 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2854 	}
2855 
2856 	return 0;
2857 }
2858 
check_module_license_and_versions(struct module * mod)2859 static int check_module_license_and_versions(struct module *mod)
2860 {
2861 	/*
2862 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2863 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2864 	 * using GPL-only symbols it needs.
2865 	 */
2866 	if (strcmp(mod->name, "ndiswrapper") == 0)
2867 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2868 
2869 	/* driverloader was caught wrongly pretending to be under GPL */
2870 	if (strcmp(mod->name, "driverloader") == 0)
2871 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2872 				 LOCKDEP_NOW_UNRELIABLE);
2873 
2874 	/* lve claims to be GPL but upstream won't provide source */
2875 	if (strcmp(mod->name, "lve") == 0)
2876 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2877 				 LOCKDEP_NOW_UNRELIABLE);
2878 
2879 #ifdef CONFIG_MODVERSIONS
2880 	if ((mod->num_syms && !mod->crcs)
2881 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2882 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2883 #ifdef CONFIG_UNUSED_SYMBOLS
2884 	    || (mod->num_unused_syms && !mod->unused_crcs)
2885 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2886 #endif
2887 		) {
2888 		return try_to_force_load(mod,
2889 					 "no versions for exported symbols");
2890 	}
2891 #endif
2892 	return 0;
2893 }
2894 
flush_module_icache(const struct module * mod)2895 static void flush_module_icache(const struct module *mod)
2896 {
2897 	mm_segment_t old_fs;
2898 
2899 	/* flush the icache in correct context */
2900 	old_fs = get_fs();
2901 	set_fs(KERNEL_DS);
2902 
2903 	/*
2904 	 * Flush the instruction cache, since we've played with text.
2905 	 * Do it before processing of module parameters, so the module
2906 	 * can provide parameter accessor functions of its own.
2907 	 */
2908 	if (mod->module_init)
2909 		flush_icache_range((unsigned long)mod->module_init,
2910 				   (unsigned long)mod->module_init
2911 				   + mod->init_size);
2912 	flush_icache_range((unsigned long)mod->module_core,
2913 			   (unsigned long)mod->module_core + mod->core_size);
2914 
2915 	set_fs(old_fs);
2916 }
2917 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2918 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2919 				     Elf_Shdr *sechdrs,
2920 				     char *secstrings,
2921 				     struct module *mod)
2922 {
2923 	return 0;
2924 }
2925 
layout_and_allocate(struct load_info * info,int flags)2926 static struct module *layout_and_allocate(struct load_info *info, int flags)
2927 {
2928 	/* Module within temporary copy. */
2929 	struct module *mod;
2930 	Elf_Shdr *pcpusec;
2931 	int err;
2932 
2933 	mod = setup_load_info(info, flags);
2934 	if (IS_ERR(mod))
2935 		return mod;
2936 
2937 	err = check_modinfo(mod, info, flags);
2938 	if (err)
2939 		return ERR_PTR(err);
2940 
2941 	/* Allow arches to frob section contents and sizes.  */
2942 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2943 					info->secstrings, mod);
2944 	if (err < 0)
2945 		goto out;
2946 
2947 	pcpusec = &info->sechdrs[info->index.pcpu];
2948 	if (pcpusec->sh_size) {
2949 		/* We have a special allocation for this section. */
2950 		err = percpu_modalloc(mod,
2951 				      pcpusec->sh_size, pcpusec->sh_addralign);
2952 		if (err)
2953 			goto out;
2954 		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2955 	}
2956 
2957 	/* Determine total sizes, and put offsets in sh_entsize.  For now
2958 	   this is done generically; there doesn't appear to be any
2959 	   special cases for the architectures. */
2960 	layout_sections(mod, info);
2961 	layout_symtab(mod, info);
2962 
2963 	/* Allocate and move to the final place */
2964 	err = move_module(mod, info);
2965 	if (err)
2966 		goto free_percpu;
2967 
2968 	/* Module has been copied to its final place now: return it. */
2969 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2970 	kmemleak_load_module(mod, info);
2971 	return mod;
2972 
2973 free_percpu:
