1 /*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/debugfs.h>
28 #include <linux/seq_file.h>
29
30 /* Global control variables for rcupdate callback mechanism. */
31 struct rcu_ctrlblk {
32 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
33 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
34 struct rcu_head **curtail; /* ->next pointer of last CB. */
35 RCU_TRACE(long qlen); /* Number of pending CBs. */
36 RCU_TRACE(unsigned long gp_start); /* Start time for stalls. */
37 RCU_TRACE(unsigned long ticks_this_gp); /* Statistic for stalls. */
38 RCU_TRACE(unsigned long jiffies_stall); /* Jiffies at next stall. */
39 RCU_TRACE(char *name); /* Name of RCU type. */
40 };
41
42 /* Definition for rcupdate control block. */
43 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
44 .donetail = &rcu_sched_ctrlblk.rcucblist,
45 .curtail = &rcu_sched_ctrlblk.rcucblist,
46 RCU_TRACE(.name = "rcu_sched")
47 };
48
49 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
50 .donetail = &rcu_bh_ctrlblk.rcucblist,
51 .curtail = &rcu_bh_ctrlblk.rcucblist,
52 RCU_TRACE(.name = "rcu_bh")
53 };
54
55 #ifdef CONFIG_DEBUG_LOCK_ALLOC
56 int rcu_scheduler_active __read_mostly;
57 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
58 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
59
60 #ifdef CONFIG_RCU_TRACE
61
check_cpu_stall(struct rcu_ctrlblk * rcp)62 static void check_cpu_stall(struct rcu_ctrlblk *rcp)
63 {
64 unsigned long j;
65 unsigned long js;
66
67 if (rcu_cpu_stall_suppress)
68 return;
69 rcp->ticks_this_gp++;
70 j = jiffies;
71 js = rcp->jiffies_stall;
72 if (*rcp->curtail && ULONG_CMP_GE(j, js)) {
73 pr_err("INFO: %s stall on CPU (%lu ticks this GP) idle=%llx (t=%lu jiffies q=%ld)\n",
74 rcp->name, rcp->ticks_this_gp, rcu_dynticks_nesting,
75 jiffies - rcp->gp_start, rcp->qlen);
76 dump_stack();
77 }
78 if (*rcp->curtail && ULONG_CMP_GE(j, js))
79 rcp->jiffies_stall = jiffies +
80 3 * rcu_jiffies_till_stall_check() + 3;
81 else if (ULONG_CMP_GE(j, js))
82 rcp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
83 }
84
85 static void check_cpu_stall_preempt(void);
86
87 #endif /* #ifdef CONFIG_RCU_TRACE */
88
reset_cpu_stall_ticks(struct rcu_ctrlblk * rcp)89 static void reset_cpu_stall_ticks(struct rcu_ctrlblk *rcp)
90 {
91 #ifdef CONFIG_RCU_TRACE
92 rcp->ticks_this_gp = 0;
93 rcp->gp_start = jiffies;
94 rcp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
95 #endif /* #ifdef CONFIG_RCU_TRACE */
96 }
97
check_cpu_stalls(void)98 static void check_cpu_stalls(void)
99 {
100 RCU_TRACE(check_cpu_stall(&rcu_bh_ctrlblk));
101 RCU_TRACE(check_cpu_stall(&rcu_sched_ctrlblk));
102 RCU_TRACE(check_cpu_stall_preempt());
103 }
104
105 #ifdef CONFIG_TINY_PREEMPT_RCU
106
107 #include <linux/delay.h>
108
109 /* Global control variables for preemptible RCU. */
110 struct rcu_preempt_ctrlblk {
111 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
112 struct rcu_head **nexttail;
113 /* Tasks blocked in a preemptible RCU */
114 /* read-side critical section while an */
115 /* preemptible-RCU grace period is in */
116 /* progress must wait for a later grace */
117 /* period. This pointer points to the */
118 /* ->next pointer of the last task that */
119 /* must wait for a later grace period, or */
120 /* to &->rcb.rcucblist if there is no */
121 /* such task. */
122 struct list_head blkd_tasks;
123 /* Tasks blocked in RCU read-side critical */
124 /* section. Tasks are placed at the head */
125 /* of this list and age towards the tail. */
126 struct list_head *gp_tasks;
127 /* Pointer to the first task blocking the */
128 /* current grace period, or NULL if there */
129 /* is no such task. */
130 struct list_head *exp_tasks;
131 /* Pointer to first task blocking the */
132 /* current expedited grace period, or NULL */
133 /* if there is no such task. If there */
134 /* is no current expedited grace period, */
135 /* then there cannot be any such task. */
136 #ifdef CONFIG_RCU_BOOST
137 struct list_head *boost_tasks;
138 /* Pointer to first task that needs to be */
139 /* priority-boosted, or NULL if no priority */
140 /* boosting is needed. If there is no */
141 /* current or expedited grace period, there */
142 /* can be no such task. */
143 #endif /* #ifdef CONFIG_RCU_BOOST */
144 u8 gpnum; /* Current grace period. */
145 u8 gpcpu; /* Last grace period blocked by the CPU. */
146 u8 completed; /* Last grace period completed. */
