• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #ifdef CONFIG_EARLY_PRINTK_DIRECT
55 extern void printascii(char *);
56 #endif
57 
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60 
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64 
65 int console_printk[4] = {
66 	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
67 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
68 	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
69 	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
70 };
71 
72 /*
73  * Low level drivers may need that to know if they can schedule in
74  * their unblank() callback or not. So let's export it.
75  */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78 
79 /*
80  * console_sem protects the console_drivers list, and also
81  * provides serialisation for access to the entire console
82  * driver system.
83  */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87 
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 	.name = "console_lock"
91 };
92 #endif
93 
94 /*
95  * This is used for debugging the mess that is the VT code by
96  * keeping track if we have the console semaphore held. It's
97  * definitely not the perfect debug tool (we don't know if _WE_
98  * hold it are racing, but it helps tracking those weird code
99  * path in the console code where we end up in places I want
100  * locked without the console sempahore held
101  */
102 static int console_locked, console_suspended;
103 
104 /*
105  * If exclusive_console is non-NULL then only this console is to be printed to.
106  */
107 static struct console *exclusive_console;
108 
109 /*
110  *	Array of consoles built from command line options (console=)
111  */
112 struct console_cmdline
113 {
114 	char	name[8];			/* Name of the driver	    */
115 	int	index;				/* Minor dev. to use	    */
116 	char	*options;			/* Options for the driver   */
117 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
118 	char	*brl_options;			/* Options for braille driver */
119 #endif
120 };
121 
122 #define MAX_CMDLINECONSOLES 8
123 
124 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
125 static int selected_console = -1;
126 static int preferred_console = -1;
127 int console_set_on_cmdline;
128 EXPORT_SYMBOL(console_set_on_cmdline);
129 
130 /* Flag: console code may call schedule() */
131 static int console_may_schedule;
132 
133 /*
134  * The printk log buffer consists of a chain of concatenated variable
135  * length records. Every record starts with a record header, containing
136  * the overall length of the record.
137  *
138  * The heads to the first and last entry in the buffer, as well as the
139  * sequence numbers of these both entries are maintained when messages
140  * are stored..
141  *
142  * If the heads indicate available messages, the length in the header
143  * tells the start next message. A length == 0 for the next message
144  * indicates a wrap-around to the beginning of the buffer.
145  *
146  * Every record carries the monotonic timestamp in microseconds, as well as
147  * the standard userspace syslog level and syslog facility. The usual
148  * kernel messages use LOG_KERN; userspace-injected messages always carry
149  * a matching syslog facility, by default LOG_USER. The origin of every
150  * message can be reliably determined that way.
151  *
152  * The human readable log message directly follows the message header. The
153  * length of the message text is stored in the header, the stored message
154  * is not terminated.
155  *
156  * Optionally, a message can carry a dictionary of properties (key/value pairs),
157  * to provide userspace with a machine-readable message context.
158  *
159  * Examples for well-defined, commonly used property names are:
160  *   DEVICE=b12:8               device identifier
161  *                                b12:8         block dev_t
162  *                                c127:3        char dev_t
163  *                                n8            netdev ifindex
164  *                                +sound:card0  subsystem:devname
165  *   SUBSYSTEM=pci              driver-core subsystem name
166  *
167  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
168  * follows directly after a '=' character. Every property is terminated by
169  * a '\0' character. The last property is not terminated.
170  *
171  * Example of a message structure:
172  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
173  *   0008  34 00                        record is 52 bytes long
174  *   000a        0b 00                  text is 11 bytes long
175  *   000c              1f 00            dictionary is 23 bytes long
176  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
177  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
178  *         69 6e 65                     "ine"
179  *   001b           44 45 56 49 43      "DEVIC"
180  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
181  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
182  *         67                           "g"
183  *   0032     00 00 00                  padding to next message header
184  *
185  * The 'struct log' buffer header must never be directly exported to
186  * userspace, it is a kernel-private implementation detail that might
187  * need to be changed in the future, when the requirements change.
188  *
189  * /dev/kmsg exports the structured data in the following line format:
190  *   "level,sequnum,timestamp;<message text>\n"
191  *
192  * The optional key/value pairs are attached as continuation lines starting
193  * with a space character and terminated by a newline. All possible
194  * non-prinatable characters are escaped in the "\xff" notation.
195  *
196  * Users of the export format should ignore possible additional values
197  * separated by ',', and find the message after the ';' character.
198  */
199 
200 enum log_flags {
201 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
202 	LOG_NEWLINE	= 2,	/* text ended with a newline */
203 	LOG_PREFIX	= 4,	/* text started with a prefix */
204 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
205 };
206 
207 struct log {
208 	u64 ts_nsec;		/* timestamp in nanoseconds */
209 	u16 len;		/* length of entire record */
210 	u16 text_len;		/* length of text buffer */
211 	u16 dict_len;		/* length of dictionary buffer */
212 	u8 facility;		/* syslog facility */
213 	u8 flags:5;		/* internal record flags */
214 	u8 level:3;		/* syslog level */
215 };
216 
217 /*
218  * The logbuf_lock protects kmsg buffer, indices, counters. It is also
219  * used in interesting ways to provide interlocking in console_unlock();
220  */
221 static DEFINE_RAW_SPINLOCK(logbuf_lock);
222 
223 #ifdef CONFIG_PRINTK
224 DECLARE_WAIT_QUEUE_HEAD(log_wait);
225 /* the next printk record to read by syslog(READ) or /proc/kmsg */
226 static u64 syslog_seq;
227 static u32 syslog_idx;
228 static enum log_flags syslog_prev;
229 static size_t syslog_partial;
230 
231 /* index and sequence number of the first record stored in the buffer */
232 static u64 log_first_seq;
233 static u32 log_first_idx;
234 
235 /* index and sequence number of the next record to store in the buffer */
236 static u64 log_next_seq;
237 static u32 log_next_idx;
238 
239 /* the next printk record to write to the console */
240 static u64 console_seq;
241 static u32 console_idx;
242 static enum log_flags console_prev;
243 
244 /* the next printk record to read after the last 'clear' command */
245 static u64 clear_seq;
246 static u32 clear_idx;
247 
248 #define PREFIX_MAX		32
249 #define LOG_LINE_MAX		1024 - PREFIX_MAX
250 
251 /* record buffer */
252 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
253 #define LOG_ALIGN 4
254 #else
255 #define LOG_ALIGN __alignof__(struct log)
256 #endif
257 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
258 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
259 static char *log_buf = __log_buf;
260 static u32 log_buf_len = __LOG_BUF_LEN;
261 
262 /* cpu currently holding logbuf_lock */
263 static volatile unsigned int logbuf_cpu = UINT_MAX;
264 
265 /* human readable text of the record */
log_text(const struct log * msg)266 static char *log_text(const struct log *msg)
267 {
268 	return (char *)msg + sizeof(struct log);
269 }
270 
271 /* optional key/value pair dictionary attached to the record */
log_dict(const struct log * msg)272 static char *log_dict(const struct log *msg)
273 {
274 	return (char *)msg + sizeof(struct log) + msg->text_len;
275 }
276 
277 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)278 static struct log *log_from_idx(u32 idx)
279 {
280 	struct log *msg = (struct log *)(log_buf + idx);
281 
282 	/*
283 	 * A length == 0 record is the end of buffer marker. Wrap around and
284 	 * read the message at the start of the buffer.
285 	 */
286 	if (!msg->len)
287 		return (struct log *)log_buf;
288 	return msg;
289 }
290 
291 /* get next record; idx must point to valid msg */
log_next(u32 idx)292 static u32 log_next(u32 idx)
293 {
294 	struct log *msg = (struct log *)(log_buf + idx);
295 
296 	/* length == 0 indicates the end of the buffer; wrap */
297 	/*
298 	 * A length == 0 record is the end of buffer marker. Wrap around and
299 	 * read the message at the start of the buffer as *this* one, and
300 	 * return the one after that.
301 	 */
302 	if (!msg->len) {
303 		msg = (struct log *)log_buf;
304 		return msg->len;
305 	}
306 	return idx + msg->len;
307 }
308 
309 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)310 static void log_store(int facility, int level,
311 		      enum log_flags flags, u64 ts_nsec,
312 		      const char *dict, u16 dict_len,
313 		      const char *text, u16 text_len)
314 {
315 	struct log *msg;
316 	u32 size, pad_len;
317 
318 	/* number of '\0' padding bytes to next message */
319 	size = sizeof(struct log) + text_len + dict_len;
320 	pad_len = (-size) & (LOG_ALIGN - 1);
321 	size += pad_len;
322 
323 	while (log_first_seq < log_next_seq) {
324 		u32 free;
325 
326 		if (log_next_idx > log_first_idx)
327 			free = max(log_buf_len - log_next_idx, log_first_idx);
328 		else
329 			free = log_first_idx - log_next_idx;
330 
331 		if (free > size + sizeof(struct log))
332 			break;
333 
334 		/* drop old messages until we have enough contiuous space */
335 		log_first_idx = log_next(log_first_idx);
336 		log_first_seq++;
337 	}
338 
339 	if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
340 		/*
341 		 * This message + an additional empty header does not fit
342 		 * at the end of the buffer. Add an empty header with len == 0
343 		 * to signify a wrap around.
344 		 */
345 		memset(log_buf + log_next_idx, 0, sizeof(struct log));
346 		log_next_idx = 0;
347 	}
348 
349 	/* fill message */
350 	msg = (struct log *)(log_buf + log_next_idx);
351 	memcpy(log_text(msg), text, text_len);
352 	msg->text_len = text_len;
353 	memcpy(log_dict(msg), dict, dict_len);
354 	msg->dict_len = dict_len;
355 	msg->facility = facility;
356 	msg->level = level & 7;
357 	msg->flags = flags & 0x1f;
358 	if (ts_nsec > 0)
359 		msg->ts_nsec = ts_nsec;
360 	else
361 		msg->ts_nsec = local_clock();
362 	memset(log_dict(msg) + dict_len, 0, pad_len);
363 	msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
364 
365 	/* insert message */
366 	log_next_idx += msg->len;
367 	log_next_seq++;
368 }
369 
370 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
371 int dmesg_restrict = 1;
372 #else
373 int dmesg_restrict;
374 #endif
375 
syslog_action_restricted(int type)376 static int syslog_action_restricted(int type)
377 {
378 	if (dmesg_restrict)
379 		return 1;
380 	/*
381 	 * Unless restricted, we allow "read all" and "get buffer size"
382 	 * for everybody.
383 	 */
384 	return type != SYSLOG_ACTION_READ_ALL &&
385 	       type != SYSLOG_ACTION_SIZE_BUFFER;
386 }
387 
check_syslog_permissions(int type,bool from_file)388 static int check_syslog_permissions(int type, bool from_file)
389 {
390 	/*
391 	 * If this is from /proc/kmsg and we've already opened it, then we've
392 	 * already done the capabilities checks at open time.
393 	 */
394 	if (from_file && type != SYSLOG_ACTION_OPEN)
395 		return 0;
396 
397 	if (syslog_action_restricted(type)) {
398 		if (capable(CAP_SYSLOG))
399 			return 0;
400 		/*
401 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
402 		 * a warning.