2974 	percpu_modfree(mod);
2975 out:
2976 	return ERR_PTR(err);
2977 }
2978 
2979 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2980 static void module_deallocate(struct module *mod, struct load_info *info)
2981 {
2982 	percpu_modfree(mod);
2983 	module_free(mod, mod->module_init);
2984 	module_free(mod, mod->module_core);
2985 }
2986 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2987 int __weak module_finalize(const Elf_Ehdr *hdr,
2988 			   const Elf_Shdr *sechdrs,
2989 			   struct module *me)
2990 {
2991 	return 0;
2992 }
2993 
post_relocation(struct module * mod,const struct load_info * info)2994 static int post_relocation(struct module *mod, const struct load_info *info)
2995 {
2996 	/* Sort exception table now relocations are done. */
2997 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2998 
2999 	/* Copy relocated percpu area over. */
3000 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3001 		       info->sechdrs[info->index.pcpu].sh_size);
3002 
3003 	/* Setup kallsyms-specific fields. */
3004 	add_kallsyms(mod, info);
3005 
3006 	/* Arch-specific module finalizing. */
3007 	return module_finalize(info->hdr, info->sechdrs, mod);
3008 }
3009 
3010 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3011 static bool finished_loading(const char *name)
3012 {
3013 	struct module *mod;
3014 	bool ret;
3015 
3016 	mutex_lock(&module_mutex);
3017 	mod = find_module_all(name, true);
3018 	ret = !mod || mod->state == MODULE_STATE_LIVE
3019 		|| mod->state == MODULE_STATE_GOING;
3020 	mutex_unlock(&module_mutex);
3021 
3022 	return ret;
3023 }
3024 
3025 /* Call module constructors. */
do_mod_ctors(struct module * mod)3026 static void do_mod_ctors(struct module *mod)
3027 {
3028 #ifdef CONFIG_CONSTRUCTORS
3029 	unsigned long i;
3030 
3031 	for (i = 0; i < mod->num_ctors; i++)
3032 		mod->ctors[i]();
3033 #endif
3034 }
3035 
3036 /* This is where the real work happens */
do_init_module(struct module * mod)3037 static int do_init_module(struct module *mod)
3038 {
3039 	int ret = 0;
3040 
3041 	/*
3042 	 * We want to find out whether @mod uses async during init.  Clear
3043 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3044 	 */
3045 	current->flags &= ~PF_USED_ASYNC;
3046 
3047 	blocking_notifier_call_chain(&module_notify_list,
3048 			MODULE_STATE_COMING, mod);
3049 
3050 	/* Set RO and NX regions for core */
3051 	set_section_ro_nx(mod->module_core,
3052 				mod->core_text_size,
3053 				mod->core_ro_size,
3054 				mod->core_size);
3055 
3056 	/* Set RO and NX regions for init */
3057 	set_section_ro_nx(mod->module_init,
3058 				mod->init_text_size,
3059 				mod->init_ro_size,
3060 				mod->init_size);
3061 
3062 	do_mod_ctors(mod);
3063 	/* Start the module */
3064 	if (mod->init != NULL)
3065 		ret = do_one_initcall(mod->init);
3066 	if (ret < 0) {
3067 		/* Init routine failed: abort.  Try to protect us from
3068                    buggy refcounters. */
3069 		mod->state = MODULE_STATE_GOING;
3070 		synchronize_sched();
3071 		module_put(mod);
3072 		blocking_notifier_call_chain(&module_notify_list,
3073 					     MODULE_STATE_GOING, mod);
3074 		free_module(mod);
3075 		wake_up_all(&module_wq);
3076 		return ret;
3077 	}
3078 	if (ret > 0) {
3079 		printk(KERN_WARNING
3080 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3081 "%s: loading module anyway...\n",
3082 		       __func__, mod->name, ret,
3083 		       __func__);
3084 		dump_stack();
3085 	}
3086 
3087 	/* Now it's a first class citizen! */
3088 	mod->state = MODULE_STATE_LIVE;
3089 	blocking_notifier_call_chain(&module_notify_list,
3090 				     MODULE_STATE_LIVE, mod);
3091 
3092 	/*
3093 	 * We need to finish all async code before the module init sequence
3094 	 * is done.  This has potential to deadlock.  For example, a newly
3095 	 * detected block device can trigger request_module() of the
3096 	 * default iosched from async probing task.  Once userland helper
3097 	 * reaches here, async_synchronize_full() will wait on the async
3098 	 * task waiting on request_module() and deadlock.
