• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59 
60 #include "rcu.h"
61 
62 /* Data structures. */
63 
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66 
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 	.level = { &sname##_state.node[0] }, \
69 	.call = cr, \
70 	.fqs_state = RCU_GP_IDLE, \
71 	.gpnum = 0UL - 300UL, \
72 	.completed = 0UL - 300UL, \
73 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 	.orphan_donetail = &sname##_state.orphan_donelist, \
76 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 	.name = #sname, \
79 	.abbr = sabbr, \
80 }
81 
82 struct rcu_state rcu_sched_state =
83 	RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85 
86 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88 
89 static struct rcu_state *rcu_state;
90 LIST_HEAD(rcu_struct_flavors);
91 
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94 module_param(rcu_fanout_leaf, int, 0444);
95 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96 static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
97 	NUM_RCU_LVL_0,
98 	NUM_RCU_LVL_1,
99 	NUM_RCU_LVL_2,
100 	NUM_RCU_LVL_3,
101 	NUM_RCU_LVL_4,
102 };
103 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
104 
105 /*
106  * The rcu_scheduler_active variable transitions from zero to one just
107  * before the first task is spawned.  So when this variable is zero, RCU
108  * can assume that there is but one task, allowing RCU to (for example)
109  * optimize synchronize_sched() to a simple barrier().  When this variable
110  * is one, RCU must actually do all the hard work required to detect real
111  * grace periods.  This variable is also used to suppress boot-time false
112  * positives from lockdep-RCU error checking.
113  */
114 int rcu_scheduler_active __read_mostly;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
116 
117 /*
118  * The rcu_scheduler_fully_active variable transitions from zero to one
119  * during the early_initcall() processing, which is after the scheduler
120  * is capable of creating new tasks.  So RCU processing (for example,
121  * creating tasks for RCU priority boosting) must be delayed until after
122  * rcu_scheduler_fully_active transitions from zero to one.  We also
123  * currently delay invocation of any RCU callbacks until after this point.
124  *
125  * It might later prove better for people registering RCU callbacks during
126  * early boot to take responsibility for these callbacks, but one step at
127  * a time.
128  */
129 static int rcu_scheduler_fully_active __read_mostly;
130 
131 #ifdef CONFIG_RCU_BOOST
132 
133 /*
134  * Control variables for per-CPU and per-rcu_node kthreads.  These
135  * handle all flavors of RCU.
136  */
137 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work);
141 
142 #endif /* #ifdef CONFIG_RCU_BOOST */
143 
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
147 
148 /*
149  * Track the rcutorture test sequence number and the update version
150  * number within a given test.  The rcutorture_testseq is incremented
151  * on every rcutorture module load and unload, so has an odd value
152  * when a test is running.  The rcutorture_vernum is set to zero
153  * when rcutorture starts and is incremented on each rcutorture update.
154  * These variables enable correlating rcutorture output with the
155  * RCU tracing information.
156  */
157 unsigned long rcutorture_testseq;
158 unsigned long rcutorture_vernum;
159 
160 /*
161  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
162  * permit this function to be invoked without holding the root rcu_node
163  * structure's ->lock, but of course results can be subject to change.
164  */
rcu_gp_in_progress(struct rcu_state * rsp)165 static int rcu_gp_in_progress(struct rcu_state *rsp)
166 {
167 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
168 }
169 
170 /*
171  * Note a quiescent state.  Because we do not need to know
172  * how many quiescent states passed, just if there was at least
173  * one since the start of the grace period, this just sets a flag.
174  * The caller must have disabled preemption.
175  */
rcu_sched_qs(int cpu)176 void rcu_sched_qs(int cpu)
177 {
178 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
179 
180 	if (rdp->passed_quiesce == 0)
181 		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 	rdp->passed_quiesce = 1;
183 }
184 
rcu_bh_qs(int cpu)185 void rcu_bh_qs(int cpu)
186 {
187 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188 
189 	if (rdp->passed_quiesce == 0)
190 		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191 	rdp->passed_quiesce = 1;
192 }
193 
194 /*
195  * Note a context switch.  This is a quiescent state for RCU-sched,
196  * and requires special handling for preemptible RCU.
197  * The caller must have disabled preemption.
198  */
rcu_note_context_switch(int cpu)199 void rcu_note_context_switch(int cpu)
200 {
201 	trace_rcu_utilization("Start context switch");
202 	rcu_sched_qs(cpu);
203 	rcu_preempt_note_context_switch(cpu);
204 	trace_rcu_utilization("End context switch");
205 }
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207 
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 	.dynticks = ATOMIC_INIT(1),
211 };
212 
213 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
214 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
215 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
216 
217 module_param(blimit, long, 0444);
218 module_param(qhimark, long, 0444);
219 module_param(qlowmark, long, 0444);
220 
221 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
223 
224 module_param(jiffies_till_first_fqs, ulong, 0644);
225 module_param(jiffies_till_next_fqs, ulong, 0644);
226 
227 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
228 				  struct rcu_data *rdp);
229 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
230 static void force_quiescent_state(struct rcu_state *rsp);
231 static int rcu_pending(int cpu);
232 
233 /*
234  * Return the number of RCU-sched batches processed thus far for debug & stats.
235  */
rcu_batches_completed_sched(void)236 long rcu_batches_completed_sched(void)
237 {
238 	return rcu_sched_state.completed;
239 }
240 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
241 
242 /*
243  * Return the number of RCU BH batches processed thus far for debug & stats.
244  */
rcu_batches_completed_bh(void)245 long rcu_batches_completed_bh(void)
246 {
247 	return rcu_bh_state.completed;
248 }
249 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
250 
251 /*
252  * Force a quiescent state for RCU BH.
253  */
rcu_bh_force_quiescent_state(void)254 void rcu_bh_force_quiescent_state(void)
255 {
256 	force_quiescent_state(&rcu_bh_state);
257 }
258 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
259 
260 /*
261  * Record the number of times rcutorture tests have been initiated and
262  * terminated.  This information allows the debugfs tracing stats to be
263  * correlated to the rcutorture messages, even when the rcutorture module
264  * is being repeatedly loaded and unloaded.  In other words, we cannot
265  * store this state in rcutorture itself.
266  */
rcutorture_record_test_transition(void)267 void rcutorture_record_test_transition(void)
268 {
269 	rcutorture_testseq++;
270 	rcutorture_vernum = 0;
271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
273 
274 /*
275  * Record the number of writer passes through the current rcutorture test.
276  * This is also used to correlate debugfs tracing stats with the rcutorture
277  * messages.
278  */
rcutorture_record_progress(unsigned long vernum)279 void rcutorture_record_progress(unsigned long vernum)
280 {
281 	rcutorture_vernum++;
282 }
283 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
284 
285 /*
286  * Force a quiescent state for RCU-sched.
287  */
rcu_sched_force_quiescent_state(void)288 void rcu_sched_force_quiescent_state(void)
289 {
290 	force_quiescent_state(&rcu_sched_state);
291 }
292 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
293 
294 /*
295  * Does the CPU have callbacks ready to be invoked?
296  */
297 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)298 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
299 {
300 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
301 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
302 }
303 
304 /*
305  * Does the current CPU require a not-yet-started grace period?
306  * The caller must have disabled interrupts to prevent races with
307  * normal callback registry.
308  */
309 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)310 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311 {
312 	int i;
313 
314 	if (rcu_gp_in_progress(rsp))
315 		return 0;  /* No, a grace period is already in progress. */
316 	if (rcu_nocb_needs_gp(rsp))
317 		return 1;  /* Yes, a no-CBs CPU needs one. */
318 	if (!rdp->nxttail[RCU_NEXT_TAIL])
319 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
320 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
321 		return 1;  /* Yes, this CPU has newly registered callbacks. */
322 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
323 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
324 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
325 				 rdp->nxtcompleted[i]))
326 			return 1;  /* Yes, CBs for future grace period. */
327 	return 0; /* No grace period needed. */
328 }
329 
330 /*
331  * Return the root node of the specified rcu_state structure.
332  */
rcu_get_root(struct rcu_state * rsp)333 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
334 {
335 	return &rsp->node[0];
336 }
337 
338 /*
339  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
340  *
341  * If the new value of the ->dynticks_nesting counter now is zero,
342  * we really have entered idle, and must do the appropriate accounting.
343  * The caller must have disabled interrupts.
344  */
rcu_eqs_enter_common(struct rcu_dynticks * rdtp,long long oldval,bool user)345 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
346 				bool user)
347 {
348 	trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
349 	if (!user && !is_idle_task(current)) {
350 		struct task_struct *idle = idle_task(smp_processor_id());
351 
352 		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
353 		ftrace_dump(DUMP_ORIG);
354 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 			  current->pid, current->comm,
356 			  idle->pid, idle->comm); /* must be idle task! */
357 	}
358 	rcu_prepare_for_idle(smp_processor_id());
359 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 	smp_mb__before_atomic_inc();  /* See above. */
361 	atomic_inc(&rdtp->dynticks);
362 	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
363 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
364 
365 	/*
366 	 * It is illegal to enter an extended quiescent state while
367 	 * in an RCU read-side critical section.
368 	 */
369 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
370 			   "Illegal idle entry in RCU read-side critical section.");
371 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
372 			   "Illegal idle entry in RCU-bh read-side critical section.");
373 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
374 			   "Illegal idle entry in RCU-sched read-side critical section.");
375 }
376 
377 /*
378  * Enter an RCU extended quiescent state, which can be either the
379  * idle loop or adaptive-tickless usermode execution.
380  */
rcu_eqs_enter(bool user)381 static void rcu_eqs_enter(bool user)
382 {
383 	long long oldval;
384 	struct rcu_dynticks *rdtp;
385 
386 	rdtp = &__get_cpu_var(rcu_dynticks);
387 	oldval = rdtp->dynticks_nesting;
388 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
389 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
390 		rdtp->dynticks_nesting = 0;
391 	else
392 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
393 	rcu_eqs_enter_common(rdtp, oldval, user);
394 }
395 
396 /**
397  * rcu_idle_enter - inform RCU that current CPU is entering idle
398  *
399  * Enter idle mode, in other words, -leave- the mode in which RCU
400  * read-side critical sections can occur.  (Though RCU read-side
401  * critical sections can occur in irq handlers in idle, a possibility
402  * handled by irq_enter() and irq_exit().)
403  *
404  * We crowbar the ->dynticks_nesting field to zero to allow for
405  * the possibility of usermode upcalls having messed up our count
406  * of interrupt nesting level during the prior busy period.
407  */
rcu_idle_enter(void)408 void rcu_idle_enter(void)
409 {
410 	unsigned long flags;
411 
412 	local_irq_save(flags);
413 	rcu_eqs_enter(false);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL_GPL(rcu_idle_enter);
417 
418 #ifdef CONFIG_RCU_USER_QS
419 /**
420  * rcu_user_enter - inform RCU that we are resuming userspace.
421  *
422  * Enter RCU idle mode right before resuming userspace.  No use of RCU
423  * is permitted between this call and rcu_user_exit(). This way the
424  * CPU doesn't need to maintain the tick for RCU maintenance purposes
425  * when the CPU runs in userspace.
426  */
rcu_user_enter(void)427 void rcu_user_enter(void)
428 {
429 	rcu_eqs_enter(1);
430 }
431 
432 /**
433  * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434  * after the current irq returns.
435  *
436  * This is similar to rcu_user_enter() but in the context of a non-nesting
437  * irq. After this call, RCU enters into idle mode when the interrupt
438  * returns.
439  */
rcu_user_enter_after_irq(void)440 void rcu_user_enter_after_irq(void)
441 {
442 	unsigned long flags;
443 	struct rcu_dynticks *rdtp;
444 
445 	local_irq_save(flags);
446 	rdtp = &__get_cpu_var(rcu_dynticks);
447 	/* Ensure this irq is interrupting a non-idle RCU state.  */
448 	WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
449 	rdtp->dynticks_nesting = 1;
450 	local_irq_restore(flags);
451 }
452 #endif /* CONFIG_RCU_USER_QS */
453 
454 /**
455  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
456  *
457  * Exit from an interrupt handler, which might possibly result in entering
458  * idle mode, in other words, leaving the mode in which read-side critical
459  * sections can occur.
460  *
461  * This code assumes that the idle loop never does anything that might
462  * result in unbalanced calls to irq_enter() and irq_exit().  If your
463  * architecture violates this assumption, RCU will give you what you
464  * deserve, good and hard.  But very infrequently and irreproducibly.
465  *
466  * Use things like work queues to work around this limitation.
467  *
468  * You have been warned.
469  */
rcu_irq_exit(void)470 void rcu_irq_exit(void)
471 {
472 	unsigned long flags;
473 	long long oldval;
474 	struct rcu_dynticks *rdtp;
475 
476 	local_irq_save(flags);
477 	rdtp = &__get_cpu_var(rcu_dynticks);
478 	oldval = rdtp->dynticks_nesting;
479 	rdtp->dynticks_nesting--;
480 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
481 	if (rdtp->dynticks_nesting)
482 		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
483 	else
484 		rcu_eqs_enter_common(rdtp, oldval, true);
485 	local_irq_restore(flags);
486 }
487 
488 /*
489  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
490  *
491  * If the new value of the ->dynticks_nesting counter was previously zero,
492  * we really have exited idle, and must do the appropriate accounting.
493  * The caller must have disabled interrupts.