403 		 */
404 		if (capable(CAP_SYS_ADMIN)) {
405 			pr_warn_once("%s (%d): Attempt to access syslog with "
406 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
407 				     "(deprecated).\n",
408 				 current->comm, task_pid_nr(current));
409 			return 0;
410 		}
411 		return -EPERM;
412 	}
413 	return security_syslog(type);
414 }
415 
416 
417 /* /dev/kmsg - userspace message inject/listen interface */
418 struct devkmsg_user {
419 	u64 seq;
420 	u32 idx;
421 	enum log_flags prev;
422 	struct mutex lock;
423 	char buf[8192];
424 };
425 
devkmsg_writev(struct kiocb * iocb,const struct iovec * iv,unsigned long count,loff_t pos)426 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
427 			      unsigned long count, loff_t pos)
428 {
429 	char *buf, *line;
430 	int i;
431 	int level = default_message_loglevel;
432 	int facility = 1;	/* LOG_USER */
433 	size_t len = iov_length(iv, count);
434 	ssize_t ret = len;
435 
436 	if (len > LOG_LINE_MAX)
437 		return -EINVAL;
438 	buf = kmalloc(len+1, GFP_KERNEL);
439 	if (buf == NULL)
440 		return -ENOMEM;
441 
442 	line = buf;
443 	for (i = 0; i < count; i++) {
444 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
445 			ret = -EFAULT;
446 			goto out;
447 		}
448 		line += iv[i].iov_len;
449 	}
450 
451 	/*
452 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
453 	 * the decimal value represents 32bit, the lower 3 bit are the log
454 	 * level, the rest are the log facility.
455 	 *
456 	 * If no prefix or no userspace facility is specified, we
457 	 * enforce LOG_USER, to be able to reliably distinguish
458 	 * kernel-generated messages from userspace-injected ones.
459 	 */
460 	line = buf;
461 	if (line[0] == '<') {
462 		char *endp = NULL;
463 
464 		i = simple_strtoul(line+1, &endp, 10);
465 		if (endp && endp[0] == '>') {
466 			level = i & 7;
467 			if (i >> 3)
468 				facility = i >> 3;
469 			endp++;
470 			len -= endp - line;
471 			line = endp;
472 		}
473 	}
474 	line[len] = '\0';
475 
476 	printk_emit(facility, level, NULL, 0, "%s", line);
477 out:
478 	kfree(buf);
479 	return ret;
480 }
481 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)482 static ssize_t devkmsg_read(struct file *file, char __user *buf,
483 			    size_t count, loff_t *ppos)
484 {
485 	struct devkmsg_user *user = file->private_data;
486 	struct log *msg;
487 	u64 ts_usec;
488 	size_t i;
489 	char cont = '-';
490 	size_t len;
491 	ssize_t ret;
492 
493 	if (!user)
494 		return -EBADF;
495 
496 	ret = mutex_lock_interruptible(&user->lock);
497 	if (ret)
498 		return ret;
499 	raw_spin_lock_irq(&logbuf_lock);
500 	while (user->seq == log_next_seq) {
501 		if (file->f_flags & O_NONBLOCK) {
502 			ret = -EAGAIN;
503 			raw_spin_unlock_irq(&logbuf_lock);
504 			goto out;
505 		}
506 
507 		raw_spin_unlock_irq(&logbuf_lock);
508 		ret = wait_event_interruptible(log_wait,
509 					       user->seq != log_next_seq);
510 		if (ret)
511 			goto out;
512 		raw_spin_lock_irq(&logbuf_lock);
513 	}
514 
515 	if (user->seq < log_first_seq) {
516 		/* our last seen message is gone, return error and reset */
517 		user->idx = log_first_idx;
518 		user->seq = log_first_seq;
519 		ret = -EPIPE;
520 		raw_spin_unlock_irq(&logbuf_lock);
521 		goto out;
522 	}
523 
524 	msg = log_from_idx(user->idx);
525 	ts_usec = msg->ts_nsec;
526 	do_div(ts_usec, 1000);
527 
528 	/*
529 	 * If we couldn't merge continuation line fragments during the print,
530 	 * export the stored flags to allow an optional external merge of the
531 	 * records. Merging the records isn't always neccessarily correct, like
532 	 * when we hit a race during printing. In most cases though, it produces
533 	 * better readable output. 'c' in the record flags mark the first
534 	 * fragment of a line, '+' the following.
535 	 */
536 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
537 		cont = 'c';
538 	else if ((msg->flags & LOG_CONT) ||
539 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
540 		cont = '+';
541 
542 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
543 		      (msg->facility << 3) | msg->level,
544 		      user->seq, ts_usec, cont);
545 	user->prev = msg->flags;
546 
547 	/* escape non-printable characters */
548 	for (i = 0; i < msg->text_len; i++) {
549 		unsigned char c = log_text(msg)[i];
550 
551 		if (c < ' ' || c >= 127 || c == '\\')
552 			len += sprintf(user->buf + len, "\\x%02x", c);
553 		else
554 			user->buf[len++] = c;
555 	}
556 	user->buf[len++] = '\n';
557 
558 	if (msg->dict_len) {
559 		bool line = true;
560 
561 		for (i = 0; i < msg->dict_len; i++) {
562 			unsigned char c = log_dict(msg)[i];
563 
564 			if (line) {
565 				user->buf[len++] = ' ';
566 				line = false;
567 			}
568 
569 			if (c == '\0') {
570 				user->buf[len++] = '\n';
571 				line = true;
572 				continue;
573 			}
574 
575 			if (c < ' ' || c >= 127 || c == '\\') {
576 				len += sprintf(user->buf + len, "\\x%02x", c);
577 				continue;
578 			}
579 
580 			user->buf[len++] = c;
581 		}
582 		user->buf[len++] = '\n';
583 	}
584 
585 	user->idx = log_next(user->idx);
586 	user->seq++;
587 	raw_spin_unlock_irq(&logbuf_lock);
588 
589 	if (len > count) {
590 		ret = -EINVAL;
591 		goto out;
592 	}
593 
594 	if (copy_to_user(buf, user->buf, len)) {
595 		ret = -EFAULT;
596 		goto out;
597 	}
598 	ret = len;
599 out:
600 	mutex_unlock(&user->lock);
601 	return ret;
602 }
603 
devkmsg_llseek(struct file * file,loff_t offset,int whence)604 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
605 {
606 	struct devkmsg_user *user = file->private_data;
607 	loff_t ret = 0;
608 
609 	if (!user)
610 		return -EBADF;
611 	if (offset)
612 		return -ESPIPE;
613 
614 	raw_spin_lock_irq(&logbuf_lock);
615 	switch (whence) {
616 	case SEEK_SET:
617 		/* the first record */
618 		user->idx = log_first_idx;
619 		user->seq = log_first_seq;
620 		break;
621 	case SEEK_DATA:
622 		/*
623 		 * The first record after the last SYSLOG_ACTION_CLEAR,
624 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
625 		 * changes no global state, and does not clear anything.
626 		 */
627 		user->idx = clear_idx;
628 		user->seq = clear_seq;
629 		break;
630 	case SEEK_END:
631 		/* after the last record */
632 		user->idx = log_next_idx;
633 		user->seq = log_next_seq;
634 		break;
635 	default:
636 		ret = -EINVAL;
637 	}
638 	raw_spin_unlock_irq(&logbuf_lock);
639 	return ret;
640 }
641 
devkmsg_poll(struct file * file,poll_table * wait)642 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
643 {
644 	struct devkmsg_user *user = file->private_data;
645 	int ret = 0;
646 
647 	if (!user)
648 		return POLLERR|POLLNVAL;
649 
650 	poll_wait(file, &log_wait, wait);
651 
652 	raw_spin_lock_irq(&logbuf_lock);
653 	if (user->seq < log_next_seq) {
654 		/* return error when data has vanished underneath us */
655 		if (user->seq < log_first_seq)
656 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
657 		else
658 			ret = POLLIN|POLLRDNORM;
659 	}
660 	raw_spin_unlock_irq(&logbuf_lock);
661 
662 	return ret;
663 }
664 
devkmsg_open(struct inode * inode,struct file * file)665 static int devkmsg_open(struct inode *inode, struct file *file)
666 {
667 	struct devkmsg_user *user;
668 	int err;
669 
670 	/* write-only does not need any file context */
671 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
672 		return 0;
673 
674 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
675 				       SYSLOG_FROM_READER);
676 	if (err)
677 		return err;
678 
679 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
680 	if (!user)
681 		return -ENOMEM;
682 
683 	mutex_init(&user->lock);
684 
685 	raw_spin_lock_irq(&logbuf_lock);
686 	user->idx = log_first_idx;
687 	user->seq = log_first_seq;
688 	raw_spin_unlock_irq(&logbuf_lock);
689 
690 	file->private_data = user;
691 	return 0;
692 }
693 
devkmsg_release(struct inode * inode,struct file * file)694 static int devkmsg_release(struct inode *inode, struct file *file)
695 {
696 	struct devkmsg_user *user = file->private_data;
697 
698 	if (!user)
699 		return 0;
700 
701 	mutex_destroy(&user->lock);
702 	kfree(user);
703 	return 0;
704 }
705 
706 const struct file_operations kmsg_fops = {
707 	.open = devkmsg_open,
708 	.read = devkmsg_read,
709 	.aio_write = devkmsg_writev,
710 	.llseek = devkmsg_llseek,
711 	.poll = devkmsg_poll,
712 	.release = devkmsg_release,
713 };
714 
715 #ifdef CONFIG_KEXEC
716 /*
717  * This appends the listed symbols to /proc/vmcoreinfo
718  *
719  * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
720  * obtain access to symbols that are otherwise very difficult to locate.  These
721  * symbols are specifically used so that utilities can access and extract the
722  * dmesg log from a vmcore file after a crash.
723  */
log_buf_kexec_setup(void)724 void log_buf_kexec_setup(void)
725 {
726 	VMCOREINFO_SYMBOL(log_buf);
727 	VMCOREINFO_SYMBOL(log_buf_len);
728 	VMCOREINFO_SYMBOL(log_first_idx);
729 	VMCOREINFO_SYMBOL(log_next_idx);
730 	/*
731 	 * Export struct log size and field offsets. User space tools can
732 	 * parse it and detect any changes to structure down the line.
