• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51 
52 /*
53  * Management arrays for POSIX timers. Timers are now kept in static hash table
54  * with 512 entries.
55  * Timer ids are allocated by local routine, which selects proper hash head by
56  * key, constructed from current->signal address and per signal struct counter.
57  * This keeps timer ids unique per process, but now they can intersect between
58  * processes.
59  */
60 
61 /*
62  * Lets keep our timers in a slab cache :-)
63  */
64 static struct kmem_cache *posix_timers_cache;
65 
66 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
67 static DEFINE_SPINLOCK(hash_lock);
68 
69 /*
70  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
71  * SIGEV values.  Here we put out an error if this assumption fails.
72  */
73 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
74                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
75 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
76 #endif
77 
78 /*
79  * parisc wants ENOTSUP instead of EOPNOTSUPP
80  */
81 #ifndef ENOTSUP
82 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
83 #else
84 # define ENANOSLEEP_NOTSUP ENOTSUP
85 #endif
86 
87 /*
88  * The timer ID is turned into a timer address by idr_find().
89  * Verifying a valid ID consists of:
90  *
91  * a) checking that idr_find() returns other than -1.
92  * b) checking that the timer id matches the one in the timer itself.
93  * c) that the timer owner is in the callers thread group.
94  */
95 
96 /*
97  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98  *	    to implement others.  This structure defines the various
99  *	    clocks.
100  *
101  * RESOLUTION: Clock resolution is used to round up timer and interval
102  *	    times, NOT to report clock times, which are reported with as
103  *	    much resolution as the system can muster.  In some cases this
104  *	    resolution may depend on the underlying clock hardware and
105  *	    may not be quantifiable until run time, and only then is the
106  *	    necessary code is written.	The standard says we should say
107  *	    something about this issue in the documentation...
108  *
109  * FUNCTIONS: The CLOCKs structure defines possible functions to
110  *	    handle various clock functions.
111  *
112  *	    The standard POSIX timer management code assumes the
113  *	    following: 1.) The k_itimer struct (sched.h) is used for
114  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
115  *	    it_pid fields are not modified by timer code.
116  *
117  * Permissions: It is assumed that the clock_settime() function defined
118  *	    for each clock will take care of permission checks.	 Some
119  *	    clocks may be set able by any user (i.e. local process
120  *	    clocks) others not.	 Currently the only set able clock we
121  *	    have is CLOCK_REALTIME and its high res counter part, both of
122  *	    which we beg off on and pass to do_sys_settimeofday().
123  */
124 
125 static struct k_clock posix_clocks[MAX_CLOCKS];
126 
127 /*
128  * These ones are defined below.
129  */
130 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
131 			 struct timespec __user *rmtp);
132 static int common_timer_create(struct k_itimer *new_timer);
133 static void common_timer_get(struct k_itimer *, struct itimerspec *);
134 static int common_timer_set(struct k_itimer *, int,
135 			    struct itimerspec *, struct itimerspec *);
136 static int common_timer_del(struct k_itimer *timer);
137 
138 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
139 
140 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
141 
142 #define lock_timer(tid, flags)						   \
143 ({	struct k_itimer *__timr;					   \
144 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
145 	__timr;								   \
146 })
147 
hash(struct signal_struct * sig,unsigned int nr)148 static int hash(struct signal_struct *sig, unsigned int nr)
149 {
150 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
151 }
152 
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)153 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
154 					    struct signal_struct *sig,
155 					    timer_t id)
156 {
157 	struct k_itimer *timer;
158 
159 	hlist_for_each_entry_rcu(timer, head, t_hash) {
160 		if ((timer->it_signal == sig) && (timer->it_id == id))
161 			return timer;
162 	}
163 	return NULL;
164 }
165 