494  */
rcu_eqs_exit_common(struct rcu_dynticks * rdtp,long long oldval,int user)495 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
496 			       int user)
497 {
498 	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
499 	atomic_inc(&rdtp->dynticks);
500 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 	smp_mb__after_atomic_inc();  /* See above. */
502 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
503 	rcu_cleanup_after_idle(smp_processor_id());
504 	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
505 	if (!user && !is_idle_task(current)) {
506 		struct task_struct *idle = idle_task(smp_processor_id());
507 
508 		trace_rcu_dyntick("Error on exit: not idle task",
509 				  oldval, rdtp->dynticks_nesting);
510 		ftrace_dump(DUMP_ORIG);
511 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 			  current->pid, current->comm,
513 			  idle->pid, idle->comm); /* must be idle task! */
514 	}
515 }
516 
517 /*
518  * Exit an RCU extended quiescent state, which can be either the
519  * idle loop or adaptive-tickless usermode execution.
520  */
rcu_eqs_exit(bool user)521 static void rcu_eqs_exit(bool user)
522 {
523 	struct rcu_dynticks *rdtp;
524 	long long oldval;
525 
526 	rdtp = &__get_cpu_var(rcu_dynticks);
527 	oldval = rdtp->dynticks_nesting;
528 	WARN_ON_ONCE(oldval < 0);
529 	if (oldval & DYNTICK_TASK_NEST_MASK)
530 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 	else
532 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
533 	rcu_eqs_exit_common(rdtp, oldval, user);
534 }
535 
536 /**
537  * rcu_idle_exit - inform RCU that current CPU is leaving idle
538  *
539  * Exit idle mode, in other words, -enter- the mode in which RCU
540  * read-side critical sections can occur.
541  *
542  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543  * allow for the possibility of usermode upcalls messing up our count
544  * of interrupt nesting level during the busy period that is just
545  * now starting.
546  */
rcu_idle_exit(void)547 void rcu_idle_exit(void)
548 {
549 	unsigned long flags;
550 
551 	local_irq_save(flags);
552 	rcu_eqs_exit(false);
553 	local_irq_restore(flags);
554 }
555 EXPORT_SYMBOL_GPL(rcu_idle_exit);
556 
557 #ifdef CONFIG_RCU_USER_QS
558 /**
559  * rcu_user_exit - inform RCU that we are exiting userspace.
560  *
561  * Exit RCU idle mode while entering the kernel because it can
562  * run a RCU read side critical section anytime.
563  */
rcu_user_exit(void)564 void rcu_user_exit(void)
565 {
566 	rcu_eqs_exit(1);
567 }
568 
569 /**
570  * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571  * idle mode after the current non-nesting irq returns.
572  *
573  * This is similar to rcu_user_exit() but in the context of an irq.
574  * This is called when the irq has interrupted a userspace RCU idle mode
575  * context. When the current non-nesting interrupt returns after this call,
576  * the CPU won't restore the RCU idle mode.
577  */
rcu_user_exit_after_irq(void)578 void rcu_user_exit_after_irq(void)
579 {
580 	unsigned long flags;
581 	struct rcu_dynticks *rdtp;
582 
583 	local_irq_save(flags);
584 	rdtp = &__get_cpu_var(rcu_dynticks);
585 	/* Ensure we are interrupting an RCU idle mode. */
586 	WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
587 	rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
588 	local_irq_restore(flags);
589 }
590 #endif /* CONFIG_RCU_USER_QS */
591 
592 /**
593  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
594  *
595  * Enter an interrupt handler, which might possibly result in exiting
596  * idle mode, in other words, entering the mode in which read-side critical
597  * sections can occur.
598  *
599  * Note that the Linux kernel is fully capable of entering an interrupt
600  * handler that it never exits, for example when doing upcalls to
601  * user mode!  This code assumes that the idle loop never does upcalls to
602  * user mode.  If your architecture does do upcalls from the idle loop (or
603  * does anything else that results in unbalanced calls to the irq_enter()
604  * and irq_exit() functions), RCU will give you what you deserve, good
605  * and hard.  But very infrequently and irreproducibly.
606  *
607  * Use things like work queues to work around this limitation.
608  *
609  * You have been warned.
610  */
rcu_irq_enter(void)611 void rcu_irq_enter(void)
612 {
613 	unsigned long flags;
614 	struct rcu_dynticks *rdtp;
615 	long long oldval;
616 
617 	local_irq_save(flags);
618 	rdtp = &__get_cpu_var(rcu_dynticks);
619 	oldval = rdtp->dynticks_nesting;
620 	rdtp->dynticks_nesting++;
621 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
622 	if (oldval)
623 		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
624 	else
625 		rcu_eqs_exit_common(rdtp, oldval, true);
626 	local_irq_restore(flags);
627 }
628 
629 /**
630  * rcu_nmi_enter - inform RCU of entry to NMI context
631  *
632  * If the CPU was idle with dynamic ticks active, and there is no
633  * irq handler running, this updates rdtp->dynticks_nmi to let the
634  * RCU grace-period handling know that the CPU is active.
635  */
rcu_nmi_enter(void)636 void rcu_nmi_enter(void)
637 {
638 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
639 
640 	if (rdtp->dynticks_nmi_nesting == 0 &&
641 	    (atomic_read(&rdtp->dynticks) & 0x1))
642 		return;
643 	rdtp->dynticks_nmi_nesting++;
644 	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
645 	atomic_inc(&rdtp->dynticks);
646 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 	smp_mb__after_atomic_inc();  /* See above. */
648 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
649 }
650 
651 /**
652  * rcu_nmi_exit - inform RCU of exit from NMI context
653  *
654  * If the CPU was idle with dynamic ticks active, and there is no
655  * irq handler running, this updates rdtp->dynticks_nmi to let the
656  * RCU grace-period handling know that the CPU is no longer active.
657  */
rcu_nmi_exit(void)658 void rcu_nmi_exit(void)
659 {
660 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
661 
662 	if (rdtp->dynticks_nmi_nesting == 0 ||
663 	    --rdtp->dynticks_nmi_nesting != 0)
664 		return;
665 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 	smp_mb__before_atomic_inc();  /* See above. */
667 	atomic_inc(&rdtp->dynticks);
668 	smp_mb__after_atomic_inc();  /* Force delay to next write. */
669 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
670 }
671 
672 /**
673  * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
674  *
675  * If the current CPU is in its idle loop and is neither in an interrupt
676  * or NMI handler, return true.
677  */
rcu_is_cpu_idle(void)678 int rcu_is_cpu_idle(void)
679 {
680 	int ret;
681 
682 	preempt_disable();
683 	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
684 	preempt_enable();
685 	return ret;
686 }
687 EXPORT_SYMBOL(rcu_is_cpu_idle);
688 
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690 
691 /*
692  * Is the current CPU online?  Disable preemption to avoid false positives
693  * that could otherwise happen due to the current CPU number being sampled,
694  * this task being preempted, its old CPU being taken offline, resuming
695  * on some other CPU, then determining that its old CPU is now offline.
696  * It is OK to use RCU on an offline processor during initial boot, hence
697  * the check for rcu_scheduler_fully_active.  Note also that it is OK
698  * for a CPU coming online to use RCU for one jiffy prior to marking itself
699  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
700  * offline to continue to use RCU for one jiffy after marking itself
701  * offline in the cpu_online_mask.  This leniency is necessary given the
702  * non-atomic nature of the online and offline processing, for example,
703  * the fact that a CPU enters the scheduler after completing the CPU_DYING
704  * notifiers.
705  *
706  * This is also why RCU internally marks CPUs online during the
707  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708  *
709  * Disable checking if in an NMI handler because we cannot safely report
710  * errors from NMI handlers anyway.
711  */
rcu_lockdep_current_cpu_online(void)712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 	struct rcu_data *rdp;
715 	struct rcu_node *rnp;
716 	bool ret;
717 
718 	if (in_nmi())
719 		return 1;
720 	preempt_disable();
721 	rdp = &__get_cpu_var(rcu_sched_data);
722 	rnp = rdp->mynode;
723 	ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 	      !rcu_scheduler_fully_active;
725 	preempt_enable();
726 	return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729 
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731 
732 /**
733  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734  *
735  * If the current CPU is idle or running at a first-level (not nested)
736  * interrupt from idle, return true.  The caller must have at least
737  * disabled preemption.
738  */
rcu_is_cpu_rrupt_from_idle(void)739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
742 }
743 
744 /*
745  * Snapshot the specified CPU's dynticks counter so that we can later
746  * credit them with an implicit quiescent state.  Return 1 if this CPU
747  * is in dynticks idle mode, which is an extended quiescent state.
748  */
dyntick_save_progress_counter(struct rcu_data * rdp)749 static int dyntick_save_progress_counter(struct rcu_data *rdp)
750 {
751 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
752 	return (rdp->dynticks_snap & 0x1) == 0;
753 }
754 
755 /*
756  * Return true if the specified CPU has passed through a quiescent
757  * state by virtue of being in or having passed through an dynticks
758  * idle state since the last call to dyntick_save_progress_counter()
759  * for this same CPU, or by virtue of having been offline.
760  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)761 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
762 {
763 	unsigned int curr;
764 	unsigned int snap;
765 
766 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
767 	snap = (unsigned int)rdp->dynticks_snap;
768 
769 	/*
770 	 * If the CPU passed through or entered a dynticks idle phase with
771 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 	 * already acknowledged the request to pass through a quiescent
773 	 * state.  Either way, that CPU cannot possibly be in an RCU
774 	 * read-side critical section that started before the beginning
775 	 * of the current RCU grace period.
776 	 */
777 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
778 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
779 		rdp->dynticks_fqs++;
780 		return 1;
781 	}
782 
783 	/*
784 	 * Check for the CPU being offline, but only if the grace period
785 	 * is old enough.  We don't need to worry about the CPU changing
786 	 * state: If we see it offline even once, it has been through a
787 	 * quiescent state.
788 	 *
789 	 * The reason for insisting that the grace period be at least
790 	 * one jiffy old is that CPUs that are not quite online and that
791 	 * have just gone offline can still execute RCU read-side critical
792 	 * sections.
793 	 */
794 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
795 		return 0;  /* Grace period is not old enough. */
796 	barrier();
797 	if (cpu_is_offline(rdp->cpu)) {
798 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
799 		rdp->offline_fqs++;
800 		return 1;
801 	}
802 
803 	/*
804 	 * There is a possibility that a CPU in adaptive-ticks state
805 	 * might run in the kernel with the scheduling-clock tick disabled
806 	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
807 	 * force the CPU to restart the scheduling-clock tick in this
808 	 * CPU is in this state.
809 	 */
810 	rcu_kick_nohz_cpu(rdp->cpu);
811 
812 	return 0;
813 }
814 
record_gp_stall_check_time(struct rcu_state * rsp)815 static void record_gp_stall_check_time(struct rcu_state *rsp)
816 {
817 	rsp->gp_start = jiffies;
818 	rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
819 }
820 
821 /*
822  * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
823  * for architectures that do not implement trigger_all_cpu_backtrace().
824  * The NMI-triggered stack traces are more accurate because they are
825  * printed by the target CPU.
826  */
rcu_dump_cpu_stacks(struct rcu_state * rsp)827 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
828 {
829 	int cpu;
830 	unsigned long flags;
831 	struct rcu_node *rnp;
832 
833 	rcu_for_each_leaf_node(rsp, rnp) {
834 		raw_spin_lock_irqsave(&rnp->lock, flags);
835 		if (rnp->qsmask != 0) {
836 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
837 				if (rnp->qsmask & (1UL << cpu))
838 					dump_cpu_task(rnp->grplo + cpu);
839 		}
840 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
841 	}
842 }
843 
print_other_cpu_stall(struct rcu_state * rsp)844 static void print_other_cpu_stall(struct rcu_state *rsp)
845 {
846 	int cpu;
847 	long delta;
848 	unsigned long flags;
849 	int ndetected = 0;
850 	struct rcu_node *rnp = rcu_get_root(rsp);
851 	long totqlen = 0;
852 
853 	/* Only let one CPU complain about others per time interval. */
854 
855 	raw_spin_lock_irqsave(&rnp->lock, flags);
856 	delta = jiffies - rsp->jiffies_stall;
857 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
858 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
859 		return;
860 	}
861 	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
862 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
863 
864 	/*
865 	 * OK, time to rat on our buddy...
866 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
867 	 * RCU CPU stall warnings.
868 	 */
869 	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
870 	       rsp->name);
871 	print_cpu_stall_info_begin();
872 	rcu_for_each_leaf_node(rsp, rnp) {
873 		raw_spin_lock_irqsave(&rnp->lock, flags);
874 		ndetected += rcu_print_task_stall(rnp);
875 		if (rnp->qsmask != 0) {
876 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
877 				if (rnp->qsmask & (1UL << cpu)) {
878 					print_cpu_stall_info(rsp,
879 							     rnp->grplo + cpu);
880 					ndetected++;
881 				}
882 		}
883 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
884 	}
885 
886 	/*
887 	 * Now rat on any tasks that got kicked up to the root rcu_node
888 	 * due to CPU offlining.
889 	 */
890 	rnp = rcu_get_root(rsp);
891 	raw_spin_lock_irqsave(&rnp->lock, flags);
892 	ndetected += rcu_print_task_stall(rnp);
893 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
894 
895 	print_cpu_stall_info_end();
896 	for_each_possible_cpu(cpu)
897 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
898 	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
899 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
900 	       rsp->gpnum, rsp->completed, totqlen);
901 	if (ndetected == 0)
902 		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
903 	else if (!trigger_all_cpu_backtrace())
904 		rcu_dump_cpu_stacks(rsp);
905 
906 	/* Complain about tasks blocking the grace period. */
907 
908 	rcu_print_detail_task_stall(rsp);
909 
910 	force_quiescent_state(rsp);  /* Kick them all. */
911 }
912 
print_cpu_stall(struct rcu_state * rsp)913 static void print_cpu_stall(struct rcu_state *rsp)
914 {
915 	int cpu;
916 	unsigned long flags;
917 	struct rcu_node *rnp = rcu_get_root(rsp);
918 	long totqlen = 0;
919 
920 	/*
921 	 * OK, time to rat on ourselves...