147 /* If all three are equal, RCU is idle. */
148 #ifdef CONFIG_RCU_BOOST
149 unsigned long boost_time; /* When to start boosting (jiffies) */
150 #endif /* #ifdef CONFIG_RCU_BOOST */
151 #ifdef CONFIG_RCU_TRACE
152 unsigned long n_grace_periods;
153 #ifdef CONFIG_RCU_BOOST
154 unsigned long n_tasks_boosted;
155 /* Total number of tasks boosted. */
156 unsigned long n_exp_boosts;
157 /* Number of tasks boosted for expedited GP. */
158 unsigned long n_normal_boosts;
159 /* Number of tasks boosted for normal GP. */
160 unsigned long n_balk_blkd_tasks;
161 /* Refused to boost: no blocked tasks. */
162 unsigned long n_balk_exp_gp_tasks;
163 /* Refused to boost: nothing blocking GP. */
164 unsigned long n_balk_boost_tasks;
165 /* Refused to boost: already boosting. */
166 unsigned long n_balk_notyet;
167 /* Refused to boost: not yet time. */
168 unsigned long n_balk_nos;
169 /* Refused to boost: not sure why, though. */
170 /* This can happen due to race conditions. */
171 #endif /* #ifdef CONFIG_RCU_BOOST */
172 #endif /* #ifdef CONFIG_RCU_TRACE */
173 };
174
175 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
176 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
177 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
178 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
179 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
180 RCU_TRACE(.rcb.name = "rcu_preempt")
181 };
182
183 static int rcu_preempted_readers_exp(void);
184 static void rcu_report_exp_done(void);
185
186 /*
187 * Return true if the CPU has not yet responded to the current grace period.
188 */
rcu_cpu_blocking_cur_gp(void)189 static int rcu_cpu_blocking_cur_gp(void)
190 {
191 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
192 }
193
194 /*
195 * Check for a running RCU reader. Because there is only one CPU,
196 * there can be but one running RCU reader at a time. ;-)
197 *
198 * Returns zero if there are no running readers. Returns a positive
199 * number if there is at least one reader within its RCU read-side
200 * critical section. Returns a negative number if an outermost reader
201 * is in the midst of exiting from its RCU read-side critical section
202 *
203 * Returns zero if there are no running readers. Returns a positive
204 * number if there is at least one reader within its RCU read-side
205 * critical section. Returns a negative number if an outermost reader
206 * is in the midst of exiting from its RCU read-side critical section.
207 */
rcu_preempt_running_reader(void)208 static int rcu_preempt_running_reader(void)
209 {
210 return current->rcu_read_lock_nesting;
211 }
212
213 /*
214 * Check for preempted RCU readers blocking any grace period.
215 * If the caller needs a reliable answer, it must disable hard irqs.
216 */
rcu_preempt_blocked_readers_any(void)217 static int rcu_preempt_blocked_readers_any(void)
218 {
219 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
220 }
221
222 /*
223 * Check for preempted RCU readers blocking the current grace period.
224 * If the caller needs a reliable answer, it must disable hard irqs.
225 */
rcu_preempt_blocked_readers_cgp(void)226 static int rcu_preempt_blocked_readers_cgp(void)
227 {
228 return rcu_preempt_ctrlblk.gp_tasks != NULL;
229 }
230
231 /*
232 * Return true if another preemptible-RCU grace period is needed.
233 */
rcu_preempt_needs_another_gp(void)234 static int rcu_preempt_needs_another_gp(void)
235 {
236 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
237 }
238
239 /*
240 * Return true if a preemptible-RCU grace period is in progress.
241 * The caller must disable hardirqs.
242 */
rcu_preempt_gp_in_progress(void)243 static int rcu_preempt_gp_in_progress(void)
244 {
245 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
246 }
247
248 /*
249 * Advance a ->blkd_tasks-list pointer to the next entry, instead
250 * returning NULL if at the end of the list.
251 */
rcu_next_node_entry(struct task_struct * t)252 static struct list_head *rcu_next_node_entry(struct task_struct *t)
253 {
254 struct list_head *np;
255
256 np = t->rcu_node_entry.next;
257 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
258 np = NULL;
259 return np;
260 }
261
262 #ifdef CONFIG_RCU_TRACE
263
264 #ifdef CONFIG_RCU_BOOST
265 static void rcu_initiate_boost_trace(void);
266 #endif /* #ifdef CONFIG_RCU_BOOST */
267
268 /*
269 * Dump additional statistice for TINY_PREEMPT_RCU.