3099 	 *
3100 	 * This deadlock is avoided by perfomring async_synchronize_full()
3101 	 * iff module init queued any async jobs.  This isn't a full
3102 	 * solution as it will deadlock the same if module loading from
3103 	 * async jobs nests more than once; however, due to the various
3104 	 * constraints, this hack seems to be the best option for now.
3105 	 * Please refer to the following thread for details.
3106 	 *
3107 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3108 	 */
3109 	if (current->flags & PF_USED_ASYNC)
3110 		async_synchronize_full();
3111 
3112 	mutex_lock(&module_mutex);
3113 	/* Drop initial reference. */
3114 	module_put(mod);
3115 	trim_init_extable(mod);
3116 #ifdef CONFIG_KALLSYMS
3117 	mod->num_symtab = mod->core_num_syms;
3118 	mod->symtab = mod->core_symtab;
3119 	mod->strtab = mod->core_strtab;
3120 #endif
3121 	unset_module_init_ro_nx(mod);
3122 	module_free(mod, mod->module_init);
3123 	mod->module_init = NULL;
3124 	mod->init_size = 0;
3125 	mod->init_ro_size = 0;
3126 	mod->init_text_size = 0;
3127 	mutex_unlock(&module_mutex);
3128 	wake_up_all(&module_wq);
3129 
3130 	return 0;
3131 }
3132 
may_init_module(void)3133 static int may_init_module(void)
3134 {
3135 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3136 		return -EPERM;
3137 
3138 	return 0;
3139 }
3140 
3141 /*
3142  * We try to place it in the list now to make sure it's unique before
3143  * we dedicate too many resources.  In particular, temporary percpu
3144  * memory exhaustion.
3145  */
add_unformed_module(struct module * mod)3146 static int add_unformed_module(struct module *mod)
3147 {
3148 	int err;
3149 	struct module *old;
3150 
3151 	mod->state = MODULE_STATE_UNFORMED;
3152 
3153 again:
3154 	mutex_lock(&module_mutex);
3155 	if ((old = find_module_all(mod->name, true)) != NULL) {
3156 		if (old->state == MODULE_STATE_COMING
3157 		    || old->state == MODULE_STATE_UNFORMED) {
3158 			/* Wait in case it fails to load. */
3159 			mutex_unlock(&module_mutex);
3160 			err = wait_event_interruptible(module_wq,
3161 					       finished_loading(mod->name));
3162 			if (err)
3163 				goto out_unlocked;
3164 			goto again;
3165 		}
3166 		err = -EEXIST;
3167 		goto out;
3168 	}
3169 	list_add_rcu(&mod->list, &modules);
3170 	err = 0;
3171 
3172 out:
3173 	mutex_unlock(&module_mutex);
3174 out_unlocked:
3175 	return err;
3176 }
3177 
complete_formation(struct module * mod,struct load_info * info)3178 static int complete_formation(struct module *mod, struct load_info *info)
3179 {
3180 	int err;
3181 
3182 	mutex_lock(&module_mutex);
3183 
3184 	/* Find duplicate symbols (must be called under lock). */
3185 	err = verify_export_symbols(mod);
3186 	if (err < 0)
3187 		goto out;
3188 
3189 	/* This relies on module_mutex for list integrity. */
3190 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3191 
3192 	/* Mark state as coming so strong_try_module_get() ignores us,
3193 	 * but kallsyms etc. can see us. */
3194 	mod->state = MODULE_STATE_COMING;
3195 
3196 out:
3197 	mutex_unlock(&module_mutex);
3198 	return err;
3199 }
3200 
3201 /* Allocate and load the module: note that size of section 0 is always
3202    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3203 static int load_module(struct load_info *info, const char __user *uargs,
3204 		       int flags)
3205 {
3206 	struct module *mod;
3207 	long err;
3208 
3209 	err = module_sig_check(info);
3210 	if (err)
3211 		goto free_copy;
3212 
3213 	err = elf_header_check(info);
3214 	if (err)
3215 		goto free_copy;
3216 
3217 	/* Figure out module layout, and allocate all the memory. */
3218 	mod = layout_and_allocate(info, flags);
3219 	if (IS_ERR(mod)) {
3220 		err = PTR_ERR(mod);
3221 		goto free_copy;
3222 	}
3223 
3224 	/* Reserve our place in the list. */
3225 	err = add_unformed_module(mod);
3226 	if (err)
3227 		goto free_module;
3228 
3229 #ifdef CONFIG_MODULE_SIG
3230 	mod->sig_ok = info->sig_ok;
3231 	if (!mod->sig_ok) {
3232 		printk_once(KERN_NOTICE
3233 			    "%s: module verification failed: signature and/or"
3234 			    " required key missing - tainting kernel\n",
3235 			    mod->name);