posix_timer_by_id(timer_t id)166 static struct k_itimer *posix_timer_by_id(timer_t id)
167 {
168 	struct signal_struct *sig = current->signal;
169 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
170 
171 	return __posix_timers_find(head, sig, id);
172 }
173 
posix_timer_add(struct k_itimer * timer)174 static int posix_timer_add(struct k_itimer *timer)
175 {
176 	struct signal_struct *sig = current->signal;
177 	int first_free_id = sig->posix_timer_id;
178 	struct hlist_head *head;
179 	int ret = -ENOENT;
180 
181 	do {
182 		spin_lock(&hash_lock);
183 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
184 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
185 			hlist_add_head_rcu(&timer->t_hash, head);
186 			ret = sig->posix_timer_id;
187 		}
188 		if (++sig->posix_timer_id < 0)
189 			sig->posix_timer_id = 0;
190 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
191 			/* Loop over all possible ids completed */
192 			ret = -EAGAIN;
193 		spin_unlock(&hash_lock);
194 	} while (ret == -ENOENT);
195 	return ret;
196 }
197 
unlock_timer(struct k_itimer * timr,unsigned long flags)198 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
199 {
200 	spin_unlock_irqrestore(&timr->it_lock, flags);
201 }
202 
203 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)204 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
205 {
206 	ktime_get_real_ts(tp);
207 	return 0;
208 }
209 
210 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)211 static int posix_clock_realtime_set(const clockid_t which_clock,
212 				    const struct timespec *tp)
213 {
214 	return do_sys_settimeofday(tp, NULL);
215 }
216 
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)217 static int posix_clock_realtime_adj(const clockid_t which_clock,
218 				    struct timex *t)
219 {
220 	return do_adjtimex(t);
221 }
222 
223 /*
224  * Get monotonic time for posix timers
225  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)226 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
227 {
228 	ktime_get_ts(tp);
229 	return 0;
230 }
231 
232 /*
233  * Get monotonic-raw time for posix timers
234  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)235 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
236 {
237 	getrawmonotonic(tp);
238 	return 0;
239 }
240 
241 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)242 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
243 {
244 	*tp = current_kernel_time();
245 	return 0;
246 }
247 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)248 static int posix_get_monotonic_coarse(clockid_t which_clock,
249 						struct timespec *tp)
250 {
251 	*tp = get_monotonic_coarse();
252 	return 0;
253 }
254 
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)255 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
256 {
257 	*tp = ktime_to_timespec(KTIME_LOW_RES);
258 	return 0;
259 }
260 
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)261 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
262 {
263 	get_monotonic_boottime(tp);
264 	return 0;
265 }
266 
posix_get_tai(clockid_t which_clock,struct timespec * tp)267 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
268 {
269 	timekeeping_clocktai(tp);
270 	return 0;
271 }
272 
273 /*
274  * Initialize everything, well, just everything in Posix clocks/timers ;)
275  */
init_posix_timers(void)276 static __init int init_posix_timers(void)
277 {
278 	struct k_clock clock_realtime = {
279 		.clock_getres	= hrtimer_get_res,
280 		.clock_get	= posix_clock_realtime_get,
281 		.clock_set	= posix_clock_realtime_set,
282 		.clock_adj	= posix_clock_realtime_adj,
283 		.nsleep		= common_nsleep,
284 		.nsleep_restart	= hrtimer_nanosleep_restart,
285 		.timer_create	= common_timer_create,
286 		.timer_set	= common_timer_set,
287 		.timer_get	= common_timer_get,
288 		.timer_del	= common_timer_del,
289 	};
290 	struct k_clock clock_monotonic = {
291 		.clock_getres	= hrtimer_get_res,
292 		.clock_get	= posix_ktime_get_ts,
293 		.nsleep		= common_nsleep,
294 		.nsleep_restart	= hrtimer_nanosleep_restart,
295 		.timer_create	= common_timer_create,
296 		.timer_set	= common_timer_set,
297 		.timer_get	= common_timer_get,
298 		.timer_del	= common_timer_del,
299 	};
300 	struct k_clock clock_monotonic_raw = {
301 		.clock_getres	= hrtimer_get_res,
302 		.clock_get	= posix_get_monotonic_raw,
303 	};
304 	struct k_clock clock_realtime_coarse = {