270 */
show_tiny_preempt_stats(struct seq_file * m)271 static void show_tiny_preempt_stats(struct seq_file *m)
272 {
273 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
274 rcu_preempt_ctrlblk.rcb.qlen,
275 rcu_preempt_ctrlblk.n_grace_periods,
276 rcu_preempt_ctrlblk.gpnum,
277 rcu_preempt_ctrlblk.gpcpu,
278 rcu_preempt_ctrlblk.completed,
279 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
280 "N."[!rcu_preempt_ctrlblk.gp_tasks],
281 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
282 #ifdef CONFIG_RCU_BOOST
283 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
284 " ",
285 "B."[!rcu_preempt_ctrlblk.boost_tasks],
286 rcu_preempt_ctrlblk.n_tasks_boosted,
287 rcu_preempt_ctrlblk.n_exp_boosts,
288 rcu_preempt_ctrlblk.n_normal_boosts,
289 (int)(jiffies & 0xffff),
290 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
291 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
292 " balk",
293 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
294 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
295 rcu_preempt_ctrlblk.n_balk_boost_tasks,
296 rcu_preempt_ctrlblk.n_balk_notyet,
297 rcu_preempt_ctrlblk.n_balk_nos);
298 #endif /* #ifdef CONFIG_RCU_BOOST */
299 }
300
301 #endif /* #ifdef CONFIG_RCU_TRACE */
302
303 #ifdef CONFIG_RCU_BOOST
304
305 #include "rtmutex_common.h"
306
307 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
308
309 /* Controls for rcu_kthread() kthread. */
310 static struct task_struct *rcu_kthread_task;
311 static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
312 static unsigned long have_rcu_kthread_work;
313
314 /*
315 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
316 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
317 */
rcu_boost(void)318 static int rcu_boost(void)
319 {
320 unsigned long flags;
321 struct rt_mutex mtx;
322 struct task_struct *t;
323 struct list_head *tb;
324
325 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
326 rcu_preempt_ctrlblk.exp_tasks == NULL)
327 return 0; /* Nothing to boost. */
328
329 local_irq_save(flags);
330
331 /*
332 * Recheck with irqs disabled: all tasks in need of boosting
333 * might exit their RCU read-side critical sections on their own
334 * if we are preempted just before disabling irqs.
335 */
336 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
337 rcu_preempt_ctrlblk.exp_tasks == NULL) {
338 local_irq_restore(flags);
339 return 0;
340 }
341
342 /*
343 * Preferentially boost tasks blocking expedited grace periods.
344 * This cannot starve the normal grace periods because a second
345 * expedited grace period must boost all blocked tasks, including
346 * those blocking the pre-existing normal grace period.
347 */
348 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
349 tb = rcu_preempt_ctrlblk.exp_tasks;
350 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
351 } else {
352 tb = rcu_preempt_ctrlblk.boost_tasks;
353 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
354 }
355 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
356
357 /*
358 * We boost task t by manufacturing an rt_mutex that appears to
359 * be held by task t. We leave a pointer to that rt_mutex where
360 * task t can find it, and task t will release the mutex when it
361 * exits its outermost RCU read-side critical section. Then
362 * simply acquiring this artificial rt_mutex will boost task
363 * t's priority. (Thanks to tglx for suggesting this approach!)
364 */
365 t = container_of(tb, struct task_struct, rcu_node_entry);
366 rt_mutex_init_proxy_locked(&mtx, t);
367 t->rcu_boost_mutex = &mtx;
368 local_irq_restore(flags);
369 rt_mutex_lock(&mtx);
370 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
371
372 return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
373 ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
374 }
375
376 /*
377 * Check to see if it is now time to start boosting RCU readers blocking
378 * the current grace period, and, if so, tell the rcu_kthread_task to
379 * start boosting them. If there is an expedited boost in progress,
380 * we wait for it to complete.
381 *
382 * If there are no blocked readers blocking the current grace period,
383 * return 0 to let the caller know, otherwise return 1. Note that this
384 * return value is independent of whether or not boosting was done.
385 */
rcu_initiate_boost(void)386 static int rcu_initiate_boost(void)
387 {
388 if (!rcu_preempt_blocked_readers_cgp() &&
389 rcu_preempt_ctrlblk.exp_tasks == NULL) {
390 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
391 return 0;
392 }
393 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
394 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
395 rcu_preempt_ctrlblk.boost_tasks == NULL &&
396 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
397 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
398 rcu_preempt_ctrlblk.boost_tasks =
399 rcu_preempt_ctrlblk.gp_tasks;
400 invoke_rcu_callbacks();
401 } else {
402 RCU_TRACE(rcu_initiate_boost_trace());
403 }
404 return 1;
405 }
406
407 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
408
409 /*
410 * Do priority-boost accounting for the start of a new grace period.