3236 		add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3237 	}
3238 #endif
3239 
3240 	/* Now module is in final location, initialize linked lists, etc. */
3241 	err = module_unload_init(mod);
3242 	if (err)
3243 		goto unlink_mod;
3244 
3245 	/* Now we've got everything in the final locations, we can
3246 	 * find optional sections. */
3247 	find_module_sections(mod, info);
3248 
3249 	err = check_module_license_and_versions(mod);
3250 	if (err)
3251 		goto free_unload;
3252 
3253 	/* Set up MODINFO_ATTR fields */
3254 	setup_modinfo(mod, info);
3255 
3256 	/* Fix up syms, so that st_value is a pointer to location. */
3257 	err = simplify_symbols(mod, info);
3258 	if (err < 0)
3259 		goto free_modinfo;
3260 
3261 	err = apply_relocations(mod, info);
3262 	if (err < 0)
3263 		goto free_modinfo;
3264 
3265 	err = post_relocation(mod, info);
3266 	if (err < 0)
3267 		goto free_modinfo;
3268 
3269 	flush_module_icache(mod);
3270 
3271 	/* Now copy in args */
3272 	mod->args = strndup_user(uargs, ~0UL >> 1);
3273 	if (IS_ERR(mod->args)) {
3274 		err = PTR_ERR(mod->args);
3275 		goto free_arch_cleanup;
3276 	}
3277 
3278 	dynamic_debug_setup(info->debug, info->num_debug);
3279 
3280 	/* Finally it's fully formed, ready to start executing. */
3281 	err = complete_formation(mod, info);
3282 	if (err)
3283 		goto ddebug_cleanup;
3284 
3285 	/* Module is ready to execute: parsing args may do that. */
3286 	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3287 			 -32768, 32767, &ddebug_dyndbg_module_param_cb);
3288 	if (err < 0)
3289 		goto bug_cleanup;
3290 
3291 	/* Link in to syfs. */
3292 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3293 	if (err < 0)
3294 		goto bug_cleanup;
3295 
3296 	/* Get rid of temporary copy. */
3297 	free_copy(info);
3298 
3299 	/* Done! */
3300 	trace_module_load(mod);
3301 
3302 	return do_init_module(mod);
3303 
3304  bug_cleanup:
3305 	/* module_bug_cleanup needs module_mutex protection */
3306 	mutex_lock(&module_mutex);
3307 	module_bug_cleanup(mod);
3308 	mutex_unlock(&module_mutex);
3309  ddebug_cleanup:
3310 	dynamic_debug_remove(info->debug);
3311 	synchronize_sched();
3312 	kfree(mod->args);
3313  free_arch_cleanup:
3314 	module_arch_cleanup(mod);
3315  free_modinfo:
3316 	free_modinfo(mod);
3317  free_unload:
3318 	module_unload_free(mod);
3319  unlink_mod:
3320 	mutex_lock(&module_mutex);
3321 	/* Unlink carefully: kallsyms could be walking list. */
3322 	list_del_rcu(&mod->list);
3323 	wake_up_all(&module_wq);
3324 	mutex_unlock(&module_mutex);
3325  free_module:
3326 	module_deallocate(mod, info);
3327  free_copy:
3328 	free_copy(info);
3329 	return err;
3330 }
3331 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3332 SYSCALL_DEFINE3(init_module, void __user *, umod,
3333 		unsigned long, len, const char __user *, uargs)
3334 {
3335 	int err;
3336 	struct load_info info = { };
3337 
3338 	err = may_init_module();
3339 	if (err)
3340 		return err;
3341 
3342 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3343 	       umod, len, uargs);
3344 
3345 	err = copy_module_from_user(umod, len, &info);
3346 	if (err)
3347 		return err;
3348 
3349 	return load_module(&info, uargs, 0);
3350 }
3351 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3352 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3353 {
3354 	int err;
3355 	struct load_info info = { };
3356 
3357 	err = may_init_module();
3358 	if (err)
3359 		return err;
3360 
3361 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3362 
3363 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3364 		      |MODULE_INIT_IGNORE_VERMAGIC))
3365 		return -EINVAL;
3366 
3367 	err = copy_module_from_fd(fd, &info);
3368 	if (err)
3369 		return err;
3370 
3371 	return load_module(&info, uargs, flags);
3372 }
3373 
within(unsigned long addr,void * start,unsigned long size)3374 static inline int within(unsigned long addr, void *start, unsigned long size)
3375 {
3376 	return ((void *)addr >= start && (void *)addr < start + size);
3377 }
3378 
3379 #ifdef CONFIG_KALLSYMS
3380 /*
3381  * This ignores the intensely annoying "mapping symbols" found
3382  * in ARM ELF files: $a, $t and $d.
