• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/rcu.h>
53 
54 #include "rcu.h"
55 
56 module_param(rcu_expedited, int, 0);
57 
58 #ifdef CONFIG_PREEMPT_RCU
59 
60 /*
61  * Preemptible RCU implementation for rcu_read_lock().
62  * Just increment ->rcu_read_lock_nesting, shared state will be updated
63  * if we block.
64  */
__rcu_read_lock(void)65 void __rcu_read_lock(void)
66 {
67 	current->rcu_read_lock_nesting++;
68 	barrier();  /* critical section after entry code. */
69 }
70 EXPORT_SYMBOL_GPL(__rcu_read_lock);
71 
72 /*
73  * Preemptible RCU implementation for rcu_read_unlock().
74  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
75  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
76  * invoke rcu_read_unlock_special() to clean up after a context switch
77  * in an RCU read-side critical section and other special cases.
78  */
__rcu_read_unlock(void)79 void __rcu_read_unlock(void)
80 {
81 	struct task_struct *t = current;
82 
83 	if (t->rcu_read_lock_nesting != 1) {
84 		--t->rcu_read_lock_nesting;
85 	} else {
86 		barrier();  /* critical section before exit code. */
87 		t->rcu_read_lock_nesting = INT_MIN;
88 #ifdef CONFIG_PROVE_RCU_DELAY
89 		udelay(10); /* Make preemption more probable. */
90 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
91 		barrier();  /* assign before ->rcu_read_unlock_special load */
92 		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
93 			rcu_read_unlock_special(t);
94 		barrier();  /* ->rcu_read_unlock_special load before assign */
95 		t->rcu_read_lock_nesting = 0;
96 	}
97 #ifdef CONFIG_PROVE_LOCKING
98 	{
99 		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
100 
101 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
102 	}
103 #endif /* #ifdef CONFIG_PROVE_LOCKING */
104 }
105 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
106 
107 /*
108  * Check for a task exiting while in a preemptible-RCU read-side
109  * critical section, clean up if so.  No need to issue warnings,
110  * as debug_check_no_locks_held() already does this if lockdep
111  * is enabled.
112  */
exit_rcu(void)113 void exit_rcu(void)
114 {
115 	struct task_struct *t = current;
116 
117 	if (likely(list_empty(&current->rcu_node_entry)))
118 		return;
119 	t->rcu_read_lock_nesting = 1;
120 	barrier();
121 	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
122 	__rcu_read_unlock();
123 }
124 
125 #else /* #ifdef CONFIG_PREEMPT_RCU */
126 
exit_rcu(void)127 void exit_rcu(void)
128 {
129 }
130 
131 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
132 
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 static struct lock_class_key rcu_lock_key;
135 struct lockdep_map rcu_lock_map =
136 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
137 EXPORT_SYMBOL_GPL(rcu_lock_map);
138 
139 static struct lock_class_key rcu_bh_lock_key;
140 struct lockdep_map rcu_bh_lock_map =
141 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
142 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
143 
144 static struct lock_class_key rcu_sched_lock_key;
145 struct lockdep_map rcu_sched_lock_map =
146 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
147 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
148 #endif
149 
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151 
debug_lockdep_rcu_enabled(void)152 int debug_lockdep_rcu_enabled(void)
153 {
154 	return rcu_scheduler_active && debug_locks &&
155 	       current->lockdep_recursion == 0;
156 }
157 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
158 
159 /**
160  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
161  *
162  * Check for bottom half being disabled, which covers both the
163  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
164  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
165  * will show the situation.  This is useful for debug checks in functions
166  * that require that they be called within an RCU read-side critical
167  * section.
168  *
169  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
170  *
171  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
172  * offline from an RCU perspective, so check for those as well.
173  */
rcu_read_lock_bh_held(void)174 int rcu_read_lock_bh_held(void)
175 {
176 	if (!debug_lockdep_rcu_enabled())
177 		return 1;
178 	if (rcu_is_cpu_idle())
179 		return 0;
180 	if (!rcu_lockdep_current_cpu_online())
181 		return 0;
182 	return in_softirq() || irqs_disabled();
183 }
184 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
185 
186 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
187 
188 struct rcu_synchronize {
189 	struct rcu_head head;
190 	struct completion completion;
191 };
192 
193 /*
194  * Awaken the corresponding synchronize_rcu() instance now that a
195  * grace period has elapsed.