411 */
rcu_preempt_boost_start_gp(void)412 static void rcu_preempt_boost_start_gp(void)
413 {
414 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
415 }
416
417 #else /* #ifdef CONFIG_RCU_BOOST */
418
419 /*
420 * If there is no RCU priority boosting, we don't initiate boosting,
421 * but we do indicate whether there are blocked readers blocking the
422 * current grace period.
423 */
rcu_initiate_boost(void)424 static int rcu_initiate_boost(void)
425 {
426 return rcu_preempt_blocked_readers_cgp();
427 }
428
429 /*
430 * If there is no RCU priority boosting, nothing to do at grace-period start.
431 */
rcu_preempt_boost_start_gp(void)432 static void rcu_preempt_boost_start_gp(void)
433 {
434 }
435
436 #endif /* else #ifdef CONFIG_RCU_BOOST */
437
438 /*
439 * Record a preemptible-RCU quiescent state for the specified CPU. Note
440 * that this just means that the task currently running on the CPU is
441 * in a quiescent state. There might be any number of tasks blocked
442 * while in an RCU read-side critical section.
443 *
444 * Unlike the other rcu_*_qs() functions, callers to this function
445 * must disable irqs in order to protect the assignment to
446 * ->rcu_read_unlock_special.
447 *
448 * Because this is a single-CPU implementation, the only way a grace
449 * period can end is if the CPU is in a quiescent state. The reason is
450 * that a blocked preemptible-RCU reader can exit its critical section
451 * only if the CPU is running it at the time. Therefore, when the
452 * last task blocking the current grace period exits its RCU read-side
453 * critical section, neither the CPU nor blocked tasks will be stopping
454 * the current grace period. (In contrast, SMP implementations
455 * might have CPUs running in RCU read-side critical sections that
456 * block later grace periods -- but this is not possible given only
457 * one CPU.)
458 */
rcu_preempt_cpu_qs(void)459 static void rcu_preempt_cpu_qs(void)
460 {
461 /* Record both CPU and task as having responded to current GP. */
462 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
463 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
464
465 /* If there is no GP then there is nothing more to do. */
466 if (!rcu_preempt_gp_in_progress())
467 return;
468 /*
469 * Check up on boosting. If there are readers blocking the
470 * current grace period, leave.
471 */
472 if (rcu_initiate_boost())
473 return;
474
475 /* Advance callbacks. */
476 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
477 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
478 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
479
480 /* If there are no blocked readers, next GP is done instantly. */
481 if (!rcu_preempt_blocked_readers_any())
482 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
483
484 /* If there are done callbacks, cause them to be invoked. */
485 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
486 invoke_rcu_callbacks();
487 }
488
489 /*
490 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
491 */
rcu_preempt_start_gp(void)492 static void rcu_preempt_start_gp(void)
493 {
494 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
495
496 /* Official start of GP. */
497 rcu_preempt_ctrlblk.gpnum++;
498 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
499 reset_cpu_stall_ticks(&rcu_preempt_ctrlblk.rcb);
500
501 /* Any blocked RCU readers block new GP. */
502 if (rcu_preempt_blocked_readers_any())
503 rcu_preempt_ctrlblk.gp_tasks =
504 rcu_preempt_ctrlblk.blkd_tasks.next;
505
506 /* Set up for RCU priority boosting. */
507 rcu_preempt_boost_start_gp();
508
509 /* If there is no running reader, CPU is done with GP. */
510 if (!rcu_preempt_running_reader())
511 rcu_preempt_cpu_qs();
512 }
513 }
514
515 /*
516 * We have entered the scheduler, and the current task might soon be
517 * context-switched away from. If this task is in an RCU read-side
518 * critical section, we will no longer be able to rely on the CPU to
519 * record that fact, so we enqueue the task on the blkd_tasks list.
520 * If the task started after the current grace period began, as recorded
521 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
522 * before the element referenced by ->gp_tasks (or at the tail if
523 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
524 * The task will dequeue itself when it exits the outermost enclosing
525 * RCU read-side critical section. Therefore, the current grace period
526 * cannot be permitted to complete until the ->gp_tasks pointer becomes
527 * NULL.
528 *
529 * Caller must disable preemption.
530 */
rcu_preempt_note_context_switch(void)531 void rcu_preempt_note_context_switch(void)
532 {
533 struct task_struct *t = current;
534 unsigned long flags;
535
536 local_irq_save(flags); /* must exclude scheduler_tick(). */
537 if (rcu_preempt_running_reader() > 0 &&
538 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
539
540 /* Possibly blocking in an RCU read-side critical section. */
541 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
542
543 /*
544 * If this CPU has already checked in, then this task
545 * will hold up the next grace period rather than the
546 * current grace period. Queue the task accordingly.