305 		.clock_getres	= posix_get_coarse_res,
306 		.clock_get	= posix_get_realtime_coarse,
307 	};
308 	struct k_clock clock_monotonic_coarse = {
309 		.clock_getres	= posix_get_coarse_res,
310 		.clock_get	= posix_get_monotonic_coarse,
311 	};
312 	struct k_clock clock_tai = {
313 		.clock_getres	= hrtimer_get_res,
314 		.clock_get	= posix_get_tai,
315 		.nsleep		= common_nsleep,
316 		.nsleep_restart	= hrtimer_nanosleep_restart,
317 		.timer_create	= common_timer_create,
318 		.timer_set	= common_timer_set,
319 		.timer_get	= common_timer_get,
320 		.timer_del	= common_timer_del,
321 	};
322 	struct k_clock clock_boottime = {
323 		.clock_getres	= hrtimer_get_res,
324 		.clock_get	= posix_get_boottime,
325 		.nsleep		= common_nsleep,
326 		.nsleep_restart	= hrtimer_nanosleep_restart,
327 		.timer_create	= common_timer_create,
328 		.timer_set	= common_timer_set,
329 		.timer_get	= common_timer_get,
330 		.timer_del	= common_timer_del,
331 	};
332 
333 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
334 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
335 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
336 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
337 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
338 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
339 	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
340 
341 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
342 					sizeof (struct k_itimer), 0, SLAB_PANIC,
343 					NULL);
344 	return 0;
345 }
346 
347 __initcall(init_posix_timers);
348 
schedule_next_timer(struct k_itimer * timr)349 static void schedule_next_timer(struct k_itimer *timr)
350 {
351 	struct hrtimer *timer = &timr->it.real.timer;
352 
353 	if (timr->it.real.interval.tv64 == 0)
354 		return;
355 
356 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
357 						timer->base->get_time(),
358 						timr->it.real.interval);
359 
360 	timr->it_overrun_last = timr->it_overrun;
361 	timr->it_overrun = -1;
362 	++timr->it_requeue_pending;
363 	hrtimer_restart(timer);
364 }
365 
366 /*
367  * This function is exported for use by the signal deliver code.  It is
368  * called just prior to the info block being released and passes that
369  * block to us.  It's function is to update the overrun entry AND to
370  * restart the timer.  It should only be called if the timer is to be
371  * restarted (i.e. we have flagged this in the sys_private entry of the
372  * info block).
373  *
374  * To protect against the timer going away while the interrupt is queued,
375  * we require that the it_requeue_pending flag be set.
376  */
do_schedule_next_timer(struct siginfo * info)377 void do_schedule_next_timer(struct siginfo *info)
378 {
379 	struct k_itimer *timr;
380 	unsigned long flags;
381 
382 	timr = lock_timer(info->si_tid, &flags);
383 
384 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
385 		if (timr->it_clock < 0)
386 			posix_cpu_timer_schedule(timr);
387 		else
388 			schedule_next_timer(timr);
389 
390 		info->si_overrun += timr->it_overrun_last;
391 	}
392 
393 	if (timr)
394 		unlock_timer(timr, flags);
395 }
396 
posix_timer_event(struct k_itimer * timr,int si_private)397 int posix_timer_event(struct k_itimer *timr, int si_private)
398 {
399 	struct task_struct *task;
400 	int shared, ret = -1;
401 	/*
402 	 * FIXME: if ->sigq is queued we can race with
403 	 * dequeue_signal()->do_schedule_next_timer().
404 	 *
405 	 * If dequeue_signal() sees the "right" value of
406 	 * si_sys_private it calls do_schedule_next_timer().
407 	 * We re-queue ->sigq and drop ->it_lock().
408 	 * do_schedule_next_timer() locks the timer
409 	 * and re-schedules it while ->sigq is pending.
410 	 * Not really bad, but not that we want.
411 	 */
412 	timr->sigq->info.si_sys_private = si_private;
413 
414 	rcu_read_lock();
415 	task = pid_task(timr->it_pid, PIDTYPE_PID);
416 	if (task) {
417 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
418 		ret = send_sigqueue(timr->sigq, task, shared);
419 	}
420 	rcu_read_unlock();
421 	/* If we failed to send the signal the timer stops. */
422 	return ret > 0;
423 }
424 EXPORT_SYMBOL_GPL(posix_timer_event);
425 
426 /*
427  * This function gets called when a POSIX.1b interval timer expires.  It
428  * is used as a callback from the kernel internal timer.  The
429  * run_timer_list code ALWAYS calls with interrupts on.