3383  */
is_arm_mapping_symbol(const char * str)3384 static inline int is_arm_mapping_symbol(const char *str)
3385 {
3386 	return str[0] == '$' && strchr("atd", str[1])
3387 	       && (str[2] == '\0' || str[2] == '.');
3388 }
3389 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3390 static const char *get_ksymbol(struct module *mod,
3391 			       unsigned long addr,
3392 			       unsigned long *size,
3393 			       unsigned long *offset)
3394 {
3395 	unsigned int i, best = 0;
3396 	unsigned long nextval;
3397 
3398 	/* At worse, next value is at end of module */
3399 	if (within_module_init(addr, mod))
3400 		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3401 	else
3402 		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3403 
3404 	/* Scan for closest preceding symbol, and next symbol. (ELF
3405 	   starts real symbols at 1). */
3406 	for (i = 1; i < mod->num_symtab; i++) {
3407 		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3408 			continue;
3409 
3410 		/* We ignore unnamed symbols: they're uninformative
3411 		 * and inserted at a whim. */
3412 		if (mod->symtab[i].st_value <= addr
3413 		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3414 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3415 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3416 			best = i;
3417 		if (mod->symtab[i].st_value > addr
3418 		    && mod->symtab[i].st_value < nextval
3419 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3420 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3421 			nextval = mod->symtab[i].st_value;
3422 	}
3423 
3424 	if (!best)
3425 		return NULL;
3426 
3427 	if (size)
3428 		*size = nextval - mod->symtab[best].st_value;
3429 	if (offset)
3430 		*offset = addr - mod->symtab[best].st_value;
3431 	return mod->strtab + mod->symtab[best].st_name;
3432 }
3433 
3434 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3435  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3436 const char *module_address_lookup(unsigned long addr,
3437 			    unsigned long *size,
3438 			    unsigned long *offset,
3439 			    char **modname,
3440 			    char *namebuf)
3441 {
3442 	struct module *mod;
3443 	const char *ret = NULL;
3444 
3445 	preempt_disable();
3446 	list_for_each_entry_rcu(mod, &modules, list) {
3447 		if (mod->state == MODULE_STATE_UNFORMED)
3448 			continue;
3449 		if (within_module_init(addr, mod) ||
3450 		    within_module_core(addr, mod)) {
3451 			if (modname)
3452 				*modname = mod->name;
3453 			ret = get_ksymbol(mod, addr, size, offset);
3454 			break;
3455 		}
3456 	}
3457 	/* Make a copy in here where it's safe */
3458 	if (ret) {
3459 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3460 		ret = namebuf;
3461 	}
3462 	preempt_enable();
3463 	return ret;
3464 }
3465 
lookup_module_symbol_name(unsigned long addr,char * symname)3466 int lookup_module_symbol_name(unsigned long addr, char *symname)
3467 {
3468 	struct module *mod;
3469 
3470 	preempt_disable();
3471 	list_for_each_entry_rcu(mod, &modules, list) {
3472 		if (mod->state == MODULE_STATE_UNFORMED)
3473 			continue;
3474 		if (within_module_init(addr, mod) ||
3475 		    within_module_core(addr, mod)) {
3476 			const char *sym;
3477 
3478 			sym = get_ksymbol(mod, addr, NULL, NULL);
3479 			if (!sym)
3480 				goto out;
3481 			strlcpy(symname, sym, KSYM_NAME_LEN);
3482 			preempt_enable();
3483 			return 0;
3484 		}
3485 	}
3486 out:
3487 	preempt_enable();
3488 	return -ERANGE;
3489 }
3490 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3491 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3492 			unsigned long *offset, char *modname, char *name)