547 * If the task is queued for the current grace period
548 * (i.e., this CPU has not yet passed through a quiescent
549 * state for the current grace period), then as long
550 * as that task remains queued, the current grace period
551 * cannot end.
552 */
553 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
554 if (rcu_cpu_blocking_cur_gp())
555 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
556 } else if (rcu_preempt_running_reader() < 0 &&
557 t->rcu_read_unlock_special) {
558 /*
559 * Complete exit from RCU read-side critical section on
560 * behalf of preempted instance of __rcu_read_unlock().
561 */
562 rcu_read_unlock_special(t);
563 }
564
565 /*
566 * Either we were not in an RCU read-side critical section to
567 * begin with, or we have now recorded that critical section
568 * globally. Either way, we can now note a quiescent state
569 * for this CPU. Again, if we were in an RCU read-side critical
570 * section, and if that critical section was blocking the current
571 * grace period, then the fact that the task has been enqueued
572 * means that current grace period continues to be blocked.
573 */
574 rcu_preempt_cpu_qs();
575 local_irq_restore(flags);
576 }
577
578 /*
579 * Handle special cases during rcu_read_unlock(), such as needing to
580 * notify RCU core processing or task having blocked during the RCU
581 * read-side critical section.
582 */
rcu_read_unlock_special(struct task_struct * t)583 void rcu_read_unlock_special(struct task_struct *t)
584 {
585 int empty;
586 int empty_exp;
587 unsigned long flags;
588 struct list_head *np;
589 #ifdef CONFIG_RCU_BOOST
590 struct rt_mutex *rbmp = NULL;
591 #endif /* #ifdef CONFIG_RCU_BOOST */
592 int special;
593
594 /*
595 * NMI handlers cannot block and cannot safely manipulate state.
596 * They therefore cannot possibly be special, so just leave.
597 */
598 if (in_nmi())
599 return;
600
601 local_irq_save(flags);
602
603 /*
604 * If RCU core is waiting for this CPU to exit critical section,
605 * let it know that we have done so.
606 */
607 special = t->rcu_read_unlock_special;
608 if (special & RCU_READ_UNLOCK_NEED_QS)
609 rcu_preempt_cpu_qs();
610
611 /* Hardware IRQ handlers cannot block. */
612 if (in_irq() || in_serving_softirq()) {
613 local_irq_restore(flags);
614 return;
615 }
616
617 /* Clean up if blocked during RCU read-side critical section. */
618 if (special & RCU_READ_UNLOCK_BLOCKED) {
619 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
620
621 /*
622 * Remove this task from the ->blkd_tasks list and adjust
623 * any pointers that might have been referencing it.
624 */
625 empty = !rcu_preempt_blocked_readers_cgp();
626 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
627 np = rcu_next_node_entry(t);
628 list_del_init(&t->rcu_node_entry);
629 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
630 rcu_preempt_ctrlblk.gp_tasks = np;
631 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
632 rcu_preempt_ctrlblk.exp_tasks = np;
633 #ifdef CONFIG_RCU_BOOST
634 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
635 rcu_preempt_ctrlblk.boost_tasks = np;
636 #endif /* #ifdef CONFIG_RCU_BOOST */
637
638 /*
639 * If this was the last task on the current list, and if
640 * we aren't waiting on the CPU, report the quiescent state
641 * and start a new grace period if needed.
642 */
643 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
644 rcu_preempt_cpu_qs();
645 rcu_preempt_start_gp();
646 }
647
648 /*
649 * If this was the last task on the expedited lists,
650 * then we need wake up the waiting task.
651 */
652 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
653 rcu_report_exp_done();
654 }
655 #ifdef CONFIG_RCU_BOOST
656 /* Unboost self if was boosted. */
657 if (t->rcu_boost_mutex != NULL) {
658 rbmp = t->rcu_boost_mutex;
659 t->rcu_boost_mutex = NULL;
660 rt_mutex_unlock(rbmp);
661 }
662 #endif /* #ifdef CONFIG_RCU_BOOST */
663 local_irq_restore(flags);
664 }
665
666 /*
667 * Check for a quiescent state from the current CPU. When a task blocks,
668 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
669 * checked elsewhere. This is called from the scheduling-clock interrupt.
670 *
671 * Caller must disable hard irqs.