733 	 */
734 	VMCOREINFO_STRUCT_SIZE(log);
735 	VMCOREINFO_OFFSET(log, ts_nsec);
736 	VMCOREINFO_OFFSET(log, len);
737 	VMCOREINFO_OFFSET(log, text_len);
738 	VMCOREINFO_OFFSET(log, dict_len);
739 }
740 #endif
741 
742 /* requested log_buf_len from kernel cmdline */
743 static unsigned long __initdata new_log_buf_len;
744 
745 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)746 static int __init log_buf_len_setup(char *str)
747 {
748 	unsigned size = memparse(str, &str);
749 
750 	if (size)
751 		size = roundup_pow_of_two(size);
752 	if (size > log_buf_len)
753 		new_log_buf_len = size;
754 
755 	return 0;
756 }
757 early_param("log_buf_len", log_buf_len_setup);
758 
setup_log_buf(int early)759 void __init setup_log_buf(int early)
760 {
761 	unsigned long flags;
762 	char *new_log_buf;
763 	int free;
764 
765 	if (!new_log_buf_len)
766 		return;
767 
768 	if (early) {
769 		unsigned long mem;
770 
771 		mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
772 		if (!mem)
773 			return;
774 		new_log_buf = __va(mem);
775 	} else {
776 		new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
777 	}
778 
779 	if (unlikely(!new_log_buf)) {
780 		pr_err("log_buf_len: %ld bytes not available\n",
781 			new_log_buf_len);
782 		return;
783 	}
784 
785 	raw_spin_lock_irqsave(&logbuf_lock, flags);
786 	log_buf_len = new_log_buf_len;
787 	log_buf = new_log_buf;
788 	new_log_buf_len = 0;
789 	free = __LOG_BUF_LEN - log_next_idx;
790 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
791 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
792 
793 	pr_info("log_buf_len: %d\n", log_buf_len);
794 	pr_info("early log buf free: %d(%d%%)\n",
795 		free, (free * 100) / __LOG_BUF_LEN);
796 }
797 
798 static bool __read_mostly ignore_loglevel;
799 
ignore_loglevel_setup(char * str)800 static int __init ignore_loglevel_setup(char *str)
801 {
802 	ignore_loglevel = 1;
803 	printk(KERN_INFO "debug: ignoring loglevel setting.\n");
804 
805 	return 0;
806 }
807 
808 early_param("ignore_loglevel", ignore_loglevel_setup);
809 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
810 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
811 	"print all kernel messages to the console.");
812 
813 #ifdef CONFIG_BOOT_PRINTK_DELAY
814 
815 static int boot_delay; /* msecs delay after each printk during bootup */
816 static unsigned long long loops_per_msec;	/* based on boot_delay */
817 
boot_delay_setup(char * str)818 static int __init boot_delay_setup(char *str)
819 {
820 	unsigned long lpj;
821 
822 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
823 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
824 
825 	get_option(&str, &boot_delay);
826 	if (boot_delay > 10 * 1000)
827 		boot_delay = 0;
828 
829 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
830 		"HZ: %d, loops_per_msec: %llu\n",
831 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
832 	return 1;
833 }
834 __setup("boot_delay=", boot_delay_setup);
835 
boot_delay_msec(int level)836 static void boot_delay_msec(int level)
837 {
838 	unsigned long long k;
839 	unsigned long timeout;
840 
841 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
842 		|| (level >= console_loglevel && !ignore_loglevel)) {
843 		return;
844 	}
845 
846 	k = (unsigned long long)loops_per_msec * boot_delay;
847 
848 	timeout = jiffies + msecs_to_jiffies(boot_delay);
849 	while (k) {
850 		k--;
851 		cpu_relax();
852 		/*
853 		 * use (volatile) jiffies to prevent
854 		 * compiler reduction; loop termination via jiffies
855 		 * is secondary and may or may not happen.
856 		 */
857 		if (time_after(jiffies, timeout))
858 			break;
859 		touch_nmi_watchdog();
860 	}
861 }
862 #else
boot_delay_msec(int level)863 static inline void boot_delay_msec(int level)
864 {
865 }
866 #endif
867 
868 #if defined(CONFIG_PRINTK_TIME)
869 static bool printk_time = 1;
870 #else
871 static bool printk_time;
872 #endif
873 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
874 
print_time(u64 ts,char * buf)875 static size_t print_time(u64 ts, char *buf)
876 {
877 	unsigned long rem_nsec;
878 
879 	if (!printk_time)
880 		return 0;
881 
882 	rem_nsec = do_div(ts, 1000000000);
883 
884 	if (!buf)
885 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
886 
887 	return sprintf(buf, "[%5lu.%06lu] ",
888 		       (unsigned long)ts, rem_nsec / 1000);
889 }
890 
print_prefix(const struct log * msg,bool syslog,char * buf)891 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
892 {
893 	size_t len = 0;
894 	unsigned int prefix = (msg->facility << 3) | msg->level;
895 
896 	if (syslog) {
897 		if (buf) {
898 			len += sprintf(buf, "<%u>", prefix);
899 		} else {
900 			len += 3;
901 			if (prefix > 999)
902 				len += 3;
903 			else if (prefix > 99)
904 				len += 2;
905 			else if (prefix > 9)
906 				len++;
907 		}
908 	}
909 
910 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
911 	return len;
912 }
913 
msg_print_text(const struct log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)914 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
915 			     bool syslog, char *buf, size_t size)
916 {
917 	const char *text = log_text(msg);
918 	size_t text_size = msg->text_len;
919 	bool prefix = true;
920 	bool newline = true;
921 	size_t len = 0;
922 
923 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
924 		prefix = false;
925 
926 	if (msg->flags & LOG_CONT) {
927 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
928 			prefix = false;
929 
930 		if (!(msg->flags & LOG_NEWLINE))
931 			newline = false;
932 	}
933 
934 	do {
935 		const char *next = memchr(text, '\n', text_size);
936 		size_t text_len;
937 
938 		if (next) {
939 			text_len = next - text;
940 			next++;
941 			text_size -= next - text;
942 		} else {
943 			text_len = text_size;
944 		}
945 
946 		if (buf) {
947 			if (print_prefix(msg, syslog, NULL) +
948 			    text_len + 1 >= size - len)
949 				break;
950 
951 			if (prefix)
952 				len += print_prefix(msg, syslog, buf + len);
953 			memcpy(buf + len, text, text_len);
954 			len += text_len;
955 			if (next || newline)
956 				buf[len++] = '\n';
957 		} else {
958 			/* SYSLOG_ACTION_* buffer size only calculation */
959 			if (prefix)
960 				len += print_prefix(msg, syslog, NULL);
961 			len += text_len;
962 			if (next || newline)
963 				len++;
964 		}
965 
966 		prefix = true;
967 		text = next;
968 	} while (text);
969 
970 	return len;
971 }
972 
syslog_print(char __user * buf,int size)973 static int syslog_print(char __user *buf, int size)
974 {
975 	char *text;
976 	struct log *msg;
977 	int len = 0;
978 
979 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
980 	if (!text)
981 		return -ENOMEM;
982 
983 	while (size > 0) {
984 		size_t n;
985 		size_t skip;
986 
987 		raw_spin_lock_irq(&logbuf_lock);
988 		if (syslog_seq < log_first_seq) {
989 			/* messages are gone, move to first one */
990 			syslog_seq = log_first_seq;
991 			syslog_idx = log_first_idx;
992 			syslog_prev = 0;
993 			syslog_partial = 0;
994 		}
995 		if (syslog_seq == log_next_seq) {
996 			raw_spin_unlock_irq(&logbuf_lock);
997 			break;
998 		}
999 
1000 		skip = syslog_partial;
1001 		msg = log_from_idx(syslog_idx);
1002 		n = msg_print_text(msg, syslog_prev, true, text,
1003 				   LOG_LINE_MAX + PREFIX_MAX);
1004 		if (n - syslog_partial <= size) {
1005 			/* message fits into buffer, move forward */
1006 			syslog_idx = log_next(syslog_idx);
1007 			syslog_seq++;
1008 			syslog_prev = msg->flags;
1009 			n -= syslog_partial;
1010 			syslog_partial = 0;
1011 		} else if (!len){
1012 			/* partial read(), remember position */
1013 			n = size;
1014 			syslog_partial += n;
1015 		} else
1016 			n = 0;
1017 		raw_spin_unlock_irq(&logbuf_lock);
1018 
1019 		if (!n)
1020 			break;
1021 
1022 		if (copy_to_user(buf, text + skip, n)) {
1023 			if (!len)
1024 				len = -EFAULT;
1025 			break;
1026 		}
1027 
1028 		len += n;
1029 		size -= n;
1030 		buf += n;
1031 	}
1032 
1033 	kfree(text);
1034 	return len;
1035 }
1036 
syslog_print_all(char __user * buf,int size,bool clear)1037 static int syslog_print_all(char __user *buf, int size, bool clear)
1038 {
1039 	char *text;
1040 	int len = 0;
1041 
1042 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1043 	if (!text)
1044 		return -ENOMEM;
1045 
1046 	raw_spin_lock_irq(&logbuf_lock);
1047 	if (buf) {
1048 		u64 next_seq;
1049 		u64 seq;
1050 		u32 idx;
1051 		enum log_flags prev;
1052 
1053 		if (clear_seq < log_first_seq) {
1054 			/* messages are gone, move to first available one */
1055 			clear_seq = log_first_seq;
1056 			clear_idx = log_first_idx;
1057 		}
1058 
1059 		/*
1060 		 * Find first record that fits, including all following records,
1061 		 * into the user-provided buffer for this dump.
1062 		 */
1063 		seq = clear_seq;
1064 		idx = clear_idx;
1065 		prev = 0;
1066 		while (seq < log_next_seq) {
1067 			struct log *msg = log_from_idx(idx);
1068 
1069 			len += msg_print_text(msg, prev, true, NULL, 0);
1070 			prev = msg->flags;
1071 			idx = log_next(idx);
1072 			seq++;
1073 		}
1074 
1075 		/* move first record forward until length fits into the buffer */
1076 		seq = clear_seq;
1077 		idx = clear_idx;
1078 		prev = 0;
1079 		while (len > size && seq < log_next_seq) {
1080 			struct log *msg = log_from_idx(idx);
1081 
1082 			len -= msg_print_text(msg, prev, true, NULL, 0);
1083 			prev = msg->flags;
1084 			idx = log_next(idx);
1085 			seq++;
1086 		}
1087 
1088 		/* last message fitting into this dump */
1089 		next_seq = log_next_seq;
1090 
1091 		len = 0;
1092 		prev = 0;
1093 		while (len >= 0 && seq < next_seq) {
1094 			struct log *msg = log_from_idx(idx);
1095 			int textlen;
1096 
1097 			textlen = msg_print_text(msg, prev, true, text,
1098 						 LOG_LINE_MAX + PREFIX_MAX);
1099 			if (textlen < 0) {
1100 				len = textlen;
1101 				break;
1102 			}
1103 			idx = log_next(idx);
1104 			seq++;
1105 			prev = msg->flags;
1106 
1107 			raw_spin_unlock_irq(&logbuf_lock);
1108 			if (copy_to_user(buf + len, text, textlen))
1109 				len = -EFAULT;
1110 			else
1111 				len += textlen;
1112 			raw_spin_lock_irq(&logbuf_lock);
1113 
1114 			if (seq < log_first_seq) {
1115 				/* messages are gone, move to next one */
1116 				seq = log_first_seq;
1117 				idx = log_first_idx;
1118 				prev = 0;
1119 			}
1120 		}
1121 	}
1122 
1123 	if (clear) {
1124 		clear_seq = log_next_seq;
1125 		clear_idx = log_next_idx;
1126 	}
1127 	raw_spin_unlock_irq(&logbuf_lock);
1128 
1129 	kfree(text);
1130 	return len;
1131 }
1132 
do_syslog(int type,char __user * buf,int len,bool from_file)1133 int do_syslog(int type, char __user *buf, int len, bool from_file)
1134 {
1135 	bool clear = false;
1136 	static int saved_console_loglevel = -1;
1137 	int error;
1138 
1139 	error = check_syslog_permissions(type, from_file);
1140 	if (error)
1141 		goto out;
1142 
1143 	error = security_syslog(type);
1144 	if (error)
1145 		return error;
1146 
1147 	switch (type) {
1148 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1149 		break;
1150 	case SYSLOG_ACTION_OPEN:	/* Open log */
1151 		break;
1152 	case SYSLOG_ACTION_READ:	/* Read from log */
1153 		error = -EINVAL;
1154 		if (!buf || len < 0)
1155 			goto out;
1156 		error = 0;
1157 		if (!len)
1158 			goto out;
1159 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1160 			error = -EFAULT;
1161 			goto out;
1162 		}
1163 		error = wait_event_interruptible(log_wait,
1164 						 syslog_seq != log_next_seq);
1165 		if (error)
1166 			goto out;
1167 		error = syslog_print(buf, len);
1168 		break;
1169 	/* Read/clear last kernel messages */
1170 	case SYSLOG_ACTION_READ_CLEAR:
1171 		clear = true;
1172 		/* FALL THRU */
1173 	/* Read last kernel messages */
1174 	case SYSLOG_ACTION_READ_ALL:
1175 		error = -EINVAL;
1176 		if (!buf || len < 0)
1177 			goto out;
1178 		error = 0;
1179 		if (!len)
1180 			goto out;
1181 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1182 			error = -EFAULT;
1183 			goto out;
1184 		}
1185 		error = syslog_print_all(buf, len, clear);
1186 		break;
1187 	/* Clear ring buffer */
1188 	case SYSLOG_ACTION_CLEAR:
1189 		syslog_print_all(NULL, 0, true);
1190 		break;
1191 	/* Disable logging to console */
1192 	case SYSLOG_ACTION_CONSOLE_OFF:
1193 		if (saved_console_loglevel == -1)
1194 			saved_console_loglevel = console_loglevel;
1195 		console_loglevel = minimum_console_loglevel;
1196 		break;
1197 	/* Enable logging to console */
1198 	case SYSLOG_ACTION_CONSOLE_ON:
1199 		if (saved_console_loglevel != -1) {
1200 			console_loglevel = saved_console_loglevel;
1201 			saved_console_loglevel = -1;
1202 		}
1203 		break;
1204 	/* Set level of messages printed to console */
1205 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1206 		error = -EINVAL;
1207 		if (len < 1 || len > 8)
1208 			goto out;
1209 		if (len < minimum_console_loglevel)
1210 			len = minimum_console_loglevel;
1211 		console_loglevel = len;
1212 		/* Implicitly re-enable logging to console */
1213 		saved_console_loglevel = -1;
1214 		error = 0;
1215 		break;
1216 	/* Number of chars in the log buffer */
1217 	case SYSLOG_ACTION_SIZE_UNREAD:
1218 		raw_spin_lock_irq(&logbuf_lock);
1219 		if (syslog_seq < log_first_seq) {
1220 			/* messages are gone, move to first one */
1221 			syslog_seq = log_first_seq;
1222 			syslog_idx = log_first_idx;
1223 			syslog_prev = 0;
1224 			syslog_partial = 0;
1225 		}
1226 		if (from_file) {
1227 			/*
1228 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1229 			 * for pending data, not the size; return the count of
1230 			 * records, not the length.