430 
431  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
432  */
posix_timer_fn(struct hrtimer * timer)433 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
434 {
435 	struct k_itimer *timr;
436 	unsigned long flags;
437 	int si_private = 0;
438 	enum hrtimer_restart ret = HRTIMER_NORESTART;
439 
440 	timr = container_of(timer, struct k_itimer, it.real.timer);
441 	spin_lock_irqsave(&timr->it_lock, flags);
442 
443 	if (timr->it.real.interval.tv64 != 0)
444 		si_private = ++timr->it_requeue_pending;
445 
446 	if (posix_timer_event(timr, si_private)) {
447 		/*
448 		 * signal was not sent because of sig_ignor
449 		 * we will not get a call back to restart it AND
450 		 * it should be restarted.
451 		 */
452 		if (timr->it.real.interval.tv64 != 0) {
453 			ktime_t now = hrtimer_cb_get_time(timer);
454 
455 			/*
456 			 * FIXME: What we really want, is to stop this
457 			 * timer completely and restart it in case the
458 			 * SIG_IGN is removed. This is a non trivial
459 			 * change which involves sighand locking
460 			 * (sigh !), which we don't want to do late in
461 			 * the release cycle.
462 			 *
463 			 * For now we just let timers with an interval
464 			 * less than a jiffie expire every jiffie to
465 			 * avoid softirq starvation in case of SIG_IGN
466 			 * and a very small interval, which would put
467 			 * the timer right back on the softirq pending
468 			 * list. By moving now ahead of time we trick
469 			 * hrtimer_forward() to expire the timer
470 			 * later, while we still maintain the overrun
471 			 * accuracy, but have some inconsistency in
472 			 * the timer_gettime() case. This is at least
473 			 * better than a starved softirq. A more
474 			 * complex fix which solves also another related
475 			 * inconsistency is already in the pipeline.
476 			 */
477 #ifdef CONFIG_HIGH_RES_TIMERS
478 			{
479 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
480 
481 				if (timr->it.real.interval.tv64 < kj.tv64)
482 					now = ktime_add(now, kj);
483 			}
484 #endif
485 			timr->it_overrun += (unsigned int)
486 				hrtimer_forward(timer, now,
487 						timr->it.real.interval);
488 			ret = HRTIMER_RESTART;
489 			++timr->it_requeue_pending;
490 		}
491 	}
492 
493 	unlock_timer(timr, flags);
494 	return ret;
495 }
496 
good_sigevent(sigevent_t * event)497 static struct pid *good_sigevent(sigevent_t * event)
498 {
499 	struct task_struct *rtn = current->group_leader;
500 
501 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
502 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
503 		 !same_thread_group(rtn, current) ||
504 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
505 		return NULL;
506 
507 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
508 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
509 		return NULL;
510 
511 	return task_pid(rtn);
512 }
513 
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)514 void posix_timers_register_clock(const clockid_t clock_id,
515 				 struct k_clock *new_clock)
516 {
517 	if ((unsigned) clock_id >= MAX_CLOCKS) {
518 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
519 		       clock_id);
520 		return;
521 	}
522 
523 	if (!new_clock->clock_get) {
524 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
525 		       clock_id);
526 		return;
527 	}
528 	if (!new_clock->clock_getres) {
529 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
530 		       clock_id);
531 		return;
532 	}
533 
534 	posix_clocks[clock_id] = *new_clock;
535 }
536 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
537 
alloc_posix_timer(void)538 static struct k_itimer * alloc_posix_timer(void)
539 {
540 	struct k_itimer *tmr;
541 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
542 	if (!tmr)
543 		return tmr;
544 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
545 		kmem_cache_free(posix_timers_cache, tmr);
546 		return NULL;
547 	}
548 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
549 	return tmr;
550 }
551 
k_itimer_rcu_free(struct rcu_head * head)552 static void k_itimer_rcu_free(struct rcu_head *head)
553 {
554 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
555 
556 	kmem_cache_free(posix_timers_cache, tmr);
557 }
558 
559 #define IT_ID_SET	1
560 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)561 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
562 {
563 	if (it_id_set) {
564 		unsigned long flags;
565 		spin_lock_irqsave(&hash_lock, flags);
566 		hlist_del_rcu(&tmr->t_hash);
567 		spin_unlock_irqrestore(&hash_lock, flags);
568 	}
569 	put_pid(tmr->it_pid);
570 	sigqueue_free(tmr->sigq);
571 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
572 }
573 
clockid_to_kclock(const clockid_t id)574 static struct k_clock *clockid_to_kclock(const clockid_t id)
575 {
576 	if (id < 0)
577 		return (id & CLOCKFD_MASK) == CLOCKFD ?