922 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
923 	 * RCU CPU stall warnings.
924 	 */
925 	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
926 	print_cpu_stall_info_begin();
927 	print_cpu_stall_info(rsp, smp_processor_id());
928 	print_cpu_stall_info_end();
929 	for_each_possible_cpu(cpu)
930 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
931 	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
932 		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
933 	if (!trigger_all_cpu_backtrace())
934 		dump_stack();
935 
936 	raw_spin_lock_irqsave(&rnp->lock, flags);
937 	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
938 		rsp->jiffies_stall = jiffies +
939 				     3 * rcu_jiffies_till_stall_check() + 3;
940 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
941 
942 	set_need_resched();  /* kick ourselves to get things going. */
943 }
944 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)945 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
946 {
947 	unsigned long j;
948 	unsigned long js;
949 	struct rcu_node *rnp;
950 
951 	if (rcu_cpu_stall_suppress)
952 		return;
953 	j = ACCESS_ONCE(jiffies);
954 	js = ACCESS_ONCE(rsp->jiffies_stall);
955 	rnp = rdp->mynode;
956 	if (rcu_gp_in_progress(rsp) &&
957 	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
958 
959 		/* We haven't checked in, so go dump stack. */
960 		print_cpu_stall(rsp);
961 
962 	} else if (rcu_gp_in_progress(rsp) &&
963 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
964 
965 		/* They had a few time units to dump stack, so complain. */
966 		print_other_cpu_stall(rsp);
967 	}
968 }
969 
970 /**
971  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
972  *
973  * Set the stall-warning timeout way off into the future, thus preventing
974  * any RCU CPU stall-warning messages from appearing in the current set of
975  * RCU grace periods.
976  *
977  * The caller must disable hard irqs.
978  */
rcu_cpu_stall_reset(void)979 void rcu_cpu_stall_reset(void)
980 {
981 	struct rcu_state *rsp;
982 
983 	for_each_rcu_flavor(rsp)
984 		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
985 }
986 
987 /*
988  * Update CPU-local rcu_data state to record the newly noticed grace period.
989  * This is used both when we started the grace period and when we notice
990  * that someone else started the grace period.  The caller must hold the
991  * ->lock of the leaf rcu_node structure corresponding to the current CPU,
992  *  and must have irqs disabled.
993  */
__note_new_gpnum(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)994 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
995 {
996 	if (rdp->gpnum != rnp->gpnum) {
997 		/*
998 		 * If the current grace period is waiting for this CPU,
999 		 * set up to detect a quiescent state, otherwise don't
1000 		 * go looking for one.
1001 		 */
1002 		rdp->gpnum = rnp->gpnum;
1003 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1004 		rdp->passed_quiesce = 0;
1005 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1006 		zero_cpu_stall_ticks(rdp);
1007 	}
1008 }
1009 
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)1010 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1011 {
1012 	unsigned long flags;
1013 	struct rcu_node *rnp;
1014 
1015 	local_irq_save(flags);
1016 	rnp = rdp->mynode;
1017 	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1018 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1019 		local_irq_restore(flags);
1020 		return;
1021 	}
1022 	__note_new_gpnum(rsp, rnp, rdp);
1023 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1024 }
1025 
1026 /*
1027  * Did someone else start a new RCU grace period start since we last
1028  * checked?  Update local state appropriately if so.  Must be called
1029  * on the CPU corresponding to rdp.
1030  */
1031 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)1032 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1033 {
1034 	unsigned long flags;
1035 	int ret = 0;
1036 
1037 	local_irq_save(flags);
1038 	if (rdp->gpnum != rsp->gpnum) {
1039 		note_new_gpnum(rsp, rdp);
1040 		ret = 1;
1041 	}
1042 	local_irq_restore(flags);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Initialize the specified rcu_data structure's callback list to empty.
1048  */
init_callback_list(struct rcu_data * rdp)1049 static void init_callback_list(struct rcu_data *rdp)
1050 {
1051 	int i;
1052 
1053 	if (init_nocb_callback_list(rdp))
1054 		return;
1055 	rdp->nxtlist = NULL;
1056 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1057 		rdp->nxttail[i] = &rdp->nxtlist;
1058 }
1059 
1060 /*
1061  * Determine the value that ->completed will have at the end of the
1062  * next subsequent grace period.  This is used to tag callbacks so that
1063  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1064  * been dyntick-idle for an extended period with callbacks under the
1065  * influence of RCU_FAST_NO_HZ.
1066  *
1067  * The caller must hold rnp->lock with interrupts disabled.
1068  */
rcu_cbs_completed(struct rcu_state * rsp,struct rcu_node * rnp)1069 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1070 				       struct rcu_node *rnp)
1071 {
1072 	/*
1073 	 * If RCU is idle, we just wait for the next grace period.
1074 	 * But we can only be sure that RCU is idle if we are looking
1075 	 * at the root rcu_node structure -- otherwise, a new grace
1076 	 * period might have started, but just not yet gotten around
1077 	 * to initializing the current non-root rcu_node structure.
1078 	 */
1079 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1080 		return rnp->completed + 1;
1081 
1082 	/*
1083 	 * Otherwise, wait for a possible partial grace period and
1084 	 * then the subsequent full grace period.
1085 	 */
1086 	return rnp->completed + 2;
1087 }
1088 
1089 /*
1090  * Trace-event helper function for rcu_start_future_gp() and
1091  * rcu_nocb_wait_gp().
1092  */
trace_rcu_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long c,char * s)1093 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1094 				unsigned long c, char *s)
1095 {
1096 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1097 				      rnp->completed, c, rnp->level,
1098 				      rnp->grplo, rnp->grphi, s);
1099 }
1100 
1101 /*
1102  * Start some future grace period, as needed to handle newly arrived
1103  * callbacks.  The required future grace periods are recorded in each
1104  * rcu_node structure's ->need_future_gp field.
1105  *
1106  * The caller must hold the specified rcu_node structure's ->lock.
1107  */
1108 static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node * rnp,struct rcu_data * rdp)1109 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1110 {
1111 	unsigned long c;
1112 	int i;
1113 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1114 
1115 	/*
1116 	 * Pick up grace-period number for new callbacks.  If this
1117 	 * grace period is already marked as needed, return to the caller.
1118 	 */
1119 	c = rcu_cbs_completed(rdp->rsp, rnp);
1120 	trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1121 	if (rnp->need_future_gp[c & 0x1]) {
1122 		trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1123 		return c;
1124 	}
1125 
1126 	/*
1127 	 * If either this rcu_node structure or the root rcu_node structure
1128 	 * believe that a grace period is in progress, then we must wait
1129 	 * for the one following, which is in "c".  Because our request
1130 	 * will be noticed at the end of the current grace period, we don't
1131 	 * need to explicitly start one.
1132 	 */
1133 	if (rnp->gpnum != rnp->completed ||
1134 	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1135 		rnp->need_future_gp[c & 0x1]++;
1136 		trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1137 		return c;
1138 	}
1139 
1140 	/*
1141 	 * There might be no grace period in progress.  If we don't already
1142 	 * hold it, acquire the root rcu_node structure's lock in order to
1143 	 * start one (if needed).
1144 	 */
1145 	if (rnp != rnp_root)
1146 		raw_spin_lock(&rnp_root->lock);
1147 
1148 	/*
1149 	 * Get a new grace-period number.  If there really is no grace
1150 	 * period in progress, it will be smaller than the one we obtained
1151 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1152 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1153 	 */
1154 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1155 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1156 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1157 			rdp->nxtcompleted[i] = c;
1158 
1159 	/*
1160 	 * If the needed for the required grace period is already
1161 	 * recorded, trace and leave.
1162 	 */
1163 	if (rnp_root->need_future_gp[c & 0x1]) {
1164 		trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1165 		goto unlock_out;
1166 	}
1167 
1168 	/* Record the need for the future grace period. */
1169 	rnp_root->need_future_gp[c & 0x1]++;
1170 
1171 	/* If a grace period is not already in progress, start one. */
1172 	if (rnp_root->gpnum != rnp_root->completed) {
1173 		trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1174 	} else {
1175 		trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1176 		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1177 	}
1178 unlock_out:
1179 	if (rnp != rnp_root)
1180 		raw_spin_unlock(&rnp_root->lock);
1181 	return c;
1182 }
1183 
1184 /*
1185  * Clean up any old requests for the just-ended grace period.  Also return
1186  * whether any additional grace periods have been requested.  Also invoke
1187  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1188  * waiting for this grace period to complete.
1189  */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1190 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1191 {
1192 	int c = rnp->completed;
1193 	int needmore;
1194 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1195 
1196 	rcu_nocb_gp_cleanup(rsp, rnp);
1197 	rnp->need_future_gp[c & 0x1] = 0;
1198 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1199 	trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1200 	return needmore;
1201 }
1202 
1203 /*
1204  * If there is room, assign a ->completed number to any callbacks on
1205  * this CPU that have not already been assigned.  Also accelerate any
1206  * callbacks that were previously assigned a ->completed number that has
1207  * since proven to be too conservative, which can happen if callbacks get
1208  * assigned a ->completed number while RCU is idle, but with reference to
1209  * a non-root rcu_node structure.  This function is idempotent, so it does
1210  * not hurt to call it repeatedly.
1211  *
1212  * The caller must hold rnp->lock with interrupts disabled.
1213  */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1214 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1215 			       struct rcu_data *rdp)
1216 {
1217 	unsigned long c;
1218 	int i;
1219 
1220 	/* If the CPU has no callbacks, nothing to do. */
1221 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1222 		return;
1223 
1224 	/*
1225 	 * Starting from the sublist containing the callbacks most
1226 	 * recently assigned a ->completed number and working down, find the
1227 	 * first sublist that is not assignable to an upcoming grace period.
1228 	 * Such a sublist has something in it (first two tests) and has
1229 	 * a ->completed number assigned that will complete sooner than
1230 	 * the ->completed number for newly arrived callbacks (last test).
1231 	 *
1232 	 * The key point is that any later sublist can be assigned the
1233 	 * same ->completed number as the newly arrived callbacks, which
1234 	 * means that the callbacks in any of these later sublist can be
1235 	 * grouped into a single sublist, whether or not they have already
1236 	 * been assigned a ->completed number.
1237 	 */
1238 	c = rcu_cbs_completed(rsp, rnp);
1239 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1240 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1241 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1242 			break;
1243 
1244 	/*
1245 	 * If there are no sublist for unassigned callbacks, leave.
1246 	 * At the same time, advance "i" one sublist, so that "i" will
1247 	 * index into the sublist where all the remaining callbacks should
1248 	 * be grouped into.
1249 	 */
1250 	if (++i >= RCU_NEXT_TAIL)
1251 		return;
1252 
1253 	/*
1254 	 * Assign all subsequent callbacks' ->completed number to the next
1255 	 * full grace period and group them all in the sublist initially
1256 	 * indexed by "i".
1257 	 */
1258 	for (; i <= RCU_NEXT_TAIL; i++) {
1259 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1260 		rdp->nxtcompleted[i] = c;
1261 	}
1262 	/* Record any needed additional grace periods. */
1263 	rcu_start_future_gp(rnp, rdp);
1264 
1265 	/* Trace depending on how much we were able to accelerate. */
1266 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1267 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1268 	else
1269 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1270 }
1271 
1272 /*
1273  * Move any callbacks whose grace period has completed to the
1274  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1275  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1276  * sublist.  This function is idempotent, so it does not hurt to
1277  * invoke it repeatedly.  As long as it is not invoked -too- often...
1278  *
1279  * The caller must hold rnp->lock with interrupts disabled.
1280  */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1281 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1282 			    struct rcu_data *rdp)
1283 {
1284 	int i, j;
1285 
1286 	/* If the CPU has no callbacks, nothing to do. */
1287 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1288 		return;
1289 
1290 	/*
1291 	 * Find all callbacks whose ->completed numbers indicate that they
1292 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1293 	 */
1294 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1295 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1296 			break;
1297 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1298 	}
1299 	/* Clean up any sublist tail pointers that were misordered above. */
1300 	for (j = RCU_WAIT_TAIL; j < i; j++)
1301 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1302 
1303 	/* Copy down callbacks to fill in empty sublists. */
1304 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1305 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1306 			break;
1307 		rdp->nxttail[j] = rdp->nxttail[i];
1308 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1309 	}
1310 
1311 	/* Classify any remaining callbacks. */
1312 	rcu_accelerate_cbs(rsp, rnp, rdp);
1313 }
1314 
1315 /*
1316  * Advance this CPU's callbacks, but only if the current grace period
1317  * has ended.  This may be called only from the CPU to whom the rdp
1318  * belongs.  In addition, the corresponding leaf rcu_node structure's
1319  * ->lock must be held by the caller, with irqs disabled.