1231 			 */
1232 			error = log_next_idx - syslog_idx;
1233 		} else {
1234 			u64 seq = syslog_seq;
1235 			u32 idx = syslog_idx;
1236 			enum log_flags prev = syslog_prev;
1237 
1238 			error = 0;
1239 			while (seq < log_next_seq) {
1240 				struct log *msg = log_from_idx(idx);
1241 
1242 				error += msg_print_text(msg, prev, true, NULL, 0);
1243 				idx = log_next(idx);
1244 				seq++;
1245 				prev = msg->flags;
1246 			}
1247 			error -= syslog_partial;
1248 		}
1249 		raw_spin_unlock_irq(&logbuf_lock);
1250 		break;
1251 	/* Size of the log buffer */
1252 	case SYSLOG_ACTION_SIZE_BUFFER:
1253 		error = log_buf_len;
1254 		break;
1255 	default:
1256 		error = -EINVAL;
1257 		break;
1258 	}
1259 out:
1260 	return error;
1261 }
1262 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1263 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1264 {
1265 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1266 }
1267 
1268 /*
1269  * Call the console drivers, asking them to write out
1270  * log_buf[start] to log_buf[end - 1].
1271  * The console_lock must be held.
1272  */
call_console_drivers(int level,const char * text,size_t len)1273 static void call_console_drivers(int level, const char *text, size_t len)
1274 {
1275 	struct console *con;
1276 
1277 	trace_console(text, len);
1278 
1279 	if (level >= console_loglevel && !ignore_loglevel)
1280 		return;
1281 	if (!console_drivers)
1282 		return;
1283 
1284 	for_each_console(con) {
1285 		if (exclusive_console && con != exclusive_console)
1286 			continue;
1287 		if (!(con->flags & CON_ENABLED))
1288 			continue;
1289 		if (!con->write)
1290 			continue;
1291 		if (!cpu_online(smp_processor_id()) &&
1292 		    !(con->flags & CON_ANYTIME))
1293 			continue;
1294 		con->write(con, text, len);
1295 	}
1296 }
1297 
1298 /*
1299  * Zap console related locks when oopsing. Only zap at most once
1300  * every 10 seconds, to leave time for slow consoles to print a
1301  * full oops.
1302  */
zap_locks(void)1303 static void zap_locks(void)
1304 {
1305 	static unsigned long oops_timestamp;
1306 
1307 	if (time_after_eq(jiffies, oops_timestamp) &&
1308 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1309 		return;
1310 
1311 	oops_timestamp = jiffies;
1312 
1313 	debug_locks_off();
1314 	/* If a crash is occurring, make sure we can't deadlock */
1315 	raw_spin_lock_init(&logbuf_lock);
1316 	/* And make sure that we print immediately */
1317 	sema_init(&console_sem, 1);
1318 }
1319 
1320 /* Check if we have any console registered that can be called early in boot. */
have_callable_console(void)1321 static int have_callable_console(void)
1322 {
1323 	struct console *con;
1324 
1325 	for_each_console(con)
1326 		if (con->flags & CON_ANYTIME)
1327 			return 1;
1328 
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Can we actually use the console at this time on this cpu?
1334  *
1335  * Console drivers may assume that per-cpu resources have
1336  * been allocated. So unless they're explicitly marked as
1337  * being able to cope (CON_ANYTIME) don't call them until
1338  * this CPU is officially up.
1339  */
can_use_console(unsigned int cpu)1340 static inline int can_use_console(unsigned int cpu)
1341 {
1342 	return cpu_online(cpu) || have_callable_console();
1343 }
1344 
1345 /*
1346  * Try to get console ownership to actually show the kernel
1347  * messages from a 'printk'. Return true (and with the
1348  * console_lock held, and 'console_locked' set) if it
1349  * is successful, false otherwise.
1350  *
1351  * This gets called with the 'logbuf_lock' spinlock held and
1352  * interrupts disabled. It should return with 'lockbuf_lock'
1353  * released but interrupts still disabled.
1354  */
console_trylock_for_printk(unsigned int cpu)1355 static int console_trylock_for_printk(unsigned int cpu)
1356 	__releases(&logbuf_lock)
1357 {
1358 	int retval = 0, wake = 0;
1359 
1360 	if (console_trylock()) {
1361 		retval = 1;
1362 
1363 		/*
1364 		 * If we can't use the console, we need to release
1365 		 * the console semaphore by hand to avoid flushing
1366 		 * the buffer. We need to hold the console semaphore
1367 		 * in order to do this test safely.
1368 		 */
1369 		if (!can_use_console(cpu)) {
1370 			console_locked = 0;
1371 			wake = 1;
1372 			retval = 0;
1373 		}
1374 	}
1375 	logbuf_cpu = UINT_MAX;
1376 	if (wake)
1377 		up(&console_sem);
1378 	raw_spin_unlock(&logbuf_lock);
1379 	return retval;
1380 }
1381 
1382 int printk_delay_msec __read_mostly;
1383 
printk_delay(void)1384 static inline void printk_delay(void)
1385 {
1386 	if (unlikely(printk_delay_msec)) {
1387 		int m = printk_delay_msec;
1388 
1389 		while (m--) {
1390 			mdelay(1);
1391 			touch_nmi_watchdog();
1392 		}
1393 	}
1394 }
1395 
1396 /*
1397  * Continuation lines are buffered, and not committed to the record buffer
1398  * until the line is complete, or a race forces it. The line fragments
1399  * though, are printed immediately to the consoles to ensure everything has
1400  * reached the console in case of a kernel crash.
1401  */
1402 static struct cont {
1403 	char buf[LOG_LINE_MAX];
1404 	size_t len;			/* length == 0 means unused buffer */
1405 	size_t cons;			/* bytes written to console */
1406 	struct task_struct *owner;	/* task of first print*/
1407 	u64 ts_nsec;			/* time of first print */
1408 	u8 level;			/* log level of first message */
1409 	u8 facility;			/* log level of first message */
1410 	enum log_flags flags;		/* prefix, newline flags */
1411 	bool flushed:1;			/* buffer sealed and committed */
1412 } cont;
1413 
cont_flush(enum log_flags flags)1414 static void cont_flush(enum log_flags flags)
1415 {
1416 	if (cont.flushed)
1417 		return;
1418 	if (cont.len == 0)
1419 		return;
1420 
1421 	if (cont.cons) {
1422 		/*
1423 		 * If a fragment of this line was directly flushed to the
1424 		 * console; wait for the console to pick up the rest of the
1425 		 * line. LOG_NOCONS suppresses a duplicated output.
1426 		 */
1427 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1428 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1429 		cont.flags = flags;
1430 		cont.flushed = true;
1431 	} else {
1432 		/*
1433 		 * If no fragment of this line ever reached the console,
1434 		 * just submit it to the store and free the buffer.
1435 		 */
1436 		log_store(cont.facility, cont.level, flags, 0,
1437 			  NULL, 0, cont.buf, cont.len);
1438 		cont.len = 0;
1439 	}
1440 }
1441 
cont_add(int facility,int level,const char * text,size_t len)1442 static bool cont_add(int facility, int level, const char *text, size_t len)
1443 {
1444 	if (cont.len && cont.flushed)
1445 		return false;
1446 
1447 	if (cont.len + len > sizeof(cont.buf)) {
1448 		/* the line gets too long, split it up in separate records */
1449 		cont_flush(LOG_CONT);
1450 		return false;
1451 	}
1452 
1453 	if (!cont.len) {
1454 		cont.facility = facility;
1455 		cont.level = level;
1456 		cont.owner = current;
1457 		cont.ts_nsec = local_clock();
1458 		cont.flags = 0;
1459 		cont.cons = 0;
1460 		cont.flushed = false;
1461 	}
1462 
1463 	memcpy(cont.buf + cont.len, text, len);
1464 	cont.len += len;
1465 
1466 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1467 		cont_flush(LOG_CONT);
1468 
1469 	return true;
1470 }
1471 
cont_print_text(char * text,size_t size)1472 static size_t cont_print_text(char *text, size_t size)
1473 {
1474 	size_t textlen = 0;
1475 	size_t len;
1476 
1477 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1478 		textlen += print_time(cont.ts_nsec, text);
1479 		size -= textlen;
1480 	}
1481 
1482 	len = cont.len - cont.cons;
1483 	if (len > 0) {
1484 		if (len+1 > size)
1485 			len = size-1;
1486 		memcpy(text + textlen, cont.buf + cont.cons, len);
1487 		textlen += len;
1488 		cont.cons = cont.len;
1489 	}
1490 
1491 	if (cont.flushed) {
1492 		if (cont.flags & LOG_NEWLINE)
1493 			text[textlen++] = '\n';
1494 		/* got everything, release buffer */
1495 		cont.len = 0;
1496 	}
1497 	return textlen;
1498 }
1499 
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1500 asmlinkage int vprintk_emit(int facility, int level,
1501 			    const char *dict, size_t dictlen,
1502 			    const char *fmt, va_list args)
1503 {
1504 	static int recursion_bug;
1505 	static char textbuf[LOG_LINE_MAX];
1506 	char *text = textbuf;
1507 	size_t text_len;
1508 	enum log_flags lflags = 0;
1509 	unsigned long flags;
1510 	int this_cpu;
1511 	int printed_len = 0;
1512 
1513 	boot_delay_msec(level);
1514 	printk_delay();
1515 
1516 	/* This stops the holder of console_sem just where we want him */
1517 	local_irq_save(flags);
1518 	this_cpu = smp_processor_id();
1519 
1520 	/*
1521 	 * Ouch, printk recursed into itself!