578 			&clock_posix_dynamic : &clock_posix_cpu;
579 
580 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
581 		return NULL;
582 	return &posix_clocks[id];
583 }
584 
common_timer_create(struct k_itimer * new_timer)585 static int common_timer_create(struct k_itimer *new_timer)
586 {
587 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
588 	return 0;
589 }
590 
591 /* Create a POSIX.1b interval timer. */
592 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)593 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
594 		struct sigevent __user *, timer_event_spec,
595 		timer_t __user *, created_timer_id)
596 {
597 	struct k_clock *kc = clockid_to_kclock(which_clock);
598 	struct k_itimer *new_timer;
599 	int error, new_timer_id;
600 	sigevent_t event;
601 	int it_id_set = IT_ID_NOT_SET;
602 
603 	if (!kc)
604 		return -EINVAL;
605 	if (!kc->timer_create)
606 		return -EOPNOTSUPP;
607 
608 	new_timer = alloc_posix_timer();
609 	if (unlikely(!new_timer))
610 		return -EAGAIN;
611 
612 	spin_lock_init(&new_timer->it_lock);
613 	new_timer_id = posix_timer_add(new_timer);
614 	if (new_timer_id < 0) {
615 		error = new_timer_id;
616 		goto out;
617 	}
618 
619 	it_id_set = IT_ID_SET;
620 	new_timer->it_id = (timer_t) new_timer_id;
621 	new_timer->it_clock = which_clock;
622 	new_timer->it_overrun = -1;
623 
624 	if (timer_event_spec) {
625 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
626 			error = -EFAULT;
627 			goto out;
628 		}
629 		rcu_read_lock();
630 		new_timer->it_pid = get_pid(good_sigevent(&event));
631 		rcu_read_unlock();
632 		if (!new_timer->it_pid) {
633 			error = -EINVAL;
634 			goto out;
635 		}
636 	} else {
637 		event.sigev_notify = SIGEV_SIGNAL;
638 		event.sigev_signo = SIGALRM;
639 		event.sigev_value.sival_int = new_timer->it_id;
640 		new_timer->it_pid = get_pid(task_tgid(current));
641 	}
642 
643 	new_timer->it_sigev_notify     = event.sigev_notify;
644 	new_timer->sigq->info.si_signo = event.sigev_signo;
645 	new_timer->sigq->info.si_value = event.sigev_value;
646 	new_timer->sigq->info.si_tid   = new_timer->it_id;
647 	new_timer->sigq->info.si_code  = SI_TIMER;
648 
649 	if (copy_to_user(created_timer_id,
650 			 &new_timer_id, sizeof (new_timer_id))) {
651 		error = -EFAULT;
652 		goto out;
653 	}
654 
655 	error = kc->timer_create(new_timer);
656 	if (error)
657 		goto out;
658 
659 	spin_lock_irq(&current->sighand->siglock);
660 	new_timer->it_signal = current->signal;
661 	list_add(&new_timer->list, &current->signal->posix_timers);
662 	spin_unlock_irq(&current->sighand->siglock);
663 
664 	return 0;
665 	/*
666 	 * In the case of the timer belonging to another task, after
667 	 * the task is unlocked, the timer is owned by the other task
668 	 * and may cease to exist at any time.  Don't use or modify
669 	 * new_timer after the unlock call.
670 	 */
671 out:
672 	release_posix_timer(new_timer, it_id_set);
673 	return error;
674 }
675 
676 /*
677  * Locking issues: We need to protect the result of the id look up until
678  * we get the timer locked down so it is not deleted under us.  The
679  * removal is done under the idr spinlock so we use that here to bridge
680  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
681  * be release with out holding the timer lock.
682  */
__lock_timer(timer_t timer_id,unsigned long * flags)683 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
684 {
685 	struct k_itimer *timr;
686 
687 	/*
688 	 * timer_t could be any type >= int and we want to make sure any
689 	 * @timer_id outside positive int range fails lookup.