672 */
rcu_preempt_check_callbacks(void)673 static void rcu_preempt_check_callbacks(void)
674 {
675 struct task_struct *t = current;
676
677 if (rcu_preempt_gp_in_progress() &&
678 (!rcu_preempt_running_reader() ||
679 !rcu_cpu_blocking_cur_gp()))
680 rcu_preempt_cpu_qs();
681 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
682 rcu_preempt_ctrlblk.rcb.donetail)
683 invoke_rcu_callbacks();
684 if (rcu_preempt_gp_in_progress() &&
685 rcu_cpu_blocking_cur_gp() &&
686 rcu_preempt_running_reader() > 0)
687 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
688 }
689
690 /*
691 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
692 * update, so this is invoked from rcu_process_callbacks() to
693 * handle that case. Of course, it is invoked for all flavors of
694 * RCU, but RCU callbacks can appear only on one of the lists, and
695 * neither ->nexttail nor ->donetail can possibly be NULL, so there
696 * is no need for an explicit check.
697 */
rcu_preempt_remove_callbacks(struct rcu_ctrlblk * rcp)698 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
699 {
700 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
701 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
702 }
703
704 /*
705 * Process callbacks for preemptible RCU.
706 */
rcu_preempt_process_callbacks(void)707 static void rcu_preempt_process_callbacks(void)
708 {
709 __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
710 }
711
712 /*
713 * Queue a preemptible -RCU callback for invocation after a grace period.
714 */
call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu))715 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
716 {
717 unsigned long flags;
718
719 debug_rcu_head_queue(head);
720 head->func = func;
721 head->next = NULL;
722
723 local_irq_save(flags);
724 *rcu_preempt_ctrlblk.nexttail = head;
725 rcu_preempt_ctrlblk.nexttail = &head->next;
726 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
727 rcu_preempt_start_gp(); /* checks to see if GP needed. */
728 local_irq_restore(flags);
729 }
730 EXPORT_SYMBOL_GPL(call_rcu);
731
732 /*
733 * synchronize_rcu - wait until a grace period has elapsed.
734 *
735 * Control will return to the caller some time after a full grace
736 * period has elapsed, in other words after all currently executing RCU
737 * read-side critical sections have completed. RCU read-side critical
738 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
739 * and may be nested.
740 */
synchronize_rcu(void)741 void synchronize_rcu(void)
742 {
743 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
744 !lock_is_held(&rcu_lock_map) &&
745 !lock_is_held(&rcu_sched_lock_map),
746 "Illegal synchronize_rcu() in RCU read-side critical section");
747
748 #ifdef CONFIG_DEBUG_LOCK_ALLOC
749 if (!rcu_scheduler_active)
750 return;
751 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
752
753 WARN_ON_ONCE(rcu_preempt_running_reader());
754 if (!rcu_preempt_blocked_readers_any())
755 return;
756
757 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
758 if (rcu_expedited)
759 synchronize_rcu_expedited();
760 else
761 rcu_barrier();
762 }
763 EXPORT_SYMBOL_GPL(synchronize_rcu);
764
765 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
766 static unsigned long sync_rcu_preempt_exp_count;
767 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
768
769 /*
770 * Return non-zero if there are any tasks in RCU read-side critical
771 * sections blocking the current preemptible-RCU expedited grace period.
772 * If there is no preemptible-RCU expedited grace period currently in
773 * progress, returns zero unconditionally.
774 */
rcu_preempted_readers_exp(void)775 static int rcu_preempted_readers_exp(void)
776 {
777 return rcu_preempt_ctrlblk.exp_tasks != NULL;
778 }
779
780 /*
781 * Report the exit from RCU read-side critical section for the last task
782 * that queued itself during or before the current expedited preemptible-RCU
783 * grace period.
784 */
rcu_report_exp_done(void)785 static void rcu_report_exp_done(void)
786 {
787 wake_up(&sync_rcu_preempt_exp_wq);
788 }
789
790 /*
791 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
792 * is to rely in the fact that there is but one CPU, and that it is
793 * illegal for a task to invoke synchronize_rcu_expedited() while in a
794 * preemptible-RCU read-side critical section. Therefore, any such
795 * critical sections must correspond to blocked tasks, which must therefore
796 * be on the ->blkd_tasks list. So just record the current head of the
797 * list in the ->exp_tasks pointer, and wait for all tasks including and
798 * after the task pointed to by ->exp_tasks to drain.
799 */
synchronize_rcu_expedited(void)800 void synchronize_rcu_expedited(void)
801 {
802 unsigned long flags;
803 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
804 unsigned long snap;
805
806 barrier(); /* ensure prior action seen before grace period. */
807
808 WARN_ON_ONCE(rcu_preempt_running_reader());
809
810 /*
811 * Acquire lock so that there is only one preemptible RCU grace
812 * period in flight. Of course, if someone does the expedited
813 * grace period for us while we are acquiring the lock, just leave.
814 */
815 snap = sync_rcu_preempt_exp_count + 1;
816 mutex_lock(&sync_rcu_preempt_exp_mutex);
817 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
818 goto unlock_mb_ret; /* Others did our work for us. */
819
820 local_irq_save(flags);
821
822 /*
823 * All RCU readers have to already be on blkd_tasks because
824 * we cannot legally be executing in an RCU read-side critical
825 * section.