3493 {
3494 	struct module *mod;
3495 
3496 	preempt_disable();
3497 	list_for_each_entry_rcu(mod, &modules, list) {
3498 		if (mod->state == MODULE_STATE_UNFORMED)
3499 			continue;
3500 		if (within_module_init(addr, mod) ||
3501 		    within_module_core(addr, mod)) {
3502 			const char *sym;
3503 
3504 			sym = get_ksymbol(mod, addr, size, offset);
3505 			if (!sym)
3506 				goto out;
3507 			if (modname)
3508 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3509 			if (name)
3510 				strlcpy(name, sym, KSYM_NAME_LEN);
3511 			preempt_enable();
3512 			return 0;
3513 		}
3514 	}
3515 out:
3516 	preempt_enable();
3517 	return -ERANGE;
3518 }
3519 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3520 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3521 			char *name, char *module_name, int *exported)
3522 {
3523 	struct module *mod;
3524 
3525 	preempt_disable();
3526 	list_for_each_entry_rcu(mod, &modules, list) {
3527 		if (mod->state == MODULE_STATE_UNFORMED)
3528 			continue;
3529 		if (symnum < mod->num_symtab) {
3530 			*value = mod->symtab[symnum].st_value;
3531 			*type = mod->symtab[symnum].st_info;
3532 			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3533 				KSYM_NAME_LEN);
3534 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3535 			*exported = is_exported(name, *value, mod);
3536 			preempt_enable();
3537 			return 0;
3538 		}
3539 		symnum -= mod->num_symtab;
3540 	}
3541 	preempt_enable();
3542 	return -ERANGE;
3543 }
3544 
mod_find_symname(struct module * mod,const char * name)3545 static unsigned long mod_find_symname(struct module *mod, const char *name)
3546 {
3547 	unsigned int i;
3548 
3549 	for (i = 0; i < mod->num_symtab; i++)
3550 		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3551 		    mod->symtab[i].st_info != 'U')
3552 			return mod->symtab[i].st_value;
3553 	return 0;
3554 }
3555 
3556 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3557 unsigned long module_kallsyms_lookup_name(const char *name)
3558 {
3559 	struct module *mod;
3560 	char *colon;
3561 	unsigned long ret = 0;
3562 
3563 	/* Don't lock: we're in enough trouble already. */
3564 	preempt_disable();
3565 	if ((colon = strchr(name, ':')) != NULL) {
3566 		*colon = '\0';
3567 		if ((mod = find_module(name)) != NULL)
3568 			ret = mod_find_symname(mod, colon+1);
3569 		*colon = ':';
3570 	} else {
3571 		list_for_each_entry_rcu(mod, &modules, list) {
3572 			if (mod->state == MODULE_STATE_UNFORMED)
3573 				continue;
3574 			if ((ret = mod_find_symname(mod, name)) != 0)
3575 				break;
3576 		}
3577 	}
3578 	preempt_enable();
3579 	return ret;
3580 }
3581 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3582 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3583 					     struct module *, unsigned long),
3584 				   void *data)
3585 {
3586 	struct module *mod;
3587 	unsigned int i;
3588 	int ret;
3589 
3590 	list_for_each_entry(mod, &modules, list) {
3591 		if (mod->state == MODULE_STATE_UNFORMED)
3592 			continue;
3593 		for (i = 0; i < mod->num_symtab; i++) {
3594 			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3595 				 mod, mod->symtab[i].st_value);
3596 			if (ret != 0)
3597 				return ret;
3598 		}
3599 	}
3600 	return 0;
3601 }
3602 #endif /* CONFIG_KALLSYMS */
3603 
module_flags(struct module * mod,char * buf)3604 static char *module_flags(struct module *mod, char *buf)
3605 {
3606 	int bx = 0;
3607 
3608 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3609 	if (mod->taints ||
3610 	    mod->state == MODULE_STATE_GOING ||
3611 	    mod->state == MODULE_STATE_COMING) {