690 	 */
691 	if ((unsigned long long)timer_id > INT_MAX)
692 		return NULL;
693 
694 	rcu_read_lock();
695 	timr = posix_timer_by_id(timer_id);
696 	if (timr) {
697 		spin_lock_irqsave(&timr->it_lock, *flags);
698 		if (timr->it_signal == current->signal) {
699 			rcu_read_unlock();
700 			return timr;
701 		}
702 		spin_unlock_irqrestore(&timr->it_lock, *flags);
703 	}
704 	rcu_read_unlock();
705 
706 	return NULL;
707 }
708 
709 /*
710  * Get the time remaining on a POSIX.1b interval timer.  This function
711  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
712  * mess with irq.
713  *
714  * We have a couple of messes to clean up here.  First there is the case
715  * of a timer that has a requeue pending.  These timers should appear to
716  * be in the timer list with an expiry as if we were to requeue them
717  * now.
718  *
719  * The second issue is the SIGEV_NONE timer which may be active but is
720  * not really ever put in the timer list (to save system resources).
721  * This timer may be expired, and if so, we will do it here.  Otherwise
722  * it is the same as a requeue pending timer WRT to what we should
723  * report.
724  */
725 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)726 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
727 {
728 	ktime_t now, remaining, iv;
729 	struct hrtimer *timer = &timr->it.real.timer;
730 
731 	memset(cur_setting, 0, sizeof(struct itimerspec));
732 
733 	iv = timr->it.real.interval;
734 
735 	/* interval timer ? */
736 	if (iv.tv64)
737 		cur_setting->it_interval = ktime_to_timespec(iv);
738 	else if (!hrtimer_active(timer) &&
739 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
740 		return;
741 
742 	now = timer->base->get_time();
743 
744 	/*
745 	 * When a requeue is pending or this is a SIGEV_NONE
746 	 * timer move the expiry time forward by intervals, so
747 	 * expiry is > now.
748 	 */
749 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
750 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
751 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
752 
753 	remaining = ktime_sub(hrtimer_get_expires(timer), now);
754 	/* Return 0 only, when the timer is expired and not pending */
755 	if (remaining.tv64 <= 0) {
756 		/*
757 		 * A single shot SIGEV_NONE timer must return 0, when
758 		 * it is expired !
759 		 */
760 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
761 			cur_setting->it_value.tv_nsec = 1;
762 	} else
763 		cur_setting->it_value = ktime_to_timespec(remaining);
764 }
765 
766 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)767 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
768 		struct itimerspec __user *, setting)
769 {
770 	struct itimerspec cur_setting;
771 	struct k_itimer *timr;
772 	struct k_clock *kc;
773 	unsigned long flags;
774 	int ret = 0;
775 
776 	timr = lock_timer(timer_id, &flags);
777 	if (!timr)
778 		return -EINVAL;
779 
780 	kc = clockid_to_kclock(timr->it_clock);
781 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
782 		ret = -EINVAL;
783 	else
784 		kc->timer_get(timr, &cur_setting);
785 
786 	unlock_timer(timr, flags);
787 
788 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
789 		return -EFAULT;
790 
791 	return ret;
792 }
793 
794 /*
795  * Get the number of overruns of a POSIX.1b interval timer.  This is to
796  * be the overrun of the timer last delivered.  At the same time we are
797  * accumulating overruns on the next timer.  The overrun is frozen when
798  * the signal is delivered, either at the notify time (if the info block
799  * is not queued) or at the actual delivery time (as we are informed by
800  * the call back to do_schedule_next_timer().  So all we need to do is
801  * to pick up the frozen overrun.