1320  */
1321 static void
__rcu_process_gp_end(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1322 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1323 {
1324 	/* Did another grace period end? */
1325 	if (rdp->completed == rnp->completed) {
1326 
1327 		/* No, so just accelerate recent callbacks. */
1328 		rcu_accelerate_cbs(rsp, rnp, rdp);
1329 
1330 	} else {
1331 
1332 		/* Advance callbacks. */
1333 		rcu_advance_cbs(rsp, rnp, rdp);
1334 
1335 		/* Remember that we saw this grace-period completion. */
1336 		rdp->completed = rnp->completed;
1337 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1338 
1339 		/*
1340 		 * If we were in an extended quiescent state, we may have
1341 		 * missed some grace periods that others CPUs handled on
1342 		 * our behalf. Catch up with this state to avoid noting
1343 		 * spurious new grace periods.  If another grace period
1344 		 * has started, then rnp->gpnum will have advanced, so
1345 		 * we will detect this later on.  Of course, any quiescent
1346 		 * states we found for the old GP are now invalid.
1347 		 */
1348 		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1349 			rdp->gpnum = rdp->completed;
1350 			rdp->passed_quiesce = 0;
1351 		}
1352 
1353 		/*
1354 		 * If RCU does not need a quiescent state from this CPU,
1355 		 * then make sure that this CPU doesn't go looking for one.
1356 		 */
1357 		if ((rnp->qsmask & rdp->grpmask) == 0)
1358 			rdp->qs_pending = 0;
1359 	}
1360 }
1361 
1362 /*
1363  * Advance this CPU's callbacks, but only if the current grace period
1364  * has ended.  This may be called only from the CPU to whom the rdp
1365  * belongs.
1366  */
1367 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)1368 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1369 {
1370 	unsigned long flags;
1371 	struct rcu_node *rnp;
1372 
1373 	local_irq_save(flags);
1374 	rnp = rdp->mynode;
1375 	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1376 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1377 		local_irq_restore(flags);
1378 		return;
1379 	}
1380 	__rcu_process_gp_end(rsp, rnp, rdp);
1381 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382 }
1383 
1384 /*
1385  * Do per-CPU grace-period initialization for running CPU.  The caller
1386  * must hold the lock of the leaf rcu_node structure corresponding to
1387  * this CPU.
1388  */
1389 static void
rcu_start_gp_per_cpu(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1390 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1391 {
1392 	/* Prior grace period ended, so advance callbacks for current CPU. */
1393 	__rcu_process_gp_end(rsp, rnp, rdp);
1394 
1395 	/* Set state so that this CPU will detect the next quiescent state. */
1396 	__note_new_gpnum(rsp, rnp, rdp);
1397 }
1398 
1399 /*
1400  * Initialize a new grace period.
1401  */
rcu_gp_init(struct rcu_state * rsp)1402 static int rcu_gp_init(struct rcu_state *rsp)
1403 {
1404 	struct rcu_data *rdp;
1405 	struct rcu_node *rnp = rcu_get_root(rsp);
1406 
1407 	raw_spin_lock_irq(&rnp->lock);
1408 	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1409 
1410 	if (rcu_gp_in_progress(rsp)) {
1411 		/* Grace period already in progress, don't start another.  */
1412 		raw_spin_unlock_irq(&rnp->lock);
1413 		return 0;
1414 	}
1415 
1416 	/* Advance to a new grace period and initialize state. */
1417 	rsp->gpnum++;
1418 	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1419 	record_gp_stall_check_time(rsp);
1420 	raw_spin_unlock_irq(&rnp->lock);
1421 
1422 	/* Exclude any concurrent CPU-hotplug operations. */
1423 	mutex_lock(&rsp->onoff_mutex);
1424 
1425 	/*
1426 	 * Set the quiescent-state-needed bits in all the rcu_node
1427 	 * structures for all currently online CPUs in breadth-first order,
1428 	 * starting from the root rcu_node structure, relying on the layout
1429 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1430 	 * will access only the leaves of the hierarchy, thus seeing that no
1431 	 * grace period is in progress, at least until the corresponding
1432 	 * leaf node has been initialized.  In addition, we have excluded
1433 	 * CPU-hotplug operations.
1434 	 *
1435 	 * The grace period cannot complete until the initialization
1436 	 * process finishes, because this kthread handles both.
1437 	 */
1438 	rcu_for_each_node_breadth_first(rsp, rnp) {
1439 		raw_spin_lock_irq(&rnp->lock);
1440 		rdp = this_cpu_ptr(rsp->rda);
1441 		rcu_preempt_check_blocked_tasks(rnp);
1442 		rnp->qsmask = rnp->qsmaskinit;
1443 		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1444 		WARN_ON_ONCE(rnp->completed != rsp->completed);
1445 		ACCESS_ONCE(rnp->completed) = rsp->completed;
1446 		if (rnp == rdp->mynode)
1447 			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1448 		rcu_preempt_boost_start_gp(rnp);
1449 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1450 					    rnp->level, rnp->grplo,
1451 					    rnp->grphi, rnp->qsmask);
1452 		raw_spin_unlock_irq(&rnp->lock);
1453 #ifdef CONFIG_PROVE_RCU_DELAY
1454 		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1455 		    system_state == SYSTEM_RUNNING)
1456 			udelay(200);
1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1458 		cond_resched();
1459 	}
1460 
1461 	mutex_unlock(&rsp->onoff_mutex);
1462 	return 1;
1463 }
1464 
1465 /*
1466  * Do one round of quiescent-state forcing.
1467  */
rcu_gp_fqs(struct rcu_state * rsp,int fqs_state_in)1468 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1469 {
1470 	int fqs_state = fqs_state_in;
1471 	struct rcu_node *rnp = rcu_get_root(rsp);
1472 
1473 	rsp->n_force_qs++;
1474 	if (fqs_state == RCU_SAVE_DYNTICK) {
1475 		/* Collect dyntick-idle snapshots. */
1476 		force_qs_rnp(rsp, dyntick_save_progress_counter);
1477 		fqs_state = RCU_FORCE_QS;
1478 	} else {
1479 		/* Handle dyntick-idle and offline CPUs. */
1480 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1481 	}
1482 	/* Clear flag to prevent immediate re-entry. */
1483 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1484 		raw_spin_lock_irq(&rnp->lock);
1485 		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1486 		raw_spin_unlock_irq(&rnp->lock);
1487 	}
1488 	return fqs_state;
1489 }
1490 
1491 /*
1492  * Clean up after the old grace period.
1493  */
rcu_gp_cleanup(struct rcu_state * rsp)1494 static void rcu_gp_cleanup(struct rcu_state *rsp)
1495 {
1496 	unsigned long gp_duration;
1497 	int nocb = 0;
1498 	struct rcu_data *rdp;
1499 	struct rcu_node *rnp = rcu_get_root(rsp);
1500 
1501 	raw_spin_lock_irq(&rnp->lock);
1502 	gp_duration = jiffies - rsp->gp_start;
1503 	if (gp_duration > rsp->gp_max)
1504 		rsp->gp_max = gp_duration;
1505 
1506 	/*
1507 	 * We know the grace period is complete, but to everyone else
1508 	 * it appears to still be ongoing.  But it is also the case
1509 	 * that to everyone else it looks like there is nothing that
1510 	 * they can do to advance the grace period.  It is therefore
1511 	 * safe for us to drop the lock in order to mark the grace
1512 	 * period as completed in all of the rcu_node structures.
1513 	 */
1514 	raw_spin_unlock_irq(&rnp->lock);
1515 
1516 	/*
1517 	 * Propagate new ->completed value to rcu_node structures so
1518 	 * that other CPUs don't have to wait until the start of the next
1519 	 * grace period to process their callbacks.  This also avoids
1520 	 * some nasty RCU grace-period initialization races by forcing
1521 	 * the end of the current grace period to be completely recorded in
1522 	 * all of the rcu_node structures before the beginning of the next
1523 	 * grace period is recorded in any of the rcu_node structures.
1524 	 */
1525 	rcu_for_each_node_breadth_first(rsp, rnp) {
1526 		raw_spin_lock_irq(&rnp->lock);
1527 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1528 		rdp = this_cpu_ptr(rsp->rda);
1529 		if (rnp == rdp->mynode)
1530 			__rcu_process_gp_end(rsp, rnp, rdp);
1531 		nocb += rcu_future_gp_cleanup(rsp, rnp);
1532 		raw_spin_unlock_irq(&rnp->lock);
1533 		cond_resched();
1534 	}
1535 	rnp = rcu_get_root(rsp);
1536 	raw_spin_lock_irq(&rnp->lock);
1537 	rcu_nocb_gp_set(rnp, nocb);
1538 
1539 	rsp->completed = rsp->gpnum; /* Declare grace period done. */
1540 	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1541 	rsp->fqs_state = RCU_GP_IDLE;
1542 	rdp = this_cpu_ptr(rsp->rda);
1543 	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1544 	if (cpu_needs_another_gp(rsp, rdp))
1545 		rsp->gp_flags = 1;
1546 	raw_spin_unlock_irq(&rnp->lock);
1547 }
1548 
1549 /*
1550  * Body of kthread that handles grace periods.
1551  */
rcu_gp_kthread(void * arg)1552 static int __noreturn rcu_gp_kthread(void *arg)
1553 {
1554 	int fqs_state;
1555 	unsigned long j;
1556 	int ret;
1557 	struct rcu_state *rsp = arg;
1558 	struct rcu_node *rnp = rcu_get_root(rsp);
1559 
1560 	for (;;) {
1561 
1562 		/* Handle grace-period start. */
1563 		for (;;) {
1564 			wait_event_interruptible(rsp->gp_wq,
1565 						 rsp->gp_flags &
1566 						 RCU_GP_FLAG_INIT);
1567 			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1568 			    rcu_gp_init(rsp))
1569 				break;
1570 			cond_resched();
1571 			flush_signals(current);
1572 		}
1573 
1574 		/* Handle quiescent-state forcing. */
1575 		fqs_state = RCU_SAVE_DYNTICK;
1576 		j = jiffies_till_first_fqs;
1577 		if (j > HZ) {
1578 			j = HZ;
1579 			jiffies_till_first_fqs = HZ;
1580 		}
1581 		for (;;) {
1582 			rsp->jiffies_force_qs = jiffies + j;
1583 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1584 					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1585 					(!ACCESS_ONCE(rnp->qsmask) &&
1586 					 !rcu_preempt_blocked_readers_cgp(rnp)),
1587 					j);
1588 			/* If grace period done, leave loop. */
1589 			if (!ACCESS_ONCE(rnp->qsmask) &&
1590 			    !rcu_preempt_blocked_readers_cgp(rnp))
1591 				break;
1592 			/* If time for quiescent-state forcing, do it. */
1593 			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1594 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1595 				cond_resched();
1596 			} else {
1597 				/* Deal with stray signal. */
1598 				cond_resched();
1599 				flush_signals(current);
1600 			}
1601 			j = jiffies_till_next_fqs;
1602 			if (j > HZ) {
1603 				j = HZ;
1604 				jiffies_till_next_fqs = HZ;
1605 			} else if (j < 1) {
1606 				j = 1;
1607 				jiffies_till_next_fqs = 1;
1608 			}
1609 		}
1610 
1611 		/* Handle grace-period end. */
1612 		rcu_gp_cleanup(rsp);
1613 	}
1614 }
1615 
rsp_wakeup(struct irq_work * work)1616 static void rsp_wakeup(struct irq_work *work)
1617 {
1618 	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1619 
1620 	/* Wake up rcu_gp_kthread() to start the grace period. */
1621 	wake_up(&rsp->gp_wq);
1622 }
1623 
1624 /*
1625  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1626  * in preparation for detecting the next grace period.  The caller must hold
1627  * the root node's ->lock and hard irqs must be disabled.
1628  *
1629  * Note that it is legal for a dying CPU (which is marked as offline) to
1630  * invoke this function.  This can happen when the dying CPU reports its
1631  * quiescent state.
1632  */
1633 static void
rcu_start_gp_advanced(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1634 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1635 		      struct rcu_data *rdp)
1636 {
1637 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1638 		/*
1639 		 * Either we have not yet spawned the grace-period
1640 		 * task, this CPU does not need another grace period,
1641 		 * or a grace period is already in progress.
1642 		 * Either way, don't start a new grace period.
1643 		 */
1644 		return;
1645 	}
1646 	rsp->gp_flags = RCU_GP_FLAG_INIT;
1647 
1648 	/*
1649 	 * We can't do wakeups while holding the rnp->lock, as that
1650 	 * could cause possible deadlocks with the rq->lock. Deter
1651 	 * the wakeup to interrupt context.
1652 	 */
1653 	irq_work_queue(&rsp->wakeup_work);
1654 }
1655 
1656 /*
1657  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1658  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1659  * is invoked indirectly from rcu_advance_cbs(), which would result in
1660  * endless recursion -- or would do so if it wasn't for the self-deadlock
1661  * that is encountered beforehand.
1662  */
1663 static void
rcu_start_gp(struct rcu_state * rsp)1664 rcu_start_gp(struct rcu_state *rsp)
1665 {
1666 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1667 	struct rcu_node *rnp = rcu_get_root(rsp);
1668 
1669 	/*
1670 	 * If there is no grace period in progress right now, any
1671 	 * callbacks we have up to this point will be satisfied by the
1672 	 * next grace period.  Also, advancing the callbacks reduces the
1673 	 * probability of false positives from cpu_needs_another_gp()
1674 	 * resulting in pointless grace periods.  So, advance callbacks
1675 	 * then start the grace period!
1676 	 */
1677 	rcu_advance_cbs(rsp, rnp, rdp);
1678 	rcu_start_gp_advanced(rsp, rnp, rdp);
1679 }
1680 
1681 /*
1682  * Report a full set of quiescent states to the specified rcu_state
1683  * data structure.  This involves cleaning up after the prior grace
1684  * period and letting rcu_start_gp() start up the next grace period
1685  * if one is needed.  Note that the caller must hold rnp->lock, which
1686  * is released before return.