1522 	 */
1523 	if (unlikely(logbuf_cpu == this_cpu)) {
1524 		/*
1525 		 * If a crash is occurring during printk() on this CPU,
1526 		 * then try to get the crash message out but make sure
1527 		 * we can't deadlock. Otherwise just return to avoid the
1528 		 * recursion and return - but flag the recursion so that
1529 		 * it can be printed at the next appropriate moment:
1530 		 */
1531 		if (!oops_in_progress && !lockdep_recursing(current)) {
1532 			recursion_bug = 1;
1533 			goto out_restore_irqs;
1534 		}
1535 		zap_locks();
1536 	}
1537 
1538 	lockdep_off();
1539 	raw_spin_lock(&logbuf_lock);
1540 	logbuf_cpu = this_cpu;
1541 
1542 	if (recursion_bug) {
1543 		static const char recursion_msg[] =
1544 			"BUG: recent printk recursion!";
1545 
1546 		recursion_bug = 0;
1547 		printed_len += strlen(recursion_msg);
1548 		/* emit KERN_CRIT message */
1549 		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1550 			  NULL, 0, recursion_msg, printed_len);
1551 	}
1552 
1553 	/*
1554 	 * The printf needs to come first; we need the syslog
1555 	 * prefix which might be passed-in as a parameter.
1556 	 */
1557 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1558 
1559 	/* mark and strip a trailing newline */
1560 	if (text_len && text[text_len-1] == '\n') {
1561 		text_len--;
1562 		lflags |= LOG_NEWLINE;
1563 	}
1564 
1565 	/* strip kernel syslog prefix and extract log level or control flags */
1566 	if (facility == 0) {
1567 		int kern_level = printk_get_level(text);
1568 
1569 		if (kern_level) {
1570 			const char *end_of_header = printk_skip_level(text);
1571 			switch (kern_level) {
1572 			case '0' ... '7':
1573 				if (level == -1)
1574 					level = kern_level - '0';
1575 			case 'd':	/* KERN_DEFAULT */
1576 				lflags |= LOG_PREFIX;
1577 			case 'c':	/* KERN_CONT */
1578 				break;
1579 			}
1580 			text_len -= end_of_header - text;
1581 			text = (char *)end_of_header;
1582 		}
1583 	}
1584 
1585 #ifdef CONFIG_EARLY_PRINTK_DIRECT
1586 	printascii(text);
1587 #endif
1588 
1589 	if (level == -1)
1590 		level = default_message_loglevel;
1591 
1592 	if (dict)
1593 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1594 
1595 	if (!(lflags & LOG_NEWLINE)) {
1596 		/*
1597 		 * Flush the conflicting buffer. An earlier newline was missing,
1598 		 * or another task also prints continuation lines.
1599 		 */
1600 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1601 			cont_flush(LOG_NEWLINE);
1602 
1603 		/* buffer line if possible, otherwise store it right away */
1604 		if (!cont_add(facility, level, text, text_len))
1605 			log_store(facility, level, lflags | LOG_CONT, 0,
1606 				  dict, dictlen, text, text_len);
1607 	} else {
1608 		bool stored = false;
1609 
1610 		/*
1611 		 * If an earlier newline was missing and it was the same task,
1612 		 * either merge it with the current buffer and flush, or if
1613 		 * there was a race with interrupts (prefix == true) then just
1614 		 * flush it out and store this line separately.
1615 		 */
1616 		if (cont.len && cont.owner == current) {
1617 			if (!(lflags & LOG_PREFIX))
1618 				stored = cont_add(facility, level, text, text_len);
1619 			cont_flush(LOG_NEWLINE);
1620 		}
1621 
1622 		if (!stored)
1623 			log_store(facility, level, lflags, 0,
1624 				  dict, dictlen, text, text_len);
1625 	}
1626 	printed_len += text_len;
1627 
1628 	/*
1629 	 * Try to acquire and then immediately release the console semaphore.
1630 	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1631 	 * users.
1632 	 *
1633 	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1634 	 * regardless of whether it actually gets the console semaphore or not.
1635 	 */
1636 	if (console_trylock_for_printk(this_cpu))
1637 		console_unlock();
1638 
1639 	lockdep_on();
1640 out_restore_irqs:
1641 	local_irq_restore(flags);
1642 
1643 	return printed_len;
1644 }
1645 EXPORT_SYMBOL(vprintk_emit);
1646 
vprintk(const char * fmt,va_list args)1647 asmlinkage int vprintk(const char *fmt, va_list args)
1648 {
1649 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1650 }
1651 EXPORT_SYMBOL(vprintk);
1652 
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1653 asmlinkage int printk_emit(int facility, int level,
1654 			   const char *dict, size_t dictlen,
1655 			   const char *fmt, ...)
1656 {
1657 	va_list args;
1658 	int r;
1659 
1660 	va_start(args, fmt);
1661 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1662 	va_end(args);
1663 
1664 	return r;
1665 }
1666 EXPORT_SYMBOL(printk_emit);
1667 
1668 /**
1669  * printk - print a kernel message
1670  * @fmt: format string
1671  *
1672  * This is printk(). It can be called from any context. We want it to work.
1673  *
1674  * We try to grab the console_lock. If we succeed, it's easy - we log the
1675  * output and call the console drivers.  If we fail to get the semaphore, we
1676  * place the output into the log buffer and return. The current holder of
1677  * the console_sem will notice the new output in console_unlock(); and will
1678  * send it to the consoles before releasing the lock.
1679  *
1680  * One effect of this deferred printing is that code which calls printk() and
1681  * then changes console_loglevel may break. This is because console_loglevel
1682  * is inspected when the actual printing occurs.
1683  *
1684  * See also:
1685  * printf(3)
1686  *
1687  * See the vsnprintf() documentation for format string extensions over C99.
1688  */
printk(const char * fmt,...)1689 asmlinkage int printk(const char *fmt, ...)
1690 {
1691 	va_list args;
1692 	int r;
1693 
1694 #ifdef CONFIG_KGDB_KDB
1695 	if (unlikely(kdb_trap_printk)) {
1696 		va_start(args, fmt);
1697 		r = vkdb_printf(fmt, args);
1698 		va_end(args);
1699 		return r;
1700 	}
1701 #endif
1702 	va_start(args, fmt);
1703 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1704 	va_end(args);
1705 
1706 	return r;
1707 }
1708 EXPORT_SYMBOL(printk);
1709 
1710 #else /* CONFIG_PRINTK */
1711 
1712 #define LOG_LINE_MAX		0
1713 #define PREFIX_MAX		0
1714 #define LOG_LINE_MAX 0
1715 static u64 syslog_seq;
1716 static u32 syslog_idx;
1717 static u64 console_seq;
1718 static u32 console_idx;
1719 static enum log_flags syslog_prev;
1720 static u64 log_first_seq;
1721 static u32 log_first_idx;
1722 static u64 log_next_seq;
1723 static enum log_flags console_prev;
1724 static struct cont {
1725 	size_t len;
1726 	size_t cons;
1727 	u8 level;
1728 	bool flushed:1;
1729 } cont;
log_from_idx(u32 idx)1730 static struct log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)1731 static u32 log_next(u32 idx) { return 0; }
call_console_drivers(int level,const char * text,size_t len)1732 static void call_console_drivers(int level, const char *text, size_t len) {}
msg_print_text(const struct log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1733 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1734 			     bool syslog, char *buf, size_t size) { return 0; }
cont_print_text(char * text,size_t size)1735 static size_t cont_print_text(char *text, size_t size) { return 0; }
1736 
1737 #endif /* CONFIG_PRINTK */
1738 
1739 #ifdef CONFIG_EARLY_PRINTK
1740 struct console *early_console;
1741 
early_vprintk(const char * fmt,va_list ap)1742 void early_vprintk(const char *fmt, va_list ap)
1743 {
1744 	if (early_console) {
1745 		char buf[512];
1746 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1747 
1748 		early_console->write(early_console, buf, n);
1749 	}
1750 }
1751 
early_printk(const char * fmt,...)1752 asmlinkage void early_printk(const char *fmt, ...)
1753 {
1754 	va_list ap;
1755 
1756 	va_start(ap, fmt);
1757 	early_vprintk(fmt, ap);
1758 	va_end(ap);
1759 }
1760 #endif
1761 
__add_preferred_console(char * name,int idx,char * options,char * brl_options)1762 static int __add_preferred_console(char *name, int idx, char *options,
1763 				   char *brl_options)
1764 {
1765 	struct console_cmdline *c;
1766 	int i;
1767 
1768 	/*
1769 	 *	See if this tty is not yet registered, and
1770 	 *	if we have a slot free.
1771 	 */
1772 	for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1773 		if (strcmp(console_cmdline[i].name, name) == 0 &&
1774 			  console_cmdline[i].index == idx) {
1775 				if (!brl_options)
1776 					selected_console = i;
1777 				return 0;
1778 		}
1779 	if (i == MAX_CMDLINECONSOLES)
1780 		return -E2BIG;
1781 	if (!brl_options)
1782 		selected_console = i;
1783 	c = &console_cmdline[i];
1784 	strlcpy(c->name, name, sizeof(c->name));
1785 	c->options = options;
1786 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1787 	c->brl_options = brl_options;
1788 #endif
1789 	c->index = idx;
1790 	return 0;
1791 }
1792 /*
1793  * Set up a list of consoles.  Called from init/main.c
1794  */
console_setup(char * str)1795 static int __init console_setup(char *str)
1796 {
1797 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1798 	char *s, *options, *brl_options = NULL;
1799 	int idx;
1800 
1801 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1802 	if (!memcmp(str, "brl,", 4)) {
1803 		brl_options = "";
1804 		str += 4;
1805 	} else if (!memcmp(str, "brl=", 4)) {
1806 		brl_options = str + 4;
1807 		str = strchr(brl_options, ',');
1808 		if (!str) {
1809 			printk(KERN_ERR "need port name after brl=\n");
1810 			return 1;
1811 		}
1812 		*(str++) = 0;
1813 	}
1814 #endif
1815 
1816 	/*
1817 	 * Decode str into name, index, options.
1818 	 */
1819 	if (str[0] >= '0' && str[0] <= '9') {
1820 		strcpy(buf, "ttyS");
1821 		strncpy(buf + 4, str, sizeof(buf) - 5);
1822 	} else {
1823 		strncpy(buf, str, sizeof(buf) - 1);
1824 	}
1825 	buf[sizeof(buf) - 1] = 0;
1826 	if ((options = strchr(str, ',')) != NULL)
1827 		*(options++) = 0;
1828 #ifdef __sparc__
1829 	if (!strcmp(str, "ttya"))
1830 		strcpy(buf, "ttyS0");
1831 	if (!strcmp(str, "ttyb"))
1832 		strcpy(buf, "ttyS1");
1833 #endif
1834 	for (s = buf; *s; s++)
1835 		if ((*s >= '0' && *s <= '9') || *s == ',')
1836 			break;
1837 	idx = simple_strtoul(s, NULL, 10);
1838 	*s = 0;
1839 
1840 	__add_preferred_console(buf, idx, options, brl_options);
1841 	console_set_on_cmdline = 1;
1842 	return 1;
1843 }
1844 __setup("console=", console_setup);
1845 
1846 /**
1847  * add_preferred_console - add a device to the list of preferred consoles.