3612 		buf[bx++] = '(';
3613 		bx += module_flags_taint(mod, buf + bx);
3614 		/* Show a - for module-is-being-unloaded */
3615 		if (mod->state == MODULE_STATE_GOING)
3616 			buf[bx++] = '-';
3617 		/* Show a + for module-is-being-loaded */
3618 		if (mod->state == MODULE_STATE_COMING)
3619 			buf[bx++] = '+';
3620 		buf[bx++] = ')';
3621 	}
3622 	buf[bx] = '\0';
3623 
3624 	return buf;
3625 }
3626 
3627 #ifdef CONFIG_PROC_FS
3628 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3629 static void *m_start(struct seq_file *m, loff_t *pos)
3630 {
3631 	mutex_lock(&module_mutex);
3632 	return seq_list_start(&modules, *pos);
3633 }
3634 
m_next(struct seq_file * m,void * p,loff_t * pos)3635 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3636 {
3637 	return seq_list_next(p, &modules, pos);
3638 }
3639 
m_stop(struct seq_file * m,void * p)3640 static void m_stop(struct seq_file *m, void *p)
3641 {
3642 	mutex_unlock(&module_mutex);
3643 }
3644 
m_show(struct seq_file * m,void * p)3645 static int m_show(struct seq_file *m, void *p)
3646 {
3647 	struct module *mod = list_entry(p, struct module, list);
3648 	char buf[8];
3649 
3650 	/* We always ignore unformed modules. */
3651 	if (mod->state == MODULE_STATE_UNFORMED)
3652 		return 0;
3653 
3654 	seq_printf(m, "%s %u",
3655 		   mod->name, mod->init_size + mod->core_size);
3656 	print_unload_info(m, mod);
3657 
3658 	/* Informative for users. */
3659 	seq_printf(m, " %s",
3660 		   mod->state == MODULE_STATE_GOING ? "Unloading":
3661 		   mod->state == MODULE_STATE_COMING ? "Loading":
3662 		   "Live");
3663 	/* Used by oprofile and other similar tools. */
3664 	seq_printf(m, " 0x%pK", mod->module_core);
3665 
3666 	/* Taints info */
3667 	if (mod->taints)
3668 		seq_printf(m, " %s", module_flags(mod, buf));
3669 
3670 	seq_printf(m, "\n");
3671 	return 0;
3672 }
3673 
3674 /* Format: modulename size refcount deps address
3675 
3676    Where refcount is a number or -, and deps is a comma-separated list
3677    of depends or -.
3678 */
3679 static const struct seq_operations modules_op = {
3680 	.start	= m_start,
3681 	.next	= m_next,
3682 	.stop	= m_stop,
3683 	.show	= m_show
3684 };
3685 
modules_open(struct inode * inode,struct file * file)3686 static int modules_open(struct inode *inode, struct file *file)
3687 {
3688 	return seq_open(file, &modules_op);
3689 }
3690 
3691 static const struct file_operations proc_modules_operations = {
3692 	.open		= modules_open,
3693 	.read		= seq_read,
3694 	.llseek		= seq_lseek,
3695 	.release	= seq_release,
3696 };
3697 
proc_modules_init(void)3698 static int __init proc_modules_init(void)
3699 {
3700 	proc_create("modules", 0, NULL, &proc_modules_operations);
3701 	return 0;
3702 }
3703 module_init(proc_modules_init);
3704 #endif
3705 
3706 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3707 const struct exception_table_entry *search_module_extables(unsigned long addr)
3708 {
3709 	const struct exception_table_entry *e = NULL;
3710 	struct module *mod;
3711 
3712 	preempt_disable();
3713 	list_for_each_entry_rcu(mod, &modules, list) {
3714 		if (mod->state == MODULE_STATE_UNFORMED)
3715 			continue;
3716 		if (mod->num_exentries == 0)
3717 			continue;
3718 
3719 		e = search_extable(mod->extable,
3720 				   mod->extable + mod->num_exentries - 1,
3721 				   addr);
3722 		if (e)
3723 			break;
3724 	}
3725 	preempt_enable();
3726 
3727 	/* Now, if we found one, we are running inside it now, hence
3728 	   we cannot unload the module, hence no refcnt needed. */
3729 	return e;
3730 }
3731 
3732 /*
3733  * is_module_address - is this address inside a module?