826 */
827
828 /* Snapshot current head of ->blkd_tasks list. */
829 rpcp->exp_tasks = rpcp->blkd_tasks.next;
830 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
831 rpcp->exp_tasks = NULL;
832
833 /* Wait for tail of ->blkd_tasks list to drain. */
834 if (!rcu_preempted_readers_exp()) {
835 local_irq_restore(flags);
836 } else {
837 rcu_initiate_boost();
838 local_irq_restore(flags);
839 wait_event(sync_rcu_preempt_exp_wq,
840 !rcu_preempted_readers_exp());
841 }
842
843 /* Clean up and exit. */
844 barrier(); /* ensure expedited GP seen before counter increment. */
845 sync_rcu_preempt_exp_count++;
846 unlock_mb_ret:
847 mutex_unlock(&sync_rcu_preempt_exp_mutex);
848 barrier(); /* ensure subsequent action seen after grace period. */
849 }
850 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
851
852 /*
853 * Does preemptible RCU need the CPU to stay out of dynticks mode?
854 */
rcu_preempt_needs_cpu(void)855 int rcu_preempt_needs_cpu(void)
856 {
857 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
858 }
859
860 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
861
862 #ifdef CONFIG_RCU_TRACE
863
864 /*
865 * Because preemptible RCU does not exist, it is not necessary to
866 * dump out its statistics.
867 */
show_tiny_preempt_stats(struct seq_file * m)868 static void show_tiny_preempt_stats(struct seq_file *m)
869 {
870 }
871
872 #endif /* #ifdef CONFIG_RCU_TRACE */
873
874 /*
875 * Because preemptible RCU does not exist, it never has any callbacks
876 * to check.
877 */
rcu_preempt_check_callbacks(void)878 static void rcu_preempt_check_callbacks(void)
879 {
880 }
881
882 /*
883 * Because preemptible RCU does not exist, it never has any callbacks
884 * to remove.
885 */
rcu_preempt_remove_callbacks(struct rcu_ctrlblk * rcp)886 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
887 {
888 }
889
890 /*
891 * Because preemptible RCU does not exist, it never has any callbacks
892 * to process.
893 */
rcu_preempt_process_callbacks(void)894 static void rcu_preempt_process_callbacks(void)
895 {
896 }
897
898 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
899
900 #ifdef CONFIG_RCU_BOOST
901
902 /*
903 * Wake up rcu_kthread() to process callbacks now eligible for invocation
904 * or to boost readers.
905 */
invoke_rcu_callbacks(void)906 static void invoke_rcu_callbacks(void)
907 {
908 have_rcu_kthread_work = 1;
909 if (rcu_kthread_task != NULL)
910 wake_up(&rcu_kthread_wq);
911 }
912
913 #ifdef CONFIG_RCU_TRACE
914
915 /*
916 * Is the current CPU running the RCU-callbacks kthread?
917 * Caller must have preemption disabled.
918 */
rcu_is_callbacks_kthread(void)919 static bool rcu_is_callbacks_kthread(void)
920 {
921 return rcu_kthread_task == current;
922 }
923
924 #endif /* #ifdef CONFIG_RCU_TRACE */
925
926 /*
927 * This kthread invokes RCU callbacks whose grace periods have
928 * elapsed. It is awakened as needed, and takes the place of the
929 * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
930 * This is a kthread, but it is never stopped, at least not until
931 * the system goes down.
932 */
rcu_kthread(void * arg)933 static int rcu_kthread(void *arg)
934 {
935 unsigned long work;
936 unsigned long morework;
937 unsigned long flags;
938
939 for (;;) {
940 wait_event_interruptible(rcu_kthread_wq,
941 have_rcu_kthread_work != 0);
942 morework = rcu_boost();
943 local_irq_save(flags);
944 work = have_rcu_kthread_work;
945 have_rcu_kthread_work = morework;
946 local_irq_restore(flags);
947 if (work)
948 rcu_process_callbacks(NULL);
949 schedule_timeout_interruptible(1); /* Leave CPU for others. */
950 }
951
952 return 0; /* Not reached, but needed to shut gcc up. */
953 }
954
955 /*
956 * Spawn the kthread that invokes RCU callbacks.
957 */
rcu_spawn_kthreads(void)958 static int __init rcu_spawn_kthreads(void)
959 {
960 struct sched_param sp;
961
962 rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
963 sp.sched_priority = RCU_BOOST_PRIO;
964 sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
965 return 0;
966 }
967 early_initcall(rcu_spawn_kthreads);
968
969 #else /* #ifdef CONFIG_RCU_BOOST */
970
971 /* Hold off callback invocation until early_initcall() time. */
972 static int rcu_scheduler_fully_active __read_mostly;
973
974 /*
975 * Start up softirq processing of callbacks.