1848  * @name: device name
1849  * @idx: device index
1850  * @options: options for this console
1851  *
1852  * The last preferred console added will be used for kernel messages
1853  * and stdin/out/err for init.  Normally this is used by console_setup
1854  * above to handle user-supplied console arguments; however it can also
1855  * be used by arch-specific code either to override the user or more
1856  * commonly to provide a default console (ie from PROM variables) when
1857  * the user has not supplied one.
1858  */
add_preferred_console(char * name,int idx,char * options)1859 int add_preferred_console(char *name, int idx, char *options)
1860 {
1861 	return __add_preferred_console(name, idx, options, NULL);
1862 }
1863 
update_console_cmdline(char * name,int idx,char * name_new,int idx_new,char * options)1864 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1865 {
1866 	struct console_cmdline *c;
1867 	int i;
1868 
1869 	for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1870 		if (strcmp(console_cmdline[i].name, name) == 0 &&
1871 			  console_cmdline[i].index == idx) {
1872 				c = &console_cmdline[i];
1873 				strlcpy(c->name, name_new, sizeof(c->name));
1874 				c->name[sizeof(c->name) - 1] = 0;
1875 				c->options = options;
1876 				c->index = idx_new;
1877 				return i;
1878 		}
1879 	/* not found */
1880 	return -1;
1881 }
1882 
1883 bool console_suspend_enabled = 1;
1884 EXPORT_SYMBOL(console_suspend_enabled);
1885 
console_suspend_disable(char * str)1886 static int __init console_suspend_disable(char *str)
1887 {
1888 	console_suspend_enabled = 0;
1889 	return 1;
1890 }
1891 __setup("no_console_suspend", console_suspend_disable);
1892 module_param_named(console_suspend, console_suspend_enabled,
1893 		bool, S_IRUGO | S_IWUSR);
1894 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1895 	" and hibernate operations");
1896 
1897 /**
1898  * suspend_console - suspend the console subsystem
1899  *
1900  * This disables printk() while we go into suspend states
1901  */
suspend_console(void)1902 void suspend_console(void)
1903 {
1904 	if (!console_suspend_enabled)
1905 		return;
1906 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1907 	console_lock();
1908 	console_suspended = 1;
1909 	up(&console_sem);
1910 }
1911 
resume_console(void)1912 void resume_console(void)
1913 {
1914 	if (!console_suspend_enabled)
1915 		return;
1916 	down(&console_sem);
1917 	console_suspended = 0;
1918 	console_unlock();
1919 }
1920 
1921 /**
1922  * console_cpu_notify - print deferred console messages after CPU hotplug
1923  * @self: notifier struct
1924  * @action: CPU hotplug event
1925  * @hcpu: unused
1926  *
1927  * If printk() is called from a CPU that is not online yet, the messages
1928  * will be spooled but will not show up on the console.  This function is
1929  * called when a new CPU comes online (or fails to come up), and ensures
1930  * that any such output gets printed.
1931  */
console_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1932 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1933 	unsigned long action, void *hcpu)
1934 {
1935 	switch (action) {
1936 	case CPU_ONLINE:
1937 	case CPU_DEAD:
1938 	case CPU_DOWN_FAILED:
1939 	case CPU_UP_CANCELED:
1940 		console_lock();
1941 		console_unlock();
1942 	}
1943 	return NOTIFY_OK;
1944 }
1945 
1946 /**
1947  * console_lock - lock the console system for exclusive use.
1948  *
1949  * Acquires a lock which guarantees that the caller has
1950  * exclusive access to the console system and the console_drivers list.
1951  *
1952  * Can sleep, returns nothing.
1953  */
console_lock(void)1954 void console_lock(void)
1955 {
1956 	might_sleep();
1957 
1958 	down(&console_sem);
1959 	if (console_suspended)
1960 		return;
1961 	console_locked = 1;
1962 	console_may_schedule = 1;
1963 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1964 }
1965 EXPORT_SYMBOL(console_lock);
1966 
1967 /**
1968  * console_trylock - try to lock the console system for exclusive use.
1969  *
1970  * Tried to acquire a lock which guarantees that the caller has
1971  * exclusive access to the console system and the console_drivers list.
1972  *
1973  * returns 1 on success, and 0 on failure to acquire the lock.
1974  */
console_trylock(void)1975 int console_trylock(void)
1976 {
1977 	if (down_trylock(&console_sem))
1978 		return 0;
1979 	if (console_suspended) {
1980 		up(&console_sem);
1981 		return 0;
1982 	}
1983 	console_locked = 1;
1984 	console_may_schedule = 0;
1985 	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1986 	return 1;
1987 }
1988 EXPORT_SYMBOL(console_trylock);
1989 
is_console_locked(void)1990 int is_console_locked(void)
1991 {
1992 	return console_locked;
1993 }
1994 
console_cont_flush(char * text,size_t size)1995 static void console_cont_flush(char *text, size_t size)
1996 {
1997 	unsigned long flags;
1998 	size_t len;
1999 
2000 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2001 
2002 	if (!cont.len)
2003 		goto out;
2004 
2005 	/*
2006 	 * We still queue earlier records, likely because the console was
2007 	 * busy. The earlier ones need to be printed before this one, we
2008 	 * did not flush any fragment so far, so just let it queue up.
2009 	 */
2010 	if (console_seq < log_next_seq && !cont.cons)
2011 		goto out;
2012 
2013 	len = cont_print_text(text, size);
2014 	raw_spin_unlock(&logbuf_lock);
2015 	stop_critical_timings();
2016 	call_console_drivers(cont.level, text, len);
2017 	start_critical_timings();
2018 	local_irq_restore(flags);
2019 	return;
2020 out:
2021 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2022 }
2023 
2024 /**
2025  * console_unlock - unlock the console system
2026  *
2027  * Releases the console_lock which the caller holds on the console system
2028  * and the console driver list.
2029  *
2030  * While the console_lock was held, console output may have been buffered
2031  * by printk().  If this is the case, console_unlock(); emits
2032  * the output prior to releasing the lock.
2033  *
2034  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2035  *
2036  * console_unlock(); may be called from any context.
2037  */
console_unlock(void)2038 void console_unlock(void)
2039 {
2040 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2041 	static u64 seen_seq;
2042 	unsigned long flags;
2043 	bool wake_klogd = false;
2044 	bool retry;
2045 
2046 	if (console_suspended) {
2047 		up(&console_sem);
2048 		return;
2049 	}
2050 
2051 	console_may_schedule = 0;
2052 
2053 	/* flush buffered message fragment immediately to console */
2054 	console_cont_flush(text, sizeof(text));
2055 again:
2056 	for (;;) {
2057 		struct log *msg;
2058 		size_t len;
2059 		int level;
2060 
2061 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2062 		if (seen_seq != log_next_seq) {
2063 			wake_klogd = true;
2064 			seen_seq = log_next_seq;
2065 		}
2066 
2067 		if (console_seq < log_first_seq) {
2068 			/* messages are gone, move to first one */
2069 			console_seq = log_first_seq;
2070 			console_idx = log_first_idx;
2071 			console_prev = 0;
2072 		}
2073 skip:
2074 		if (console_seq == log_next_seq)
2075 			break;
2076 
2077 		msg = log_from_idx(console_idx);
2078 		if (msg->flags & LOG_NOCONS) {
2079 			/*
2080 			 * Skip record we have buffered and already printed
2081 			 * directly to the console when we received it.
2082 			 */
2083 			console_idx = log_next(console_idx);
2084 			console_seq++;
2085 			/*
2086 			 * We will get here again when we register a new
2087 			 * CON_PRINTBUFFER console. Clear the flag so we
2088 			 * will properly dump everything later.
2089 			 */
2090 			msg->flags &= ~LOG_NOCONS;
2091 			console_prev = msg->flags;
2092 			goto skip;
2093 		}
2094 
2095 		level = msg->level;
2096 		len = msg_print_text(msg, console_prev, false,
2097 				     text, sizeof(text));
2098 		console_idx = log_next(console_idx);
2099 		console_seq++;
2100 		console_prev = msg->flags;
2101 		raw_spin_unlock(&logbuf_lock);
2102 
2103 		stop_critical_timings();	/* don't trace print latency */
2104 		call_console_drivers(level, text, len);
2105 		start_critical_timings();
2106 		local_irq_restore(flags);
2107 	}
2108 	console_locked = 0;
2109 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2110 
2111 	/* Release the exclusive_console once it is used */
2112 	if (unlikely(exclusive_console))
2113 		exclusive_console = NULL;
2114 
2115 	raw_spin_unlock(&logbuf_lock);
2116 
2117 	up(&console_sem);
2118 
2119 	/*
2120 	 * Someone could have filled up the buffer again, so re-check if there's
2121 	 * something to flush. In case we cannot trylock the console_sem again,
2122 	 * there's a new owner and the console_unlock() from them will do the
2123 	 * flush, no worries.
2124 	 */
2125 	raw_spin_lock(&logbuf_lock);
2126 	retry = console_seq != log_next_seq;
2127 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2128 
2129 	if (retry && console_trylock())
2130 		goto again;
2131 
2132 	if (wake_klogd)
2133 		wake_up_klogd();
2134 }
2135 EXPORT_SYMBOL(console_unlock);
2136 
2137 /**
2138  * console_conditional_schedule - yield the CPU if required
2139  *
2140  * If the console code is currently allowed to sleep, and
2141  * if this CPU should yield the CPU to another task, do
2142  * so here.
2143  *
2144  * Must be called within console_lock();.
2145  */
console_conditional_schedule(void)2146 void __sched console_conditional_schedule(void)
2147 {
2148 	if (console_may_schedule)
2149 		cond_resched();
2150 }
2151 EXPORT_SYMBOL(console_conditional_schedule);
2152 
console_unblank(void)2153 void console_unblank(void)
2154 {
2155 	struct console *c;
2156 
2157 	/*
2158 	 * console_unblank can no longer be called in interrupt context unless
2159 	 * oops_in_progress is set to 1..
2160 	 */
2161 	if (oops_in_progress) {
2162 		if (down_trylock(&console_sem) != 0)
2163 			return;
2164 	} else
2165 		console_lock();
2166 
2167 	console_locked = 1;
2168 	console_may_schedule = 0;
2169 	for_each_console(c)
2170 		if ((c->flags & CON_ENABLED) && c->unblank)
2171 			c->unblank();
2172 	console_unlock();
2173 }
2174 
2175 /*
2176  * Return the console tty driver structure and its associated index
2177  */
console_device(int * index)2178 struct tty_driver *console_device(int *index)
2179 {
2180 	struct console *c;
2181 	struct tty_driver *driver = NULL;
2182 
2183 	console_lock();
2184 	for_each_console(c) {
2185 		if (!c->device)
2186 			continue;
2187 		driver = c->device(c, index);
2188 		if (driver)
2189 			break;
2190 	}
2191 	console_unlock();
2192 	return driver;
2193 }
2194 
2195 /*
2196  * Prevent further output on the passed console device so that (for example)
2197  * serial drivers can disable console output before suspending a port, and can
2198  * re-enable output afterwards.
2199  */
console_stop(struct console * console)2200 void console_stop(struct console *console)
2201 {
2202 	console_lock();
2203 	console->flags &= ~CON_ENABLED;
2204 	console_unlock();
2205 }
2206 EXPORT_SYMBOL(console_stop);
2207 
console_start(struct console * console)2208 void console_start(struct console *console)
2209 {
2210 	console_lock();
2211 	console->flags |= CON_ENABLED;
2212 	console_unlock();
2213 }
2214 EXPORT_SYMBOL(console_start);
2215 
2216 static int __read_mostly keep_bootcon;
2217 
keep_bootcon_setup(char * str)2218 static int __init keep_bootcon_setup(char *str)
2219 {
2220 	keep_bootcon = 1;
2221 	printk(KERN_INFO "debug: skip boot console de-registration.\n");
2222 
2223 	return 0;
2224 }
2225 
2226 early_param("keep_bootcon", keep_bootcon_setup);
2227 
2228 /*
2229  * The console driver calls this routine during kernel initialization
2230  * to register the console printing procedure with printk() and to
2231  * print any messages that were printed by the kernel before the
2232  * console driver was initialized.