802  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)803 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
804 {
805 	struct k_itimer *timr;
806 	int overrun;
807 	unsigned long flags;
808 
809 	timr = lock_timer(timer_id, &flags);
810 	if (!timr)
811 		return -EINVAL;
812 
813 	overrun = timr->it_overrun_last;
814 	unlock_timer(timr, flags);
815 
816 	return overrun;
817 }
818 
819 /* Set a POSIX.1b interval timer. */
820 /* timr->it_lock is taken. */
821 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)822 common_timer_set(struct k_itimer *timr, int flags,
823 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
824 {
825 	struct hrtimer *timer = &timr->it.real.timer;
826 	enum hrtimer_mode mode;
827 
828 	if (old_setting)
829 		common_timer_get(timr, old_setting);
830 
831 	/* disable the timer */
832 	timr->it.real.interval.tv64 = 0;
833 	/*
834 	 * careful here.  If smp we could be in the "fire" routine which will
835 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
836 	 */
837 	if (hrtimer_try_to_cancel(timer) < 0)
838 		return TIMER_RETRY;
839 
840 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
841 		~REQUEUE_PENDING;
842 	timr->it_overrun_last = 0;
843 
844 	/* switch off the timer when it_value is zero */
845 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
846 		return 0;
847 
848 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
849 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
850 	timr->it.real.timer.function = posix_timer_fn;
851 
852 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
853 
854 	/* Convert interval */
855 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
856 
857 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
858 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
859 		/* Setup correct expiry time for relative timers */
860 		if (mode == HRTIMER_MODE_REL) {
861 			hrtimer_add_expires(timer, timer->base->get_time());
862 		}
863 		return 0;
864 	}
865 
866 	hrtimer_start_expires(timer, mode);
867 	return 0;
868 }
869 
870 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)871 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
872 		const struct itimerspec __user *, new_setting,
873 		struct itimerspec __user *, old_setting)
874 {
875 	struct k_itimer *timr;
876 	struct itimerspec new_spec, old_spec;
877 	int error = 0;
878 	unsigned long flag;
879 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
880 	struct k_clock *kc;
881 
882 	if (!new_setting)
883 		return -EINVAL;
884 
885 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
886 		return -EFAULT;
887 
888 	if (!timespec_valid(&new_spec.it_interval) ||
889 	    !timespec_valid(&new_spec.it_value))
890 		return -EINVAL;
891 retry:
892 	timr = lock_timer(timer_id, &flag);
893 	if (!timr)
894 		return -EINVAL;
895 
896 	kc = clockid_to_kclock(timr->it_clock);
897 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
898 		error = -EINVAL;
899 	else
900 		error = kc->timer_set(timr, flags, &new_spec, rtn);
901 
902 	unlock_timer(timr, flag);
903 	if (error == TIMER_RETRY) {
904 		rtn = NULL;	// We already got the old time...
905 		goto retry;
906 	}
907 
908 	if (old_setting && !error &&
909 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
910 		error = -EFAULT;
911 
912 	return error;
913 }
914 
common_timer_del(struct k_itimer * timer)915 static int common_timer_del(struct k_itimer *timer)
916 {
917 	timer->it.real.interval.tv64 = 0;
918 
919 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
920 		return TIMER_RETRY;
921 	return 0;
922 }
923 
timer_delete_hook(struct k_itimer * timer)924 static inline int timer_delete_hook(struct k_itimer *timer)
925 {
926 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
927 
928 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
929 		return -EINVAL;
930 	return kc->timer_del(timer);
931 }
932 
933 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)934 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
935 {
936 	struct k_itimer *timer;
937 	unsigned long flags;
938 
939 retry_delete:
940 	timer = lock_timer(timer_id, &flags);
941 	if (!timer)
942 		return -EINVAL;
943 
944 	if (timer_delete_hook(timer) == TIMER_RETRY) {
945 		unlock_timer(timer, flags);
946 		goto retry_delete;
947 	}
948 
949 	spin_lock(&current->sighand->siglock);
950 	list_del(&timer->list);
951 	spin_unlock(&current->sighand->siglock);
952 	/*
953 	 * This keeps any tasks waiting on the spin lock from thinking
954 	 * they got something (see the lock code above).
955 	 */
956 	timer->it_signal = NULL;
957 
958 	unlock_timer(timer, flags);
959 	release_posix_timer(timer, IT_ID_SET);
960 	return 0;
961 }
962 
963 /*
964  * return timer owned by the process, used by exit_itimers
965  */
itimer_delete(struct k_itimer * timer)966 static void itimer_delete(struct k_itimer *timer)
967 {
968 	unsigned long flags;
969 
970 retry_delete:
971 	spin_lock_irqsave(&timer->it_lock, flags);
972 
973 	if (timer_delete_hook(timer) == TIMER_RETRY) {
974 		unlock_timer(timer, flags);
975 		goto retry_delete;
976 	}
977 	list_del(&timer->list);
978 	/*
979 	 * This keeps any tasks waiting on the spin lock from thinking
980 	 * they got something (see the lock code above).