1687  */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1688 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1689 	__releases(rcu_get_root(rsp)->lock)
1690 {
1691 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1692 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1693 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1694 }
1695 
1696 /*
1697  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1698  * Allows quiescent states for a group of CPUs to be reported at one go
1699  * to the specified rcu_node structure, though all the CPUs in the group
1700  * must be represented by the same rcu_node structure (which need not be
1701  * a leaf rcu_node structure, though it often will be).  That structure's
1702  * lock must be held upon entry, and it is released before return.
1703  */
1704 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1705 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1706 		  struct rcu_node *rnp, unsigned long flags)
1707 	__releases(rnp->lock)
1708 {
1709 	struct rcu_node *rnp_c;
1710 
1711 	/* Walk up the rcu_node hierarchy. */
1712 	for (;;) {
1713 		if (!(rnp->qsmask & mask)) {
1714 
1715 			/* Our bit has already been cleared, so done. */
1716 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1717 			return;
1718 		}
1719 		rnp->qsmask &= ~mask;
1720 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1721 						 mask, rnp->qsmask, rnp->level,
1722 						 rnp->grplo, rnp->grphi,
1723 						 !!rnp->gp_tasks);
1724 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1725 
1726 			/* Other bits still set at this level, so done. */
1727 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1728 			return;
1729 		}
1730 		mask = rnp->grpmask;
1731 		if (rnp->parent == NULL) {
1732 
1733 			/* No more levels.  Exit loop holding root lock. */
1734 
1735 			break;
1736 		}
1737 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1738 		rnp_c = rnp;
1739 		rnp = rnp->parent;
1740 		raw_spin_lock_irqsave(&rnp->lock, flags);
1741 		WARN_ON_ONCE(rnp_c->qsmask);
1742 	}
1743 
1744 	/*
1745 	 * Get here if we are the last CPU to pass through a quiescent
1746 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1747 	 * to clean up and start the next grace period if one is needed.
1748 	 */
1749 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1750 }
1751 
1752 /*
1753  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1754  * structure.  This must be either called from the specified CPU, or
1755  * called when the specified CPU is known to be offline (and when it is
1756  * also known that no other CPU is concurrently trying to help the offline
1757  * CPU).  The lastcomp argument is used to make sure we are still in the
1758  * grace period of interest.  We don't want to end the current grace period
1759  * based on quiescent states detected in an earlier grace period!
1760  */
1761 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)1762 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1763 {
1764 	unsigned long flags;
1765 	unsigned long mask;
1766 	struct rcu_node *rnp;
1767 
1768 	rnp = rdp->mynode;
1769 	raw_spin_lock_irqsave(&rnp->lock, flags);
1770 	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1771 	    rnp->completed == rnp->gpnum) {
1772 
1773 		/*
1774 		 * The grace period in which this quiescent state was
1775 		 * recorded has ended, so don't report it upwards.
1776 		 * We will instead need a new quiescent state that lies
1777 		 * within the current grace period.
1778 		 */
1779 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1780 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1781 		return;
1782 	}
1783 	mask = rdp->grpmask;
1784 	if ((rnp->qsmask & mask) == 0) {
1785 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1786 	} else {
1787 		rdp->qs_pending = 0;
1788 
1789 		/*
1790 		 * This GP can't end until cpu checks in, so all of our
1791 		 * callbacks can be processed during the next GP.
1792 		 */
1793 		rcu_accelerate_cbs(rsp, rnp, rdp);
1794 
1795 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1796 	}
1797 }
1798 
1799 /*
1800  * Check to see if there is a new grace period of which this CPU
1801  * is not yet aware, and if so, set up local rcu_data state for it.
1802  * Otherwise, see if this CPU has just passed through its first
1803  * quiescent state for this grace period, and record that fact if so.
1804  */
1805 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)1806 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1807 {
1808 	/* If there is now a new grace period, record and return. */
1809 	if (check_for_new_grace_period(rsp, rdp))
1810 		return;
1811 
1812 	/*
1813 	 * Does this CPU still need to do its part for current grace period?
1814 	 * If no, return and let the other CPUs do their part as well.
1815 	 */
1816 	if (!rdp->qs_pending)
1817 		return;
1818 
1819 	/*
1820 	 * Was there a quiescent state since the beginning of the grace
1821 	 * period? If no, then exit and wait for the next call.
1822 	 */
1823 	if (!rdp->passed_quiesce)
1824 		return;
1825 
1826 	/*
1827 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1828 	 * judge of that).
1829 	 */
1830 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1831 }
1832 
1833 #ifdef CONFIG_HOTPLUG_CPU
1834 
1835 /*
1836  * Send the specified CPU's RCU callbacks to the orphanage.  The
1837  * specified CPU must be offline, and the caller must hold the
1838  * ->orphan_lock.
1839  */
1840 static void
rcu_send_cbs_to_orphanage(int cpu,struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1841 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1842 			  struct rcu_node *rnp, struct rcu_data *rdp)
1843 {
1844 	/* No-CBs CPUs do not have orphanable callbacks. */
1845 	if (rcu_is_nocb_cpu(rdp->cpu))
1846 		return;
1847 
1848 	/*
1849 	 * Orphan the callbacks.  First adjust the counts.  This is safe
1850 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1851 	 * cannot be running now.  Thus no memory barrier is required.
1852 	 */
1853 	if (rdp->nxtlist != NULL) {
1854 		rsp->qlen_lazy += rdp->qlen_lazy;
1855 		rsp->qlen += rdp->qlen;
1856 		rdp->n_cbs_orphaned += rdp->qlen;
1857 		rdp->qlen_lazy = 0;
1858 		ACCESS_ONCE(rdp->qlen) = 0;
1859 	}
1860 
1861 	/*
1862 	 * Next, move those callbacks still needing a grace period to
1863 	 * the orphanage, where some other CPU will pick them up.
1864 	 * Some of the callbacks might have gone partway through a grace
1865 	 * period, but that is too bad.  They get to start over because we
1866 	 * cannot assume that grace periods are synchronized across CPUs.
1867 	 * We don't bother updating the ->nxttail[] array yet, instead
1868 	 * we just reset the whole thing later on.
1869 	 */
1870 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1871 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1872 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1873 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1874 	}
1875 
1876 	/*
1877 	 * Then move the ready-to-invoke callbacks to the orphanage,
1878 	 * where some other CPU will pick them up.  These will not be
1879 	 * required to pass though another grace period: They are done.
1880 	 */
1881 	if (rdp->nxtlist != NULL) {
1882 		*rsp->orphan_donetail = rdp->nxtlist;
1883 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1884 	}
1885 
1886 	/* Finally, initialize the rcu_data structure's list to empty.  */
1887 	init_callback_list(rdp);
1888 }
1889 
1890 /*
1891  * Adopt the RCU callbacks from the specified rcu_state structure's
1892  * orphanage.  The caller must hold the ->orphan_lock.
1893  */
rcu_adopt_orphan_cbs(struct rcu_state * rsp)1894 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1895 {
1896 	int i;
1897 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1898 
1899 	/* No-CBs CPUs are handled specially. */
1900 	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1901 		return;
1902 
1903 	/* Do the accounting first. */
1904 	rdp->qlen_lazy += rsp->qlen_lazy;
1905 	rdp->qlen += rsp->qlen;
1906 	rdp->n_cbs_adopted += rsp->qlen;
1907 	if (rsp->qlen_lazy != rsp->qlen)
1908 		rcu_idle_count_callbacks_posted();
1909 	rsp->qlen_lazy = 0;
1910 	rsp->qlen = 0;
1911 
1912 	/*
1913 	 * We do not need a memory barrier here because the only way we
1914 	 * can get here if there is an rcu_barrier() in flight is if
1915 	 * we are the task doing the rcu_barrier().
1916 	 */
1917 
1918 	/* First adopt the ready-to-invoke callbacks. */
1919 	if (rsp->orphan_donelist != NULL) {
1920 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1921 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1922 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1923 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1924 				rdp->nxttail[i] = rsp->orphan_donetail;
1925 		rsp->orphan_donelist = NULL;
1926 		rsp->orphan_donetail = &rsp->orphan_donelist;
1927 	}
1928 
1929 	/* And then adopt the callbacks that still need a grace period. */
1930 	if (rsp->orphan_nxtlist != NULL) {
1931 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1932 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1933 		rsp->orphan_nxtlist = NULL;
1934 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1935 	}
1936 }
1937 
1938 /*
1939  * Trace the fact that this CPU is going offline.
1940  */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1941 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1942 {
1943 	RCU_TRACE(unsigned long mask);
1944 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1945 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1946 
1947 	RCU_TRACE(mask = rdp->grpmask);
1948 	trace_rcu_grace_period(rsp->name,
1949 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1950 			       "cpuofl");
1951 }
1952 
1953 /*
1954  * The CPU has been completely removed, and some other CPU is reporting
1955  * this fact from process context.  Do the remainder of the cleanup,
1956  * including orphaning the outgoing CPU's RCU callbacks, and also
1957  * adopting them.  There can only be one CPU hotplug operation at a time,
1958  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1959  */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1960 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1961 {
1962 	unsigned long flags;
1963 	unsigned long mask;
1964 	int need_report = 0;
1965 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1966 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1967 
1968 	/* Adjust any no-longer-needed kthreads. */
1969 	rcu_boost_kthread_setaffinity(rnp, -1);
1970 
1971 	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1972 
1973 	/* Exclude any attempts to start a new grace period. */
1974 	mutex_lock(&rsp->onoff_mutex);
1975 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1976 
1977 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1978 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1979 	rcu_adopt_orphan_cbs(rsp);
1980 
1981 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1982 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1983 	do {
1984 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1985 		rnp->qsmaskinit &= ~mask;
1986 		if (rnp->qsmaskinit != 0) {
1987 			if (rnp != rdp->mynode)
1988 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1989 			break;
1990 		}
1991 		if (rnp == rdp->mynode)
1992 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1993 		else
1994 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1995 		mask = rnp->grpmask;
1996 		rnp = rnp->parent;
1997 	} while (rnp != NULL);
1998 
1999 	/*
2000 	 * We still hold the leaf rcu_node structure lock here, and
2001 	 * irqs are still disabled.  The reason for this subterfuge is
2002 	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2003 	 * held leads to deadlock.
2004 	 */
2005 	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2006 	rnp = rdp->mynode;
2007 	if (need_report & RCU_OFL_TASKS_NORM_GP)
2008 		rcu_report_unblock_qs_rnp(rnp, flags);
2009 	else
2010 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2011 	if (need_report & RCU_OFL_TASKS_EXP_GP)
2012 		rcu_report_exp_rnp(rsp, rnp, true);
2013 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2014 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2015 		  cpu, rdp->qlen, rdp->nxtlist);
2016 	init_callback_list(rdp);
2017 	/* Disallow further callbacks on this CPU. */
2018 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2019 	mutex_unlock(&rsp->onoff_mutex);
2020 }
2021 
2022 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2023 
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2024 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2025 {
2026 }
2027 
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2028 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2029 {
2030 }
2031 
2032 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2033 
2034 /*
2035  * Invoke any RCU callbacks that have made it to the end of their grace
2036  * period.  Thottle as specified by rdp->blimit.
2037  */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2038 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2039 {
2040 	unsigned long flags;
2041 	struct rcu_head *next, *list, **tail;
2042 	long bl, count, count_lazy;
2043 	int i;
2044 
2045 	/* If no callbacks are ready, just return. */
2046 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2047 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2048 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2049 				    need_resched(), is_idle_task(current),
2050 				    rcu_is_callbacks_kthread());
2051 		return;
2052 	}
2053 
2054 	/*
2055 	 * Extract the list of ready callbacks, disabling to prevent
2056 	 * races with call_rcu() from interrupt handlers.
2057 	 */
2058 	local_irq_save(flags);
2059 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2060 	bl = rdp->blimit;
2061 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2062 	list = rdp->nxtlist;
2063 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2064 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2065 	tail = rdp->nxttail[RCU_DONE_TAIL];
2066 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2067 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2068 			rdp->nxttail[i] = &rdp->nxtlist;
2069 	local_irq_restore(flags);
2070 
2071 	/* Invoke callbacks. */
2072 	count = count_lazy = 0;
2073 	while (list) {
2074 		next = list->next;
2075 		prefetch(next);
2076 		debug_rcu_head_unqueue(list);
2077 		if (__rcu_reclaim(rsp->name, list))
2078 			count_lazy++;
2079 		list = next;
2080 		/* Stop only if limit reached and CPU has something to do. */
2081 		if (++count >= bl &&
2082 		    (need_resched() ||
2083 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2084 			break;
2085 	}
2086 
2087 	local_irq_save(flags);
2088 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2089 			    is_idle_task(current),
2090 			    rcu_is_callbacks_kthread());
2091 
2092 	/* Update count, and requeue any remaining callbacks. */
2093 	if (list != NULL) {
2094 		*tail = rdp->nxtlist;
2095 		rdp->nxtlist = list;
2096 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2097 			if (&rdp->nxtlist == rdp->nxttail[i])
2098 				rdp->nxttail[i] = tail;
2099 			else
2100 				break;
2101 	}
2102 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2103 	rdp->qlen_lazy -= count_lazy;
2104 	ACCESS_ONCE(rdp->qlen) -= count;
2105 	rdp->n_cbs_invoked += count;
2106 
2107 	/* Reinstate batch limit if we have worked down the excess. */
2108 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2109 		rdp->blimit = blimit;
2110 
2111 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2112 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2113 		rdp->qlen_last_fqs_check = 0;
2114 		rdp->n_force_qs_snap = rsp->n_force_qs;
2115 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2116 		rdp->qlen_last_fqs_check = rdp->qlen;
2117 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2118 
2119 	local_irq_restore(flags);
2120 
2121 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2122 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2123 		invoke_rcu_core();
2124 }
2125 
2126 /*
2127  * Check to see if this CPU is in a non-context-switch quiescent state
2128  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2129  * Also schedule RCU core processing.