196  */
wakeme_after_rcu(struct rcu_head * head)197 static void wakeme_after_rcu(struct rcu_head  *head)
198 {
199 	struct rcu_synchronize *rcu;
200 
201 	rcu = container_of(head, struct rcu_synchronize, head);
202 	complete(&rcu->completion);
203 }
204 
wait_rcu_gp(call_rcu_func_t crf)205 void wait_rcu_gp(call_rcu_func_t crf)
206 {
207 	struct rcu_synchronize rcu;
208 
209 	init_rcu_head_on_stack(&rcu.head);
210 	init_completion(&rcu.completion);
211 	/* Will wake me after RCU finished. */
212 	crf(&rcu.head, wakeme_after_rcu);
213 	/* Wait for it. */
214 	wait_for_completion(&rcu.completion);
215 	destroy_rcu_head_on_stack(&rcu.head);
216 }
217 EXPORT_SYMBOL_GPL(wait_rcu_gp);
218 
219 #ifdef CONFIG_PROVE_RCU
220 /*
221  * wrapper function to avoid #include problems.
222  */
rcu_my_thread_group_empty(void)223 int rcu_my_thread_group_empty(void)
224 {
225 	return thread_group_empty(current);
226 }
227 EXPORT_SYMBOL_GPL(rcu_my_thread_group_empty);
228 #endif /* #ifdef CONFIG_PROVE_RCU */
229 
230 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
debug_init_rcu_head(struct rcu_head * head)231 static inline void debug_init_rcu_head(struct rcu_head *head)
232 {
233 	debug_object_init(head, &rcuhead_debug_descr);
234 }
235 
debug_rcu_head_free(struct rcu_head * head)236 static inline void debug_rcu_head_free(struct rcu_head *head)
237 {
238 	debug_object_free(head, &rcuhead_debug_descr);
239 }
240 
241 /*
242  * fixup_init is called when:
243  * - an active object is initialized
244  */
rcuhead_fixup_init(void * addr,enum debug_obj_state state)245 static int rcuhead_fixup_init(void *addr, enum debug_obj_state state)
246 {
247 	struct rcu_head *head = addr;
248 
249 	switch (state) {
250 	case ODEBUG_STATE_ACTIVE:
251 		/*
252 		 * Ensure that queued callbacks are all executed.
253 		 * If we detect that we are nested in a RCU read-side critical
254 		 * section, we should simply fail, otherwise we would deadlock.
255 		 * In !PREEMPT configurations, there is no way to tell if we are
256 		 * in a RCU read-side critical section or not, so we never
257 		 * attempt any fixup and just print a warning.
258 		 */
259 #ifndef CONFIG_PREEMPT
260 		WARN_ON_ONCE(1);
261 		return 0;
262 #endif
263 		if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
264 		    irqs_disabled()) {
265 			WARN_ON_ONCE(1);
266 			return 0;
267 		}
268 		rcu_barrier();
269 		rcu_barrier_sched();
270 		rcu_barrier_bh();
271 		debug_object_init(head, &rcuhead_debug_descr);
272 		return 1;
273 	default:
274 		return 0;
275 	}
276 }
277 
278 /*
279  * fixup_activate is called when:
280  * - an active object is activated
281  * - an unknown object is activated (might be a statically initialized object)
282  * Activation is performed internally by call_rcu().
283  */
rcuhead_fixup_activate(void * addr,enum debug_obj_state state)284 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
285 {
286 	struct rcu_head *head = addr;
287 
288 	switch (state) {
289 
290 	case ODEBUG_STATE_NOTAVAILABLE:
291 		/*
292 		 * This is not really a fixup. We just make sure that it is
293 		 * tracked in the object tracker.
294 		 */
295 		debug_object_init(head, &rcuhead_debug_descr);
296 		debug_object_activate(head, &rcuhead_debug_descr);
297 		return 0;
298 
299 	case ODEBUG_STATE_ACTIVE:
300 		/*
301 		 * Ensure that queued callbacks are all executed.
302 		 * If we detect that we are nested in a RCU read-side critical
303 		 * section, we should simply fail, otherwise we would deadlock.
304 		 * In !PREEMPT configurations, there is no way to tell if we are
305 		 * in a RCU read-side critical section or not, so we never
306 		 * attempt any fixup and just print a warning.
307 		 */
308 #ifndef CONFIG_PREEMPT
309 		WARN_ON_ONCE(1);
310 		return 0;
311 #endif
312 		if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
313 		    irqs_disabled()) {
314 			WARN_ON_ONCE(1);
315 			return 0;
316 		}
317 		rcu_barrier();
318 		rcu_barrier_sched();
319 		rcu_barrier_bh();
320 		debug_object_activate(head, &rcuhead_debug_descr);
321 		return 1;
322 	default:
323 		return 0;
324 	}
325 }
326 
327 /*
328  * fixup_free is called when:
329  * - an active object is freed
330  */
rcuhead_fixup_free(void * addr,enum debug_obj_state state)331 static int rcuhead_fixup_free(void *addr, enum debug_obj_state state)
332 {
333 	struct rcu_head *head = addr;
334 
335 	switch (state) {
336 	case ODEBUG_STATE_ACTIVE:
337 		/*
338 		 * Ensure that queued callbacks are all executed.