981 	 */
982 	timer->it_signal = NULL;
983 
984 	unlock_timer(timer, flags);
985 	release_posix_timer(timer, IT_ID_SET);
986 }
987 
988 /*
989  * This is called by do_exit or de_thread, only when there are no more
990  * references to the shared signal_struct.
991  */
exit_itimers(struct signal_struct * sig)992 void exit_itimers(struct signal_struct *sig)
993 {
994 	struct k_itimer *tmr;
995 
996 	while (!list_empty(&sig->posix_timers)) {
997 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
998 		itimer_delete(tmr);
999 	}
1000 }
1001 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)1002 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1003 		const struct timespec __user *, tp)
1004 {
1005 	struct k_clock *kc = clockid_to_kclock(which_clock);
1006 	struct timespec new_tp;
1007 
1008 	if (!kc || !kc->clock_set)
1009 		return -EINVAL;
1010 
1011 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1012 		return -EFAULT;
1013 
1014 	return kc->clock_set(which_clock, &new_tp);
1015 }
1016 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)1017 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1018 		struct timespec __user *,tp)
1019 {
1020 	struct k_clock *kc = clockid_to_kclock(which_clock);
1021 	struct timespec kernel_tp;
1022 	int error;
1023 
1024 	if (!kc)
1025 		return -EINVAL;
1026 
1027 	error = kc->clock_get(which_clock, &kernel_tp);
1028 
1029 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1030 		error = -EFAULT;
1031 
1032 	return error;
1033 }
1034 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1035 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1036 		struct timex __user *, utx)
1037 {
1038 	struct k_clock *kc = clockid_to_kclock(which_clock);
1039 	struct timex ktx;
1040 	int err;
1041 
1042 	if (!kc)
1043 		return -EINVAL;
1044 	if (!kc->clock_adj)
1045 		return -EOPNOTSUPP;
1046 
1047 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1048 		return -EFAULT;
1049 
1050 	err = kc->clock_adj(which_clock, &ktx);
1051 
1052 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1053 		return -EFAULT;
1054 
1055 	return err;
1056 }
1057 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1058 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1059 		struct timespec __user *, tp)
1060 {
1061 	struct k_clock *kc = clockid_to_kclock(which_clock);
1062 	struct timespec rtn_tp;
1063 	int error;
1064 
1065 	if (!kc)
1066 		return -EINVAL;
1067 
1068 	error = kc->clock_getres(which_clock, &rtn_tp);
1069 
1070 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1071 		error = -EFAULT;
1072 
1073 	return error;
1074 }
1075 
1076 /*
1077  * nanosleep for monotonic and realtime clocks
1078  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1079 static int common_nsleep(const clockid_t which_clock, int flags,
1080 			 struct timespec *tsave, struct timespec __user *rmtp)
1081 {
1082 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1083 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1084 				 which_clock);
1085 }
1086 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1087 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1088 		const struct timespec __user *, rqtp,
1089 		struct timespec __user *, rmtp)
1090 {
1091 	struct k_clock *kc = clockid_to_kclock(which_clock);
1092 	struct timespec t;
1093 
1094 	if (!kc)
1095 		return -EINVAL;
1096 	if (!kc->nsleep)
1097 		return -ENANOSLEEP_NOTSUP;
1098 
1099 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1100 		return -EFAULT;
1101 
1102 	if (!timespec_valid(&t))
1103 		return -EINVAL;
1104 
1105 	return kc->nsleep(which_clock, flags, &t, rmtp);
1106 }
1107 
1108 /*
1109  * This will restart clock_nanosleep. This is required only by
1110  * compat_clock_nanosleep_restart for now.
1111  */
clock_nanosleep_restart(struct restart_block * restart_block)1112 long clock_nanosleep_restart(struct restart_block *restart_block)
1113 {
1114 	clockid_t which_clock = restart_block->nanosleep.clockid;
1115 	struct k_clock *kc = clockid_to_kclock(which_clock);
1116 
1117 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1118 		return -EINVAL;
1119 
1120 	return kc->nsleep_restart(restart_block);
1121 }
1122