2233  *
2234  * This can happen pretty early during the boot process (because of
2235  * early_printk) - sometimes before setup_arch() completes - be careful
2236  * of what kernel features are used - they may not be initialised yet.
2237  *
2238  * There are two types of consoles - bootconsoles (early_printk) and
2239  * "real" consoles (everything which is not a bootconsole) which are
2240  * handled differently.
2241  *  - Any number of bootconsoles can be registered at any time.
2242  *  - As soon as a "real" console is registered, all bootconsoles
2243  *    will be unregistered automatically.
2244  *  - Once a "real" console is registered, any attempt to register a
2245  *    bootconsoles will be rejected
2246  */
register_console(struct console * newcon)2247 void register_console(struct console *newcon)
2248 {
2249 	int i;
2250 	unsigned long flags;
2251 	struct console *bcon = NULL;
2252 
2253 	/*
2254 	 * before we register a new CON_BOOT console, make sure we don't
2255 	 * already have a valid console
2256 	 */
2257 	if (console_drivers && newcon->flags & CON_BOOT) {
2258 		/* find the last or real console */
2259 		for_each_console(bcon) {
2260 			if (!(bcon->flags & CON_BOOT)) {
2261 				printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2262 					newcon->name, newcon->index);
2263 				return;
2264 			}
2265 		}
2266 	}
2267 
2268 	if (console_drivers && console_drivers->flags & CON_BOOT)
2269 		bcon = console_drivers;
2270 
2271 	if (preferred_console < 0 || bcon || !console_drivers)
2272 		preferred_console = selected_console;
2273 
2274 	if (newcon->early_setup)
2275 		newcon->early_setup();
2276 
2277 	/*
2278 	 *	See if we want to use this console driver. If we
2279 	 *	didn't select a console we take the first one
2280 	 *	that registers here.
2281 	 */
2282 	if (preferred_console < 0) {
2283 		if (newcon->index < 0)
2284 			newcon->index = 0;
2285 		if (newcon->setup == NULL ||
2286 		    newcon->setup(newcon, NULL) == 0) {
2287 			newcon->flags |= CON_ENABLED;
2288 			if (newcon->device) {
2289 				newcon->flags |= CON_CONSDEV;
2290 				preferred_console = 0;
2291 			}
2292 		}
2293 	}
2294 
2295 	/*
2296 	 *	See if this console matches one we selected on
2297 	 *	the command line.
2298 	 */
2299 	for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2300 			i++) {
2301 		if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2302 			continue;
2303 		if (newcon->index >= 0 &&
2304 		    newcon->index != console_cmdline[i].index)
2305 			continue;
2306 		if (newcon->index < 0)
2307 			newcon->index = console_cmdline[i].index;
2308 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2309 		if (console_cmdline[i].brl_options) {
2310 			newcon->flags |= CON_BRL;
2311 			braille_register_console(newcon,
2312 					console_cmdline[i].index,
2313 					console_cmdline[i].options,
2314 					console_cmdline[i].brl_options);
2315 			return;
2316 		}
2317 #endif
2318 		if (newcon->setup &&
2319 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2320 			break;
2321 		newcon->flags |= CON_ENABLED;
2322 		newcon->index = console_cmdline[i].index;
2323 		if (i == selected_console) {
2324 			newcon->flags |= CON_CONSDEV;
2325 			preferred_console = selected_console;
2326 		}
2327 		break;
2328 	}
2329 
2330 	if (!(newcon->flags & CON_ENABLED))
2331 		return;
2332 
2333 	/*
2334 	 * If we have a bootconsole, and are switching to a real console,
2335 	 * don't print everything out again, since when the boot console, and
2336 	 * the real console are the same physical device, it's annoying to
2337 	 * see the beginning boot messages twice
2338 	 */
2339 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2340 		newcon->flags &= ~CON_PRINTBUFFER;
2341 
2342 	/*
2343 	 *	Put this console in the list - keep the
2344 	 *	preferred driver at the head of the list.
2345 	 */
2346 	console_lock();
2347 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2348 		newcon->next = console_drivers;
2349 		console_drivers = newcon;
2350 		if (newcon->next)
2351 			newcon->next->flags &= ~CON_CONSDEV;
2352 	} else {
2353 		newcon->next = console_drivers->next;
2354 		console_drivers->next = newcon;
2355 	}
2356 	if (newcon->flags & CON_PRINTBUFFER) {
2357 		/*
2358 		 * console_unlock(); will print out the buffered messages
2359 		 * for us.
2360 		 */
2361 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2362 		console_seq = syslog_seq;
2363 		console_idx = syslog_idx;
2364 		console_prev = syslog_prev;
2365 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2366 		/*
2367 		 * We're about to replay the log buffer.  Only do this to the
2368 		 * just-registered console to avoid excessive message spam to
2369 		 * the already-registered consoles.
2370 		 */
2371 		exclusive_console = newcon;
2372 	}
2373 	console_unlock();
2374 	console_sysfs_notify();
2375 
2376 	/*
2377 	 * By unregistering the bootconsoles after we enable the real console
2378 	 * we get the "console xxx enabled" message on all the consoles -
2379 	 * boot consoles, real consoles, etc - this is to ensure that end
2380 	 * users know there might be something in the kernel's log buffer that
2381 	 * went to the bootconsole (that they do not see on the real console)
2382 	 */
2383 	if (bcon &&
2384 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2385 	    !keep_bootcon) {
2386 		/* we need to iterate through twice, to make sure we print
2387 		 * everything out, before we unregister the console(s)
2388 		 */
2389 		printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2390 			newcon->name, newcon->index);
2391 		for_each_console(bcon)
2392 			if (bcon->flags & CON_BOOT)
2393 				unregister_console(bcon);
2394 	} else {
2395 		printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2396 			(newcon->flags & CON_BOOT) ? "boot" : "" ,
2397 			newcon->name, newcon->index);
2398 	}
2399 }
2400 EXPORT_SYMBOL(register_console);
2401 
unregister_console(struct console * console)2402 int unregister_console(struct console *console)
2403 {
2404         struct console *a, *b;
2405 	int res = 1;
2406 
2407 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2408 	if (console->flags & CON_BRL)
2409 		return braille_unregister_console(console);
2410 #endif
2411 
2412 	console_lock();
2413 	if (console_drivers == console) {
2414 		console_drivers=console->next;
2415 		res = 0;
2416 	} else if (console_drivers) {
2417 		for (a=console_drivers->next, b=console_drivers ;
2418 		     a; b=a, a=b->next) {
2419 			if (a == console) {
2420 				b->next = a->next;
2421 				res = 0;
2422 				break;
2423 			}
2424 		}
2425 	}
2426 
2427 	/*
2428 	 * If this isn't the last console and it has CON_CONSDEV set, we
2429 	 * need to set it on the next preferred console.
2430 	 */
2431 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2432 		console_drivers->flags |= CON_CONSDEV;
2433 
2434 	console_unlock();
2435 	console_sysfs_notify();
2436 	return res;
2437 }
2438 EXPORT_SYMBOL(unregister_console);
2439 
printk_late_init(void)2440 static int __init printk_late_init(void)
2441 {
2442 	struct console *con;
2443 
2444 	for_each_console(con) {
2445 		if (!keep_bootcon && con->flags & CON_BOOT) {
2446 			printk(KERN_INFO "turn off boot console %s%d\n",
2447 				con->name, con->index);
2448 			unregister_console(con);
2449 		}
2450 	}
2451 	hotcpu_notifier(console_cpu_notify, 0);
2452 	return 0;
2453 }
2454 late_initcall(printk_late_init);
2455 
2456 #if defined CONFIG_PRINTK
2457 /*
2458  * Delayed printk version, for scheduler-internal messages:
2459  */
2460 #define PRINTK_BUF_SIZE		512
2461 
2462 #define PRINTK_PENDING_WAKEUP	0x01
2463 #define PRINTK_PENDING_SCHED	0x02
2464 
2465 static DEFINE_PER_CPU(int, printk_pending);
2466 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2467 
wake_up_klogd_work_func(struct irq_work * irq_work)2468 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2469 {
2470 	int pending = __this_cpu_xchg(printk_pending, 0);
2471 
2472 	if (pending & PRINTK_PENDING_SCHED) {
2473 		char *buf = __get_cpu_var(printk_sched_buf);
2474 		printk(KERN_WARNING "[sched_delayed] %s", buf);
2475 	}
2476 
2477 	if (pending & PRINTK_PENDING_WAKEUP)
2478 		wake_up_interruptible(&log_wait);
2479 }
2480 
2481 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2482 	.func = wake_up_klogd_work_func,
2483 	.flags = IRQ_WORK_LAZY,
2484 };
2485 
wake_up_klogd(void)2486 void wake_up_klogd(void)
2487 {
2488 	preempt_disable();
2489 	if (waitqueue_active(&log_wait)) {
2490 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2491 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492 	}
2493 	preempt_enable();
2494 }
2495 
printk_sched(const char * fmt,...)2496 int printk_sched(const char *fmt, ...)
2497 {
2498 	unsigned long flags;
2499 	va_list args;
2500 	char *buf;
2501 	int r;
2502 
2503 	local_irq_save(flags);
2504 	buf = __get_cpu_var(printk_sched_buf);
2505 
2506 	va_start(args, fmt);
2507 	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2508 	va_end(args);
2509 
2510 	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2511 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2512 	local_irq_restore(flags);
2513 
2514 	return r;
2515 }
2516 
2517 /*
2518  * printk rate limiting, lifted from the networking subsystem.
2519  *
2520  * This enforces a rate limit: not more than 10 kernel messages
2521  * every 5s to make a denial-of-service attack impossible.
2522  */
2523 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2524 
__printk_ratelimit(const char * func)2525 int __printk_ratelimit(const char *func)
2526 {
2527 	return ___ratelimit(&printk_ratelimit_state, func);
2528 }
2529 EXPORT_SYMBOL(__printk_ratelimit);
2530 
2531 /**
2532  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2533  * @caller_jiffies: pointer to caller's state
2534  * @interval_msecs: minimum interval between prints
2535  *
2536  * printk_timed_ratelimit() returns true if more than @interval_msecs
2537  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2538  * returned true.
2539  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2540 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2541 			unsigned int interval_msecs)
2542 {
2543 	if (*caller_jiffies == 0
2544 			|| !time_in_range(jiffies, *caller_jiffies,
2545 					*caller_jiffies
2546 					+ msecs_to_jiffies(interval_msecs))) {
2547 		*caller_jiffies = jiffies;
2548 		return true;
2549 	}
2550 	return false;
2551 }
2552 EXPORT_SYMBOL(printk_timed_ratelimit);
2553 
2554 static DEFINE_SPINLOCK(dump_list_lock);
2555 static LIST_HEAD(dump_list);
2556 
2557 /**
2558  * kmsg_dump_register - register a kernel log dumper.