339 		 * If we detect that we are nested in a RCU read-side critical
340 		 * section, we should simply fail, otherwise we would deadlock.
341 		 * In !PREEMPT configurations, there is no way to tell if we are
342 		 * in a RCU read-side critical section or not, so we never
343 		 * attempt any fixup and just print a warning.
344 		 */
345 #ifndef CONFIG_PREEMPT
346 		WARN_ON_ONCE(1);
347 		return 0;
348 #endif
349 		if (rcu_preempt_depth() != 0 || preempt_count() != 0 ||
350 		    irqs_disabled()) {
351 			WARN_ON_ONCE(1);
352 			return 0;
353 		}
354 		rcu_barrier();
355 		rcu_barrier_sched();
356 		rcu_barrier_bh();
357 		debug_object_free(head, &rcuhead_debug_descr);
358 		return 1;
359 	default:
360 		return 0;
361 	}
362 }
363 
364 /**
365  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
366  * @head: pointer to rcu_head structure to be initialized
367  *
368  * This function informs debugobjects of a new rcu_head structure that
369  * has been allocated as an auto variable on the stack.  This function
370  * is not required for rcu_head structures that are statically defined or
371  * that are dynamically allocated on the heap.  This function has no
372  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
373  */
init_rcu_head_on_stack(struct rcu_head * head)374 void init_rcu_head_on_stack(struct rcu_head *head)
375 {
376 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
377 }
378 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
379 
380 /**
381  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
382  * @head: pointer to rcu_head structure to be initialized
383  *
384  * This function informs debugobjects that an on-stack rcu_head structure
385  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
386  * function is not required for rcu_head structures that are statically
387  * defined or that are dynamically allocated on the heap.  Also as with
388  * init_rcu_head_on_stack(), this function has no effect for
389  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
390  */
destroy_rcu_head_on_stack(struct rcu_head * head)391 void destroy_rcu_head_on_stack(struct rcu_head *head)
392 {
393 	debug_object_free(head, &rcuhead_debug_descr);
394 }
395 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
396 
397 struct debug_obj_descr rcuhead_debug_descr = {
398 	.name = "rcu_head",
399 	.fixup_init = rcuhead_fixup_init,
400 	.fixup_activate = rcuhead_fixup_activate,
401 	.fixup_free = rcuhead_fixup_free,
402 };
403 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
404 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
405 
406 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
do_trace_rcu_torture_read(char * rcutorturename,struct rcu_head * rhp,unsigned long secs,unsigned long c_old,unsigned long c)407 void do_trace_rcu_torture_read(char *rcutorturename, struct rcu_head *rhp,
408 			       unsigned long secs,
409 			       unsigned long c_old, unsigned long c)
410 {
411 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
412 }
413 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
414 #else
415 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
416 	do { } while (0)
417 #endif
418 
419 #ifdef CONFIG_RCU_STALL_COMMON
420 
421 #ifdef CONFIG_PROVE_RCU
422 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
423 #else
424 #define RCU_STALL_DELAY_DELTA	       0
425 #endif
426 
427 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
428 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
429 
430 module_param(rcu_cpu_stall_suppress, int, 0644);
431 module_param(rcu_cpu_stall_timeout, int, 0644);
432 
rcu_jiffies_till_stall_check(void)433 int rcu_jiffies_till_stall_check(void)
434 {
435 	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
436 
437 	/*
438 	 * Limit check must be consistent with the Kconfig limits
439 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
440 	 */
441 	if (till_stall_check < 3) {
442 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
443 		till_stall_check = 3;
444 	} else if (till_stall_check > 300) {
445 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
446 		till_stall_check = 300;
447 	}
448 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
449 }
450 
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)451 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
452 {
453 	rcu_cpu_stall_suppress = 1;
454 	return NOTIFY_DONE;
455 }
456 
457 static struct notifier_block rcu_panic_block = {
458 	.notifier_call = rcu_panic,
459 };
460 
check_cpu_stall_init(void)461 static int __init check_cpu_stall_init(void)
462 {
463 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
464 	return 0;
465 }
466 early_initcall(check_cpu_stall_init);
467 
468 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
469