2130  *
2131  * This function must be called from hardirq context.  It is normally
2132  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2133  * false, there is no point in invoking rcu_check_callbacks().
2134  */
rcu_check_callbacks(int cpu,int user)2135 void rcu_check_callbacks(int cpu, int user)
2136 {
2137 	trace_rcu_utilization("Start scheduler-tick");
2138 	increment_cpu_stall_ticks();
2139 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2140 
2141 		/*
2142 		 * Get here if this CPU took its interrupt from user
2143 		 * mode or from the idle loop, and if this is not a
2144 		 * nested interrupt.  In this case, the CPU is in
2145 		 * a quiescent state, so note it.
2146 		 *
2147 		 * No memory barrier is required here because both
2148 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2149 		 * variables that other CPUs neither access nor modify,
2150 		 * at least not while the corresponding CPU is online.
2151 		 */
2152 
2153 		rcu_sched_qs(cpu);
2154 		rcu_bh_qs(cpu);
2155 
2156 	} else if (!in_softirq()) {
2157 
2158 		/*
2159 		 * Get here if this CPU did not take its interrupt from
2160 		 * softirq, in other words, if it is not interrupting
2161 		 * a rcu_bh read-side critical section.  This is an _bh
2162 		 * critical section, so note it.
2163 		 */
2164 
2165 		rcu_bh_qs(cpu);
2166 	}
2167 	rcu_preempt_check_callbacks(cpu);
2168 	if (rcu_pending(cpu))
2169 		invoke_rcu_core();
2170 	trace_rcu_utilization("End scheduler-tick");
2171 }
2172 
2173 /*
2174  * Scan the leaf rcu_node structures, processing dyntick state for any that
2175  * have not yet encountered a quiescent state, using the function specified.
2176  * Also initiate boosting for any threads blocked on the root rcu_node.
2177  *
2178  * The caller must have suppressed start of new grace periods.
2179  */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data *))2180 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2181 {
2182 	unsigned long bit;
2183 	int cpu;
2184 	unsigned long flags;
2185 	unsigned long mask;
2186 	struct rcu_node *rnp;
2187 
2188 	rcu_for_each_leaf_node(rsp, rnp) {
2189 		cond_resched();
2190 		mask = 0;
2191 		raw_spin_lock_irqsave(&rnp->lock, flags);
2192 		if (!rcu_gp_in_progress(rsp)) {
2193 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2194 			return;
2195 		}
2196 		if (rnp->qsmask == 0) {
2197 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2198 			continue;
2199 		}
2200 		cpu = rnp->grplo;
2201 		bit = 1;
2202 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2203 			if ((rnp->qsmask & bit) != 0 &&
2204 			    f(per_cpu_ptr(rsp->rda, cpu)))
2205 				mask |= bit;
2206 		}
2207 		if (mask != 0) {
2208 
2209 			/* rcu_report_qs_rnp() releases rnp->lock. */
2210 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2211 			continue;
2212 		}
2213 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2214 	}
2215 	rnp = rcu_get_root(rsp);
2216 	if (rnp->qsmask == 0) {
2217 		raw_spin_lock_irqsave(&rnp->lock, flags);
2218 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2219 	}
2220 }
2221 
2222 /*
2223  * Force quiescent states on reluctant CPUs, and also detect which
2224  * CPUs are in dyntick-idle mode.
2225  */
force_quiescent_state(struct rcu_state * rsp)2226 static void force_quiescent_state(struct rcu_state *rsp)
2227 {
2228 	unsigned long flags;
2229 	bool ret;
2230 	struct rcu_node *rnp;
2231 	struct rcu_node *rnp_old = NULL;
2232 
2233 	/* Funnel through hierarchy to reduce memory contention. */
2234 	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2235 	for (; rnp != NULL; rnp = rnp->parent) {
2236 		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2237 		      !raw_spin_trylock(&rnp->fqslock);
2238 		if (rnp_old != NULL)
2239 			raw_spin_unlock(&rnp_old->fqslock);
2240 		if (ret) {
2241 			rsp->n_force_qs_lh++;
2242 			return;
2243 		}
2244 		rnp_old = rnp;
2245 	}
2246 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2247 
2248 	/* Reached the root of the rcu_node tree, acquire lock. */
2249 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2250 	raw_spin_unlock(&rnp_old->fqslock);
2251 	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2252 		rsp->n_force_qs_lh++;
2253 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2254 		return;  /* Someone beat us to it. */
2255 	}
2256 	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2257 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2258 	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2259 }
2260 
2261 /*
2262  * This does the RCU core processing work for the specified rcu_state
2263  * and rcu_data structures.  This may be called only from the CPU to
2264  * whom the rdp belongs.
2265  */
2266 static void
__rcu_process_callbacks(struct rcu_state * rsp)2267 __rcu_process_callbacks(struct rcu_state *rsp)
2268 {
2269 	unsigned long flags;
2270 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2271 
2272 	WARN_ON_ONCE(rdp->beenonline == 0);
2273 
2274 	/* Handle the end of a grace period that some other CPU ended.  */
2275 	rcu_process_gp_end(rsp, rdp);
2276 
2277 	/* Update RCU state based on any recent quiescent states. */
2278 	rcu_check_quiescent_state(rsp, rdp);
2279 
2280 	/* Does this CPU require a not-yet-started grace period? */
2281 	local_irq_save(flags);
2282 	if (cpu_needs_another_gp(rsp, rdp)) {
2283 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2284 		rcu_start_gp(rsp);
2285 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2286 	} else {
2287 		local_irq_restore(flags);
2288 	}
2289 
2290 	/* If there are callbacks ready, invoke them. */
2291 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2292 		invoke_rcu_callbacks(rsp, rdp);
2293 }
2294 
2295 /*
2296  * Do RCU core processing for the current CPU.
2297  */
rcu_process_callbacks(struct softirq_action * unused)2298 static void rcu_process_callbacks(struct softirq_action *unused)
2299 {
2300 	struct rcu_state *rsp;
2301 
2302 	if (cpu_is_offline(smp_processor_id()))
2303 		return;
2304 	trace_rcu_utilization("Start RCU core");
2305 	for_each_rcu_flavor(rsp)
2306 		__rcu_process_callbacks(rsp);
2307 	trace_rcu_utilization("End RCU core");
2308 }
2309 
2310 /*
2311  * Schedule RCU callback invocation.  If the specified type of RCU
2312  * does not support RCU priority boosting, just do a direct call,
2313  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2314  * are running on the current CPU with interrupts disabled, the
2315  * rcu_cpu_kthread_task cannot disappear out from under us.
2316  */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)2317 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2318 {
2319 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2320 		return;
2321 	if (likely(!rsp->boost)) {
2322 		rcu_do_batch(rsp, rdp);
2323 		return;
2324 	}
2325 	invoke_rcu_callbacks_kthread();
2326 }
2327 
invoke_rcu_core(void)2328 static void invoke_rcu_core(void)
2329 {
2330 	if (cpu_online(smp_processor_id()))
2331 		raise_softirq(RCU_SOFTIRQ);
2332 }
2333 
2334 /*
2335  * Handle any core-RCU processing required by a call_rcu() invocation.
2336  */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2337 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2338 			    struct rcu_head *head, unsigned long flags)
2339 {
2340 	/*
2341 	 * If called from an extended quiescent state, invoke the RCU
2342 	 * core in order to force a re-evaluation of RCU's idleness.
2343 	 */
2344 	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2345 		invoke_rcu_core();
2346 
2347 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2348 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2349 		return;
2350 
2351 	/*
2352 	 * Force the grace period if too many callbacks or too long waiting.
2353 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2354 	 * if some other CPU has recently done so.  Also, don't bother
2355 	 * invoking force_quiescent_state() if the newly enqueued callback
2356 	 * is the only one waiting for a grace period to complete.
2357 	 */
2358 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2359 
2360 		/* Are we ignoring a completed grace period? */
2361 		rcu_process_gp_end(rsp, rdp);
2362 		check_for_new_grace_period(rsp, rdp);
2363 
2364 		/* Start a new grace period if one not already started. */
2365 		if (!rcu_gp_in_progress(rsp)) {
2366 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2367 
2368 			raw_spin_lock(&rnp_root->lock);
2369 			rcu_start_gp(rsp);
2370 			raw_spin_unlock(&rnp_root->lock);
2371 		} else {
2372 			/* Give the grace period a kick. */
2373 			rdp->blimit = LONG_MAX;
2374 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2375 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2376 				force_quiescent_state(rsp);
2377 			rdp->n_force_qs_snap = rsp->n_force_qs;
2378 			rdp->qlen_last_fqs_check = rdp->qlen;
2379 		}
2380 	}
2381 }
2382 
2383 /*
2384  * Helper function for call_rcu() and friends.  The cpu argument will
2385  * normally be -1, indicating "currently running CPU".  It may specify
2386  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2387  * is expected to specify a CPU.
2388  */
2389 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,int cpu,bool lazy)2390 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2391 	   struct rcu_state *rsp, int cpu, bool lazy)
2392 {
2393 	unsigned long flags;
2394 	struct rcu_data *rdp;
2395 
2396 	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2397 	debug_rcu_head_queue(head);
2398 	head->func = func;
2399 	head->next = NULL;
2400 
2401 	/*
2402 	 * Opportunistically note grace-period endings and beginnings.
2403 	 * Note that we might see a beginning right after we see an
2404 	 * end, but never vice versa, since this CPU has to pass through
2405 	 * a quiescent state betweentimes.
2406 	 */
2407 	local_irq_save(flags);
2408 	rdp = this_cpu_ptr(rsp->rda);
2409 
2410 	/* Add the callback to our list. */
2411 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2412 		int offline;
2413 
2414 		if (cpu != -1)
2415 			rdp = per_cpu_ptr(rsp->rda, cpu);
2416 		offline = !__call_rcu_nocb(rdp, head, lazy);
2417 		WARN_ON_ONCE(offline);
2418 		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2419 		local_irq_restore(flags);
2420 		return;
2421 	}
2422 	ACCESS_ONCE(rdp->qlen)++;
2423 	if (lazy)
2424 		rdp->qlen_lazy++;
2425 	else
2426 		rcu_idle_count_callbacks_posted();
2427 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2428 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2429 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2430 
2431 	if (__is_kfree_rcu_offset((unsigned long)func))
2432 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2433 					 rdp->qlen_lazy, rdp->qlen);
2434 	else
2435 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2436 
2437 	/* Go handle any RCU core processing required. */
2438 	__call_rcu_core(rsp, rdp, head, flags);
2439 	local_irq_restore(flags);
2440 }
2441 
2442 /*
2443  * Queue an RCU-sched callback for invocation after a grace period.
2444  */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2445 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2446 {
2447 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2448 }
2449 EXPORT_SYMBOL_GPL(call_rcu_sched);
2450 
2451 /*
2452  * Queue an RCU callback for invocation after a quicker grace period.
2453  */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2454 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2455 {
2456 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2457 }
2458 EXPORT_SYMBOL_GPL(call_rcu_bh);
2459 
2460 /*
2461  * Because a context switch is a grace period for RCU-sched and RCU-bh,
2462  * any blocking grace-period wait automatically implies a grace period
2463  * if there is only one CPU online at any point time during execution
2464  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2465  * occasionally incorrectly indicate that there are multiple CPUs online
2466  * when there was in fact only one the whole time, as this just adds
2467  * some overhead: RCU still operates correctly.
2468  */
rcu_blocking_is_gp(void)2469 static inline int rcu_blocking_is_gp(void)
2470 {
2471 	int ret;
2472 
2473 	might_sleep();  /* Check for RCU read-side critical section. */
2474 	preempt_disable();
2475 	ret = num_online_cpus() <= 1;
2476 	preempt_enable();
2477 	return ret;
2478 }
2479 
2480 /**
2481  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2482  *
2483  * Control will return to the caller some time after a full rcu-sched
2484  * grace period has elapsed, in other words after all currently executing
2485  * rcu-sched read-side critical sections have completed.   These read-side
2486  * critical sections are delimited by rcu_read_lock_sched() and
2487  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2488  * local_irq_disable(), and so on may be used in place of
2489  * rcu_read_lock_sched().
2490  *
2491  * This means that all preempt_disable code sequences, including NMI and
2492  * non-threaded hardware-interrupt handlers, in progress on entry will
2493  * have completed before this primitive returns.  However, this does not
2494  * guarantee that softirq handlers will have completed, since in some
2495  * kernels, these handlers can run in process context, and can block.
2496  *
2497  * Note that this guarantee implies further memory-ordering guarantees.
2498  * On systems with more than one CPU, when synchronize_sched() returns,
2499  * each CPU is guaranteed to have executed a full memory barrier since the
2500  * end of its last RCU-sched read-side critical section whose beginning
2501  * preceded the call to synchronize_sched().  In addition, each CPU having
2502  * an RCU read-side critical section that extends beyond the return from
2503  * synchronize_sched() is guaranteed to have executed a full memory barrier
2504  * after the beginning of synchronize_sched() and before the beginning of
2505  * that RCU read-side critical section.  Note that these guarantees include
2506  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2507  * that are executing in the kernel.