2559  * @dumper: pointer to the kmsg_dumper structure
2560  *
2561  * Adds a kernel log dumper to the system. The dump callback in the
2562  * structure will be called when the kernel oopses or panics and must be
2563  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2564  */
kmsg_dump_register(struct kmsg_dumper * dumper)2565 int kmsg_dump_register(struct kmsg_dumper *dumper)
2566 {
2567 	unsigned long flags;
2568 	int err = -EBUSY;
2569 
2570 	/* The dump callback needs to be set */
2571 	if (!dumper->dump)
2572 		return -EINVAL;
2573 
2574 	spin_lock_irqsave(&dump_list_lock, flags);
2575 	/* Don't allow registering multiple times */
2576 	if (!dumper->registered) {
2577 		dumper->registered = 1;
2578 		list_add_tail_rcu(&dumper->list, &dump_list);
2579 		err = 0;
2580 	}
2581 	spin_unlock_irqrestore(&dump_list_lock, flags);
2582 
2583 	return err;
2584 }
2585 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2586 
2587 /**
2588  * kmsg_dump_unregister - unregister a kmsg dumper.
2589  * @dumper: pointer to the kmsg_dumper structure
2590  *
2591  * Removes a dump device from the system. Returns zero on success and
2592  * %-EINVAL otherwise.
2593  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2594 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2595 {
2596 	unsigned long flags;
2597 	int err = -EINVAL;
2598 
2599 	spin_lock_irqsave(&dump_list_lock, flags);
2600 	if (dumper->registered) {
2601 		dumper->registered = 0;
2602 		list_del_rcu(&dumper->list);
2603 		err = 0;
2604 	}
2605 	spin_unlock_irqrestore(&dump_list_lock, flags);
2606 	synchronize_rcu();
2607 
2608 	return err;
2609 }
2610 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2611 
2612 static bool always_kmsg_dump;
2613 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2614 
2615 /**
2616  * kmsg_dump - dump kernel log to kernel message dumpers.
2617  * @reason: the reason (oops, panic etc) for dumping
2618  *
2619  * Call each of the registered dumper's dump() callback, which can
2620  * retrieve the kmsg records with kmsg_dump_get_line() or
2621  * kmsg_dump_get_buffer().
2622  */
kmsg_dump(enum kmsg_dump_reason reason)2623 void kmsg_dump(enum kmsg_dump_reason reason)
2624 {
2625 	struct kmsg_dumper *dumper;
2626 	unsigned long flags;
2627 
2628 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2629 		return;
2630 
2631 	rcu_read_lock();
2632 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2633 		if (dumper->max_reason && reason > dumper->max_reason)
2634 			continue;
2635 
2636 		/* initialize iterator with data about the stored records */
2637 		dumper->active = true;
2638 
2639 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2640 		dumper->cur_seq = clear_seq;
2641 		dumper->cur_idx = clear_idx;
2642 		dumper->next_seq = log_next_seq;
2643 		dumper->next_idx = log_next_idx;
2644 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2645 
2646 		/* invoke dumper which will iterate over records */
2647 		dumper->dump(dumper, reason);
2648 
2649 		/* reset iterator */
2650 		dumper->active = false;
2651 	}
2652 	rcu_read_unlock();
2653 }
2654 
2655 /**
2656  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2657  * @dumper: registered kmsg dumper
2658  * @syslog: include the "<4>" prefixes
2659  * @line: buffer to copy the line to
2660  * @size: maximum size of the buffer
2661  * @len: length of line placed into buffer
2662  *
2663  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2664  * record, and copy one record into the provided buffer.
2665  *
2666  * Consecutive calls will return the next available record moving
2667  * towards the end of the buffer with the youngest messages.
2668  *
2669  * A return value of FALSE indicates that there are no more records to
2670  * read.
2671  *
2672  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2673  */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2674 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2675 			       char *line, size_t size, size_t *len)
2676 {
2677 	struct log *msg;
2678 	size_t l = 0;
2679 	bool ret = false;
2680 
2681 	if (!dumper->active)
2682 		goto out;
2683 
2684 	if (dumper->cur_seq < log_first_seq) {
2685 		/* messages are gone, move to first available one */
2686 		dumper->cur_seq = log_first_seq;
2687 		dumper->cur_idx = log_first_idx;
2688 	}
2689 
2690 	/* last entry */
2691 	if (dumper->cur_seq >= log_next_seq)
2692 		goto out;
2693 
2694 	msg = log_from_idx(dumper->cur_idx);
2695 	l = msg_print_text(msg, 0, syslog, line, size);
2696 
2697 	dumper->cur_idx = log_next(dumper->cur_idx);
2698 	dumper->cur_seq++;
2699 	ret = true;
2700 out:
2701 	if (len)
2702 		*len = l;
2703 	return ret;
2704 }
2705 
2706 /**
2707  * kmsg_dump_get_line - retrieve one kmsg log line
2708  * @dumper: registered kmsg dumper
2709  * @syslog: include the "<4>" prefixes
2710  * @line: buffer to copy the line to
2711  * @size: maximum size of the buffer
2712  * @len: length of line placed into buffer
2713  *
2714  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2715  * record, and copy one record into the provided buffer.
2716  *
2717  * Consecutive calls will return the next available record moving
2718  * towards the end of the buffer with the youngest messages.
2719  *
2720  * A return value of FALSE indicates that there are no more records to
2721  * read.
2722  */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)2723 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2724 			char *line, size_t size, size_t *len)
2725 {
2726 	unsigned long flags;
2727 	bool ret;
2728 
2729 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2730 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2731 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2732 
2733 	return ret;
2734 }
2735 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2736 
2737 /**
2738  * kmsg_dump_get_buffer - copy kmsg log lines
2739  * @dumper: registered kmsg dumper
2740  * @syslog: include the "<4>" prefixes
2741  * @buf: buffer to copy the line to
2742  * @size: maximum size of the buffer
2743  * @len: length of line placed into buffer
2744  *
2745  * Start at the end of the kmsg buffer and fill the provided buffer
2746  * with as many of the the *youngest* kmsg records that fit into it.
2747  * If the buffer is large enough, all available kmsg records will be
2748  * copied with a single call.
2749  *
2750  * Consecutive calls will fill the buffer with the next block of
2751  * available older records, not including the earlier retrieved ones.
2752  *
2753  * A return value of FALSE indicates that there are no more records to
2754  * read.
2755  */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)2756 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2757 			  char *buf, size_t size, size_t *len)
2758 {
2759 	unsigned long flags;
2760 	u64 seq;
2761 	u32 idx;
2762 	u64 next_seq;
2763 	u32 next_idx;
2764 	enum log_flags prev;
2765 	size_t l = 0;
2766 	bool ret = false;
2767 
2768 	if (!dumper->active)
2769 		goto out;
2770 
2771 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2772 	if (dumper->cur_seq < log_first_seq) {
2773 		/* messages are gone, move to first available one */
2774 		dumper->cur_seq = log_first_seq;
2775 		dumper->cur_idx = log_first_idx;
2776 	}
2777 
2778 	/* last entry */
2779 	if (dumper->cur_seq >= dumper->next_seq) {
2780 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2781 		goto out;
2782 	}
2783 
2784 	/* calculate length of entire buffer */
2785 	seq = dumper->cur_seq;
2786 	idx = dumper->cur_idx;
2787 	prev = 0;
2788 	while (seq < dumper->next_seq) {
2789 		struct log *msg = log_from_idx(idx);
2790 
2791 		l += msg_print_text(msg, prev, true, NULL, 0);
2792 		idx = log_next(idx);
2793 		seq++;
2794 		prev = msg->flags;
2795 	}
2796 
2797 	/* move first record forward until length fits into the buffer */
2798 	seq = dumper->cur_seq;
2799 	idx = dumper->cur_idx;
2800 	prev = 0;
2801 	while (l > size && seq < dumper->next_seq) {
2802 		struct log *msg = log_from_idx(idx);
2803 
2804 		l -= msg_print_text(msg, prev, true, NULL, 0);
2805 		idx = log_next(idx);
2806 		seq++;
2807 		prev = msg->flags;
2808 	}
2809 
2810 	/* last message in next interation */
2811 	next_seq = seq;
2812 	next_idx = idx;
2813 
2814 	l = 0;
2815 	prev = 0;
2816 	while (seq < dumper->next_seq) {
2817 		struct log *msg = log_from_idx(idx);
2818 
2819 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2820 		idx = log_next(idx);
2821 		seq++;
2822 		prev = msg->flags;
2823 	}
2824 
2825 	dumper->next_seq = next_seq;
2826 	dumper->next_idx = next_idx;
2827 	ret = true;
2828 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2829 out:
2830 	if (len)
2831 		*len = l;
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2835 
2836 /**
2837  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2838  * @dumper: registered kmsg dumper
2839  *
2840  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2841  * kmsg_dump_get_buffer() can be called again and used multiple
2842  * times within the same dumper.dump() callback.
2843  *
2844  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2845  */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)2846 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2847 {
2848 	dumper->cur_seq = clear_seq;
2849 	dumper->cur_idx = clear_idx;
2850 	dumper->next_seq = log_next_seq;
2851 	dumper->next_idx = log_next_idx;
2852 }
2853 
2854 /**
2855  * kmsg_dump_rewind - reset the interator
2856  * @dumper: registered kmsg dumper
2857  *
2858  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2859  * kmsg_dump_get_buffer() can be called again and used multiple
2860  * times within the same dumper.dump() callback.
2861  */
kmsg_dump_rewind(struct kmsg_dumper * dumper)2862 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2863 {
2864 	unsigned long flags;
2865 
2866 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2867 	kmsg_dump_rewind_nolock(dumper);
2868 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2869 }
2870 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2871 
2872 static char dump_stack_arch_desc_str[128];
2873 
2874 /**
2875  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2876  * @fmt: printf-style format string
2877  * @...: arguments for the format string
2878  *
2879  * The configured string will be printed right after utsname during task
2880  * dumps.  Usually used to add arch-specific system identifiers.  If an
2881  * arch wants to make use of such an ID string, it should initialize this
2882  * as soon as possible during boot.
2883  */
dump_stack_set_arch_desc(const char * fmt,...)2884 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2885 {
2886 	va_list args;
2887 
2888 	va_start(args, fmt);
2889 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2890 		  fmt, args);
2891 	va_end(args);
2892 }
2893 
2894 /**
2895  * dump_stack_print_info - print generic debug info for dump_stack()
2896  * @log_lvl: log level
2897  *
2898  * Arch-specific dump_stack() implementations can use this function to
2899  * print out the same debug information as the generic dump_stack().
2900  */
dump_stack_print_info(const char * log_lvl)2901 void dump_stack_print_info(const char *log_lvl)
2902 {
2903 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2904 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2905 	       print_tainted(), init_utsname()->release,
2906 	       (int)strcspn(init_utsname()->version, " "),
2907 	       init_utsname()->version);
2908 
2909 	if (dump_stack_arch_desc_str[0] != '\0')
2910 		printk("%sHardware name: %s\n",
2911 		       log_lvl, dump_stack_arch_desc_str);
2912 
2913 	print_worker_info(log_lvl, current);
2914 }
2915 
2916 /**
2917  * show_regs_print_info - print generic debug info for show_regs()
2918  * @log_lvl: log level
2919  *
2920  * show_regs() implementations can use this function to print out generic
2921  * debug information.
2922  */
show_regs_print_info(const char * log_lvl)2923 void show_regs_print_info(const char *log_lvl)
2924 {
2925 	dump_stack_print_info(log_lvl);
2926 
2927 	printk("%stask: %p ti: %p task.ti: %p\n",
2928 	       log_lvl, current, current_thread_info(),
2929 	       task_thread_info(current));
2930 }
2931 
2932 #endif
2933