3734  * @addr: the address to check.
3735  *
3736  * See is_module_text_address() if you simply want to see if the address
3737  * is code (not data).
3738  */
is_module_address(unsigned long addr)3739 bool is_module_address(unsigned long addr)
3740 {
3741 	bool ret;
3742 
3743 	preempt_disable();
3744 	ret = __module_address(addr) != NULL;
3745 	preempt_enable();
3746 
3747 	return ret;
3748 }
3749 
3750 /*
3751  * __module_address - get the module which contains an address.
3752  * @addr: the address.
3753  *
3754  * Must be called with preempt disabled or module mutex held so that
3755  * module doesn't get freed during this.
3756  */
__module_address(unsigned long addr)3757 struct module *__module_address(unsigned long addr)
3758 {
3759 	struct module *mod;
3760 
3761 	if (addr < module_addr_min || addr > module_addr_max)
3762 		return NULL;
3763 
3764 	list_for_each_entry_rcu(mod, &modules, list) {
3765 		if (mod->state == MODULE_STATE_UNFORMED)
3766 			continue;
3767 		if (within_module_core(addr, mod)
3768 		    || within_module_init(addr, mod))
3769 			return mod;
3770 	}
3771 	return NULL;
3772 }
3773 EXPORT_SYMBOL_GPL(__module_address);
3774 
3775 /*
3776  * is_module_text_address - is this address inside module code?
3777  * @addr: the address to check.
3778  *
3779  * See is_module_address() if you simply want to see if the address is
3780  * anywhere in a module.  See kernel_text_address() for testing if an
3781  * address corresponds to kernel or module code.
3782  */
is_module_text_address(unsigned long addr)3783 bool is_module_text_address(unsigned long addr)
3784 {
3785 	bool ret;
3786 
3787 	preempt_disable();
3788 	ret = __module_text_address(addr) != NULL;
3789 	preempt_enable();
3790 
3791 	return ret;
3792 }
3793 
3794 /*
3795  * __module_text_address - get the module whose code contains an address.
3796  * @addr: the address.
3797  *
3798  * Must be called with preempt disabled or module mutex held so that
3799  * module doesn't get freed during this.
3800  */
__module_text_address(unsigned long addr)3801 struct module *__module_text_address(unsigned long addr)
3802 {
3803 	struct module *mod = __module_address(addr);
3804 	if (mod) {
3805 		/* Make sure it's within the text section. */
3806 		if (!within(addr, mod->module_init, mod->init_text_size)
3807 		    && !within(addr, mod->module_core, mod->core_text_size))
3808 			mod = NULL;
3809 	}
3810 	return mod;
3811 }
3812 EXPORT_SYMBOL_GPL(__module_text_address);
3813 
3814 /* Don't grab lock, we're oopsing. */
print_modules(void)3815 void print_modules(void)
3816 {
3817 	struct module *mod;
3818 	char buf[8];
3819 
3820 	printk(KERN_DEFAULT "Modules linked in:");
3821 	/* Most callers should already have preempt disabled, but make sure */
3822 	preempt_disable();
3823 	list_for_each_entry_rcu(mod, &modules, list) {
3824 		if (mod->state == MODULE_STATE_UNFORMED)
3825 			continue;
3826 		printk(" %s%s", mod->name, module_flags(mod, buf));
3827 	}
3828 	preempt_enable();
3829 	if (last_unloaded_module[0])
3830 		printk(" [last unloaded: %s]", last_unloaded_module);
3831 	printk("\n");
3832 }
3833 
3834 #ifdef CONFIG_MODVERSIONS
3835 /* Generate the signature for all relevant module structures here.
3836  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)3837 void module_layout(struct module *mod,
3838 		   struct modversion_info *ver,
3839 		   struct kernel_param *kp,
3840 		   struct kernel_symbol *ks,
3841 		   struct tracepoint * const *tp)
3842 {
3843 }
3844 EXPORT_SYMBOL(module_layout);
3845 #endif
3846