976 */
invoke_rcu_callbacks(void)977 void invoke_rcu_callbacks(void)
978 {
979 if (rcu_scheduler_fully_active)
980 raise_softirq(RCU_SOFTIRQ);
981 }
982
983 #ifdef CONFIG_RCU_TRACE
984
985 /*
986 * There is no callback kthread, so this thread is never it.
987 */
rcu_is_callbacks_kthread(void)988 static bool rcu_is_callbacks_kthread(void)
989 {
990 return false;
991 }
992
993 #endif /* #ifdef CONFIG_RCU_TRACE */
994
rcu_scheduler_really_started(void)995 static int __init rcu_scheduler_really_started(void)
996 {
997 rcu_scheduler_fully_active = 1;
998 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
999 raise_softirq(RCU_SOFTIRQ); /* Invoke any callbacks from early boot. */
1000 return 0;
1001 }
1002 early_initcall(rcu_scheduler_really_started);
1003
1004 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1005
1006 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1007 #include <linux/kernel_stat.h>
1008
1009 /*
1010 * During boot, we forgive RCU lockdep issues. After this function is
1011 * invoked, we start taking RCU lockdep issues seriously.
1012 */
rcu_scheduler_starting(void)1013 void __init rcu_scheduler_starting(void)
1014 {
1015 WARN_ON(nr_context_switches() > 0);
1016 rcu_scheduler_active = 1;
1017 }
1018
1019 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1020
1021 #ifdef CONFIG_RCU_TRACE
1022
1023 #ifdef CONFIG_RCU_BOOST
1024
rcu_initiate_boost_trace(void)1025 static void rcu_initiate_boost_trace(void)
1026 {
1027 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
1028 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
1029 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
1030 rcu_preempt_ctrlblk.exp_tasks == NULL)
1031 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
1032 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
1033 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
1034 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
1035 rcu_preempt_ctrlblk.n_balk_notyet++;
1036 else
1037 rcu_preempt_ctrlblk.n_balk_nos++;
1038 }
1039
1040 #endif /* #ifdef CONFIG_RCU_BOOST */
1041
rcu_trace_sub_qlen(struct rcu_ctrlblk * rcp,int n)1042 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
1043 {
1044 unsigned long flags;
1045
1046 local_irq_save(flags);
1047 rcp->qlen -= n;
1048 local_irq_restore(flags);
1049 }
1050
1051 /*
1052 * Dump statistics for TINY_RCU, such as they are.
1053 */
show_tiny_stats(struct seq_file * m,void * unused)1054 static int show_tiny_stats(struct seq_file *m, void *unused)
1055 {
1056 show_tiny_preempt_stats(m);
1057 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1058 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1059 return 0;
1060 }
1061
show_tiny_stats_open(struct inode * inode,struct file * file)1062 static int show_tiny_stats_open(struct inode *inode, struct file *file)
1063 {
1064 return single_open(file, show_tiny_stats, NULL);
1065 }
1066
1067 static const struct file_operations show_tiny_stats_fops = {
1068 .owner = THIS_MODULE,
1069 .open = show_tiny_stats_open,
1070 .read = seq_read,
1071 .llseek = seq_lseek,
1072 .release = single_release,
1073 };
1074
1075 static struct dentry *rcudir;
1076
rcutiny_trace_init(void)1077 static int __init rcutiny_trace_init(void)
1078 {
1079 struct dentry *retval;
1080
1081 rcudir = debugfs_create_dir("rcu", NULL);
1082 if (!rcudir)
1083 goto free_out;
1084 retval = debugfs_create_file("rcudata", 0444, rcudir,
1085 NULL, &show_tiny_stats_fops);
1086 if (!retval)
1087 goto free_out;
1088 return 0;
1089 free_out:
1090 debugfs_remove_recursive(rcudir);
1091 return 1;
1092 }
1093
rcutiny_trace_cleanup(void)1094 static void __exit rcutiny_trace_cleanup(void)
1095 {
1096 debugfs_remove_recursive(rcudir);
1097 }
1098
1099 module_init(rcutiny_trace_init);
1100 module_exit(rcutiny_trace_cleanup);
1101
1102 MODULE_AUTHOR("Paul E. McKenney");
1103 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1104 MODULE_LICENSE("GPL");
1105
check_cpu_stall_preempt(void)1106 static void check_cpu_stall_preempt(void)
1107 {
1108 #ifdef CONFIG_TINY_PREEMPT_RCU
1109 check_cpu_stall(&rcu_preempt_ctrlblk.rcb);
1110 #endif /* #ifdef CONFIG_TINY_PREEMPT_RCU */
1111 }
1112
1113 #endif /* #ifdef CONFIG_RCU_TRACE */
1114