2508  *
2509  * Furthermore, if CPU A invoked synchronize_sched(), which returned
2510  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2511  * to have executed a full memory barrier during the execution of
2512  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2513  * again only if the system has more than one CPU).
2514  *
2515  * This primitive provides the guarantees made by the (now removed)
2516  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2517  * guarantees that rcu_read_lock() sections will have completed.
2518  * In "classic RCU", these two guarantees happen to be one and
2519  * the same, but can differ in realtime RCU implementations.
2520  */
synchronize_sched(void)2521 void synchronize_sched(void)
2522 {
2523 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2524 			   !lock_is_held(&rcu_lock_map) &&
2525 			   !lock_is_held(&rcu_sched_lock_map),
2526 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2527 	if (rcu_blocking_is_gp())
2528 		return;
2529 	if (rcu_expedited)
2530 		synchronize_sched_expedited();
2531 	else
2532 		wait_rcu_gp(call_rcu_sched);
2533 }
2534 EXPORT_SYMBOL_GPL(synchronize_sched);
2535 
2536 /**
2537  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2538  *
2539  * Control will return to the caller some time after a full rcu_bh grace
2540  * period has elapsed, in other words after all currently executing rcu_bh
2541  * read-side critical sections have completed.  RCU read-side critical
2542  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2543  * and may be nested.
2544  *
2545  * See the description of synchronize_sched() for more detailed information
2546  * on memory ordering guarantees.
2547  */
synchronize_rcu_bh(void)2548 void synchronize_rcu_bh(void)
2549 {
2550 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2551 			   !lock_is_held(&rcu_lock_map) &&
2552 			   !lock_is_held(&rcu_sched_lock_map),
2553 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2554 	if (rcu_blocking_is_gp())
2555 		return;
2556 	if (rcu_expedited)
2557 		synchronize_rcu_bh_expedited();
2558 	else
2559 		wait_rcu_gp(call_rcu_bh);
2560 }
2561 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2562 
synchronize_sched_expedited_cpu_stop(void * data)2563 static int synchronize_sched_expedited_cpu_stop(void *data)
2564 {
2565 	/*
2566 	 * There must be a full memory barrier on each affected CPU
2567 	 * between the time that try_stop_cpus() is called and the
2568 	 * time that it returns.
2569 	 *
2570 	 * In the current initial implementation of cpu_stop, the
2571 	 * above condition is already met when the control reaches
2572 	 * this point and the following smp_mb() is not strictly
2573 	 * necessary.  Do smp_mb() anyway for documentation and
2574 	 * robustness against future implementation changes.
2575 	 */
2576 	smp_mb(); /* See above comment block. */
2577 	return 0;
2578 }
2579 
2580 /**
2581  * synchronize_sched_expedited - Brute-force RCU-sched grace period
2582  *
2583  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2584  * approach to force the grace period to end quickly.  This consumes
2585  * significant time on all CPUs and is unfriendly to real-time workloads,
2586  * so is thus not recommended for any sort of common-case code.  In fact,
2587  * if you are using synchronize_sched_expedited() in a loop, please
2588  * restructure your code to batch your updates, and then use a single
2589  * synchronize_sched() instead.
2590  *
2591  * Note that it is illegal to call this function while holding any lock
2592  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2593  * to call this function from a CPU-hotplug notifier.  Failing to observe
2594  * these restriction will result in deadlock.
2595  *
2596  * This implementation can be thought of as an application of ticket
2597  * locking to RCU, with sync_sched_expedited_started and
2598  * sync_sched_expedited_done taking on the roles of the halves
2599  * of the ticket-lock word.  Each task atomically increments
2600  * sync_sched_expedited_started upon entry, snapshotting the old value,
2601  * then attempts to stop all the CPUs.  If this succeeds, then each
2602  * CPU will have executed a context switch, resulting in an RCU-sched
2603  * grace period.  We are then done, so we use atomic_cmpxchg() to
2604  * update sync_sched_expedited_done to match our snapshot -- but
2605  * only if someone else has not already advanced past our snapshot.
2606  *
2607  * On the other hand, if try_stop_cpus() fails, we check the value
2608  * of sync_sched_expedited_done.  If it has advanced past our
2609  * initial snapshot, then someone else must have forced a grace period
2610  * some time after we took our snapshot.  In this case, our work is
2611  * done for us, and we can simply return.  Otherwise, we try again,
2612  * but keep our initial snapshot for purposes of checking for someone
2613  * doing our work for us.
2614  *
2615  * If we fail too many times in a row, we fall back to synchronize_sched().
2616  */
synchronize_sched_expedited(void)2617 void synchronize_sched_expedited(void)
2618 {
2619 	long firstsnap, s, snap;
2620 	int trycount = 0;
2621 	struct rcu_state *rsp = &rcu_sched_state;
2622 
2623 	/*
2624 	 * If we are in danger of counter wrap, just do synchronize_sched().
2625 	 * By allowing sync_sched_expedited_started to advance no more than
2626 	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2627 	 * that more than 3.5 billion CPUs would be required to force a
2628 	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2629 	 * course be required on a 64-bit system.
2630 	 */
2631 	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2632 			 (ulong)atomic_long_read(&rsp->expedited_done) +
2633 			 ULONG_MAX / 8)) {
2634 		synchronize_sched();
2635 		atomic_long_inc(&rsp->expedited_wrap);
2636 		return;
2637 	}
2638 
2639 	/*
2640 	 * Take a ticket.  Note that atomic_inc_return() implies a
2641 	 * full memory barrier.
2642 	 */
2643 	snap = atomic_long_inc_return(&rsp->expedited_start);
2644 	firstsnap = snap;
2645 	get_online_cpus();
2646 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2647 
2648 	/*
2649 	 * Each pass through the following loop attempts to force a
2650 	 * context switch on each CPU.
2651 	 */
2652 	while (try_stop_cpus(cpu_online_mask,
2653 			     synchronize_sched_expedited_cpu_stop,
2654 			     NULL) == -EAGAIN) {
2655 		put_online_cpus();
2656 		atomic_long_inc(&rsp->expedited_tryfail);
2657 
2658 		/* Check to see if someone else did our work for us. */
2659 		s = atomic_long_read(&rsp->expedited_done);
2660 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2661 			/* ensure test happens before caller kfree */
2662 			smp_mb__before_atomic_inc(); /* ^^^ */
2663 			atomic_long_inc(&rsp->expedited_workdone1);
2664 			return;
2665 		}
2666 
2667 		/* No joy, try again later.  Or just synchronize_sched(). */
2668 		if (trycount++ < 10) {
2669 			udelay(trycount * num_online_cpus());
2670 		} else {
2671 			wait_rcu_gp(call_rcu_sched);
2672 			atomic_long_inc(&rsp->expedited_normal);
2673 			return;
2674 		}
2675 
2676 		/* Recheck to see if someone else did our work for us. */
2677 		s = atomic_long_read(&rsp->expedited_done);
2678 		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2679 			/* ensure test happens before caller kfree */
2680 			smp_mb__before_atomic_inc(); /* ^^^ */
2681 			atomic_long_inc(&rsp->expedited_workdone2);
2682 			return;
2683 		}
2684 
2685 		/*
2686 		 * Refetching sync_sched_expedited_started allows later
2687 		 * callers to piggyback on our grace period.  We retry
2688 		 * after they started, so our grace period works for them,
2689 		 * and they started after our first try, so their grace
2690 		 * period works for us.
2691 		 */
2692 		get_online_cpus();
2693 		snap = atomic_long_read(&rsp->expedited_start);
2694 		smp_mb(); /* ensure read is before try_stop_cpus(). */
2695 	}
2696 	atomic_long_inc(&rsp->expedited_stoppedcpus);
2697 
2698 	/*
2699 	 * Everyone up to our most recent fetch is covered by our grace
2700 	 * period.  Update the counter, but only if our work is still
2701 	 * relevant -- which it won't be if someone who started later
2702 	 * than we did already did their update.
2703 	 */
2704 	do {
2705 		atomic_long_inc(&rsp->expedited_done_tries);
2706 		s = atomic_long_read(&rsp->expedited_done);
2707 		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2708 			/* ensure test happens before caller kfree */
2709 			smp_mb__before_atomic_inc(); /* ^^^ */
2710 			atomic_long_inc(&rsp->expedited_done_lost);
2711 			break;
2712 		}
2713 	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2714 	atomic_long_inc(&rsp->expedited_done_exit);
2715 
2716 	put_online_cpus();
2717 }
2718 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2719 
2720 /*
2721  * Check to see if there is any immediate RCU-related work to be done
2722  * by the current CPU, for the specified type of RCU, returning 1 if so.
2723  * The checks are in order of increasing expense: checks that can be
2724  * carried out against CPU-local state are performed first.  However,
2725  * we must check for CPU stalls first, else we might not get a chance.
2726  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)2727 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2728 {
2729 	struct rcu_node *rnp = rdp->mynode;
2730 
2731 	rdp->n_rcu_pending++;
2732 
2733 	/* Check for CPU stalls, if enabled. */
2734 	check_cpu_stall(rsp, rdp);
2735 
2736 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2737 	if (rcu_scheduler_fully_active &&
2738 	    rdp->qs_pending && !rdp->passed_quiesce) {
2739 		rdp->n_rp_qs_pending++;
2740 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2741 		rdp->n_rp_report_qs++;
2742 		return 1;
2743 	}
2744 
2745 	/* Does this CPU have callbacks ready to invoke? */
2746 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2747 		rdp->n_rp_cb_ready++;
2748 		return 1;
2749 	}
2750 
2751 	/* Has RCU gone idle with this CPU needing another grace period? */
2752 	if (cpu_needs_another_gp(rsp, rdp)) {
2753 		rdp->n_rp_cpu_needs_gp++;
2754 		return 1;
2755 	}
2756 
2757 	/* Has another RCU grace period completed?  */
2758 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2759 		rdp->n_rp_gp_completed++;
2760 		return 1;
2761 	}
2762 
2763 	/* Has a new RCU grace period started? */
2764 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2765 		rdp->n_rp_gp_started++;
2766 		return 1;
2767 	}
2768 
2769 	/* nothing to do */
2770 	rdp->n_rp_need_nothing++;
2771 	return 0;
2772 }
2773 
2774 /*
2775  * Check to see if there is any immediate RCU-related work to be done
2776  * by the current CPU, returning 1 if so.  This function is part of the
2777  * RCU implementation; it is -not- an exported member of the RCU API.
2778  */
rcu_pending(int cpu)2779 static int rcu_pending(int cpu)
2780 {
2781 	struct rcu_state *rsp;
2782 
2783 	for_each_rcu_flavor(rsp)
2784 		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2785 			return 1;
2786 	return 0;
2787 }
2788 
2789 /*
2790  * Return true if the specified CPU has any callback.  If all_lazy is
2791  * non-NULL, store an indication of whether all callbacks are lazy.
2792  * (If there are no callbacks, all of them are deemed to be lazy.)
2793  */
rcu_cpu_has_callbacks(int cpu,bool * all_lazy)2794 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2795 {
2796 	bool al = true;
2797 	bool hc = false;
2798 	struct rcu_data *rdp;
2799 	struct rcu_state *rsp;
2800 
2801 	for_each_rcu_flavor(rsp) {
2802 		rdp = per_cpu_ptr(rsp->rda, cpu);
2803 		if (rdp->qlen != rdp->qlen_lazy)
2804 			al = false;
2805 		if (rdp->nxtlist)
2806 			hc = true;
2807 	}
2808 	if (all_lazy)
2809 		*all_lazy = al;
2810 	return hc;
2811 }
2812 
2813 /*
2814  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
2815  * the compiler is expected to optimize this away.
2816  */
_rcu_barrier_trace(struct rcu_state * rsp,char * s,int cpu,unsigned long done)2817 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2818 			       int cpu, unsigned long done)
2819 {
2820 	trace_rcu_barrier(rsp->name, s, cpu,
2821 			  atomic_read(&rsp->barrier_cpu_count), done);
2822 }
2823 
2824 /*
2825  * RCU callback function for _rcu_barrier().  If we are last, wake
2826  * up the task executing _rcu_barrier().
2827  */
rcu_barrier_callback(struct rcu_head * rhp)2828 static void rcu_barrier_callback(struct rcu_head *rhp)
2829 {
2830 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2831 	struct rcu_state *rsp = rdp->rsp;
2832 
2833 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2834 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2835 		complete(&rsp->barrier_completion);
2836 	} else {
2837 		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2838 	}
2839 }
2840 
2841 /*
2842  * Called with preemption disabled, and from cross-cpu IRQ context.
2843  */
rcu_barrier_func(void * type)2844 static void rcu_barrier_func(void *type)
2845 {
2846 	struct rcu_state *rsp = type;
2847 	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2848 
2849 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2850 	atomic_inc(&rsp->barrier_cpu_count);
2851 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2852 }
2853 
2854 /*
2855  * Orchestrate the specified type of RCU barrier, waiting for all
2856  * RCU callbacks of the specified type to complete.
2857  */
_rcu_barrier(struct rcu_state * rsp)2858 static void _rcu_barrier(struct rcu_state *rsp)
2859 {
2860 	int cpu;
2861 	struct rcu_data *rdp;
2862 	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2863 	unsigned long snap_done;
2864 
2865 	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2866 
2867 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2868 	mutex_lock(&rsp->barrier_mutex);
2869 
2870 	/*
2871 	 * Ensure that all prior references, including to ->n_barrier_done,
2872 	 * are ordered before the _rcu_barrier() machinery.
2873 	 */
2874 	smp_mb();  /* See above block comment. */
2875 
2876 	/*
2877 	 * Recheck ->n_barrier_done to see if others did our work for us.
2878 	 * This means checking ->n_barrier_done for an even-to-odd-to-even
2879 	 * transition.  The "if" expression below therefore rounds the old
2880 	 * value up to the next even number and adds two before comparing.
2881 	 */
2882 	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2883 	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2884 	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2885 		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2886 		smp_mb(); /* caller's subsequent code after above check. */
2887 		mutex_unlock(&rsp->barrier_mutex);
2888 		return;
2889 	}
2890 
2891 	/*
2892 	 * Increment ->n_barrier_done to avoid duplicate work.  Use
2893 	 * ACCESS_ONCE() to prevent the compiler from speculating
2894 	 * the increment to precede the early-exit check.
2895 	 */
2896 	ACCESS_ONCE(rsp->n_barrier_done)++;
2897 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2898 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2899 	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2900 
2901 	/*
2902 	 * Initialize the count to one rather than to zero in order to
2903 	 * avoid a too-soon return to zero in case of a short grace period
2904 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2905 	 * to ensure that no offline CPU has callbacks queued.
2906 	 */
2907 	init_completion(&rsp->barrier_completion);
2908 	atomic_set(&rsp->barrier_cpu_count, 1);
2909 	get_online_cpus();
2910 
2911 	/*
2912 	 * Force each CPU with callbacks to register a new callback.
2913 	 * When that callback is invoked, we will know that all of the
2914 	 * corresponding CPU's preceding callbacks have been invoked.
2915 	 */
2916 	for_each_possible_cpu(cpu) {
2917 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2918 			continue;
2919 		rdp = per_cpu_ptr(rsp->rda, cpu);
2920 		if (rcu_is_nocb_cpu(cpu)) {
2921 			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2922 					   rsp->n_barrier_done);
2923 			atomic_inc(&rsp->barrier_cpu_count);
2924 			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2925 				   rsp, cpu, 0);
2926 		} else if (ACCESS_ONCE(rdp->qlen)) {
2927 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
2928 					   rsp->n_barrier_done);
2929 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2930 		} else {
2931 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2932 					   rsp->n_barrier_done);
2933 		}
2934 	}
2935 	put_online_cpus();
2936 
2937 	/*
2938 	 * Now that we have an rcu_barrier_callback() callback on each
2939 	 * CPU, and thus each counted, remove the initial count.
2940 	 */
2941 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2942 		complete(&rsp->barrier_completion);
2943 
2944 	/* Increment ->n_barrier_done to prevent duplicate work. */
2945 	smp_mb(); /* Keep increment after above mechanism. */
2946 	ACCESS_ONCE(rsp->n_barrier_done)++;
2947 	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2948 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2949 	smp_mb(); /* Keep increment before caller's subsequent code. */
2950 
2951 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2952 	wait_for_completion(&rsp->barrier_completion);
2953 
2954 	/* Other rcu_barrier() invocations can now safely proceed. */
2955 	mutex_unlock(&rsp->barrier_mutex);
2956 }
2957 
2958 /**
2959  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2960  */
rcu_barrier_bh(void)2961 void rcu_barrier_bh(void)
2962 {
2963 	_rcu_barrier(&rcu_bh_state);
2964 }
2965 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2966 
2967 /**
2968  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2969  */
rcu_barrier_sched(void)2970 void rcu_barrier_sched(void)
2971 {
2972 	_rcu_barrier(&rcu_sched_state);
2973 }
2974 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2975 
2976 /*
2977  * Do boot-time initialization of a CPU's per-CPU RCU data.
2978  */
2979 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)2980 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2981 {
2982 	unsigned long flags;
2983 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2984 	struct rcu_node *rnp = rcu_get_root(rsp);
2985 
2986 	/* Set up local state, ensuring consistent view of global state. */
2987 	raw_spin_lock_irqsave(&rnp->lock, flags);
2988 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2989 	init_callback_list(rdp);
2990 	rdp->qlen_lazy = 0;
2991 	ACCESS_ONCE(rdp->qlen) = 0;
2992 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2993 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2994 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2995 	rdp->cpu = cpu;
2996 	rdp->rsp = rsp;
2997 	rcu_boot_init_nocb_percpu_data(rdp);
2998 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2999 }
3000 
3001 /*
3002  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3003  * offline event can be happening at a given time.  Note also that we
3004  * can accept some slop in the rsp->completed access due to the fact
3005  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3006  */
3007 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp,int preemptible)3008 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3009 {
3010 	unsigned long flags;
3011 	unsigned long mask;
3012 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3013 	struct rcu_node *rnp = rcu_get_root(rsp);
3014 
3015 	/* Exclude new grace periods. */
3016 	mutex_lock(&rsp->onoff_mutex);
3017 
3018 	/* Set up local state, ensuring consistent view of global state. */
3019 	raw_spin_lock_irqsave(&rnp->lock, flags);
3020 	rdp->beenonline = 1;	 /* We have now been online. */
3021 	rdp->preemptible = preemptible;
3022 	rdp->qlen_last_fqs_check = 0;
3023 	rdp->n_force_qs_snap = rsp->n_force_qs;
3024 	rdp->blimit = blimit;
3025 	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3026 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3027 	atomic_set(&rdp->dynticks->dynticks,
3028 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3029 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3030 
3031 	/* Add CPU to rcu_node bitmasks. */
3032 	rnp = rdp->mynode;
3033 	mask = rdp->grpmask;
3034 	do {
3035 		/* Exclude any attempts to start a new GP on small systems. */
3036 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3037 		rnp->qsmaskinit |= mask;
3038 		mask = rnp->grpmask;
3039 		if (rnp == rdp->mynode) {
3040 			/*
3041 			 * If there is a grace period in progress, we will
3042 			 * set up to wait for it next time we run the
3043 			 * RCU core code.
3044 			 */
3045 			rdp->gpnum = rnp->completed;
3046 			rdp->completed = rnp->completed;
3047 			rdp->passed_quiesce = 0;
3048 			rdp->qs_pending = 0;
3049 			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
3050 		}
3051 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3052 		rnp = rnp->parent;
3053 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3054 	local_irq_restore(flags);
3055 
3056 	mutex_unlock(&rsp->onoff_mutex);
3057 }
3058 
rcu_prepare_cpu(int cpu)3059 static void __cpuinit rcu_prepare_cpu(int cpu)
3060 {
3061 	struct rcu_state *rsp;
3062 
3063 	for_each_rcu_flavor(rsp)
3064 		rcu_init_percpu_data(cpu, rsp,
3065 				     strcmp(rsp->name, "rcu_preempt") == 0);
3066 }
3067 
3068 /*
3069  * Handle CPU online/offline notification events.
3070  */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3071 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
3072 				    unsigned long action, void *hcpu)
3073 {
3074 	long cpu = (long)hcpu;
3075 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3076 	struct rcu_node *rnp = rdp->mynode;
3077 	struct rcu_state *rsp;
3078 
3079 	trace_rcu_utilization("Start CPU hotplug");
3080 	switch (action) {
3081 	case CPU_UP_PREPARE:
3082 	case CPU_UP_PREPARE_FROZEN:
3083 		rcu_prepare_cpu(cpu);
3084 		rcu_prepare_kthreads(cpu);
3085 		break;
3086 	case CPU_ONLINE:
3087 	case CPU_DOWN_FAILED:
3088 		rcu_boost_kthread_setaffinity(rnp, -1);
3089 		break;
3090 	case CPU_DOWN_PREPARE:
3091 		rcu_boost_kthread_setaffinity(rnp, cpu);
3092 		break;
3093 	case CPU_DYING:
3094 	case CPU_DYING_FROZEN:
3095 		for_each_rcu_flavor(rsp)
3096 			rcu_cleanup_dying_cpu(rsp);
3097 		break;
3098 	case CPU_DEAD:
3099 	case CPU_DEAD_FROZEN:
3100 	case CPU_UP_CANCELED:
3101 	case CPU_UP_CANCELED_FROZEN:
3102 		for_each_rcu_flavor(rsp)
3103 			rcu_cleanup_dead_cpu(cpu, rsp);
3104 		break;
3105 	default:
3106 		break;
3107 	}
3108 	trace_rcu_utilization("End CPU hotplug");
3109 	return NOTIFY_OK;
3110 }
3111 
3112 /*
3113  * Spawn the kthread that handles this RCU flavor's grace periods.
3114  */
rcu_spawn_gp_kthread(void)3115 static int __init rcu_spawn_gp_kthread(void)
3116 {
3117 	unsigned long flags;
3118 	struct rcu_node *rnp;
3119 	struct rcu_state *rsp;
3120 	struct task_struct *t;
3121 
3122 	for_each_rcu_flavor(rsp) {
3123 		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3124 		BUG_ON(IS_ERR(t));
3125 		rnp = rcu_get_root(rsp);
3126 		raw_spin_lock_irqsave(&rnp->lock, flags);
3127 		rsp->gp_kthread = t;
3128 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3129 		rcu_spawn_nocb_kthreads(rsp);
3130 	}
3131 	return 0;
3132 }
3133 early_initcall(rcu_spawn_gp_kthread);
3134 
3135 /*
3136  * This function is invoked towards the end of the scheduler's initialization
3137  * process.  Before this is called, the idle task might contain
3138  * RCU read-side critical sections (during which time, this idle
3139  * task is booting the system).  After this function is called, the
3140  * idle tasks are prohibited from containing RCU read-side critical
3141  * sections.  This function also enables RCU lockdep checking.
3142  */
rcu_scheduler_starting(void)3143 void rcu_scheduler_starting(void)
3144 {
3145 	WARN_ON(num_online_cpus() != 1);
3146 	WARN_ON(nr_context_switches() > 0);
3147 	rcu_scheduler_active = 1;
3148 }
3149 
3150 /*
3151  * Compute the per-level fanout, either using the exact fanout specified
3152  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3153  */
3154 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)3155 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3156 {
3157 	int i;
3158 
3159 	for (i = rcu_num_lvls - 1; i > 0; i--)
3160 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3161 	rsp->levelspread[0] = rcu_fanout_leaf;
3162 }
3163 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)3164 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3165 {
3166 	int ccur;
3167 	int cprv;
3168 	int i;
3169 
3170 	cprv = nr_cpu_ids;
3171 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3172 		ccur = rsp->levelcnt[i];
3173 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3174 		cprv = ccur;
3175 	}
3176 }
3177 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3178 
3179 /*
3180  * Helper function for rcu_init() that initializes one rcu_state structure.
3181  */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)3182 static void __init rcu_init_one(struct rcu_state *rsp,
3183 		struct rcu_data __percpu *rda)
3184 {
3185 	static char *buf[] = { "rcu_node_0",
3186 			       "rcu_node_1",
3187 			       "rcu_node_2",
3188 			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3189 	static char *fqs[] = { "rcu_node_fqs_0",
3190 			       "rcu_node_fqs_1",
3191 			       "rcu_node_fqs_2",
3192 			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3193 	int cpustride = 1;
3194 	int i;
3195 	int j;
3196 	struct rcu_node *rnp;
3197 
3198 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3199 
3200 	/* Silence gcc 4.8 warning about array index out of range. */
3201 	if (rcu_num_lvls > RCU_NUM_LVLS)
3202 		panic("rcu_init_one: rcu_num_lvls overflow");
3203 
3204 	/* Initialize the level-tracking arrays. */
3205 
3206 	for (i = 0; i < rcu_num_lvls; i++)
3207 		rsp->levelcnt[i] = num_rcu_lvl[i];
3208 	for (i = 1; i < rcu_num_lvls; i++)
3209 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3210 	rcu_init_levelspread(rsp);
3211 
3212 	/* Initialize the elements themselves, starting from the leaves. */
3213 
3214 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3215 		cpustride *= rsp->levelspread[i];
3216 		rnp = rsp->level[i];
3217 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3218 			raw_spin_lock_init(&rnp->lock);
3219 			lockdep_set_class_and_name(&rnp->lock,
3220 						   &rcu_node_class[i], buf[i]);
3221 			raw_spin_lock_init(&rnp->fqslock);
3222 			lockdep_set_class_and_name(&rnp->fqslock,
3223 						   &rcu_fqs_class[i], fqs[i]);
3224 			rnp->gpnum = rsp->gpnum;
3225 			rnp->completed = rsp->completed;
3226 			rnp->qsmask = 0;
3227 			rnp->qsmaskinit = 0;
3228 			rnp->grplo = j * cpustride;
3229 			rnp->grphi = (j + 1) * cpustride - 1;
3230 			if (rnp->grphi >= NR_CPUS)
3231 				rnp->grphi = NR_CPUS - 1;
3232 			if (i == 0) {
3233 				rnp->grpnum = 0;
3234 				rnp->grpmask = 0;
3235 				rnp->parent = NULL;
3236 			} else {
3237 				rnp->grpnum = j % rsp->levelspread[i - 1];
3238 				rnp->grpmask = 1UL << rnp->grpnum;
3239 				rnp->parent = rsp->level[i - 1] +
3240 					      j / rsp->levelspread[i - 1];
3241 			}
3242 			rnp->level = i;
3243 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3244 			rcu_init_one_nocb(rnp);
3245 		}
3246 	}
3247 
3248 	rsp->rda = rda;
3249 	init_waitqueue_head(&rsp->gp_wq);
3250 	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3251 	rnp = rsp->level[rcu_num_lvls - 1];
3252 	for_each_possible_cpu(i) {
3253 		while (i > rnp->grphi)
3254 			rnp++;
3255 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3256 		rcu_boot_init_percpu_data(i, rsp);
3257 	}
3258 	list_add(&rsp->flavors, &rcu_struct_flavors);
3259 }
3260 
3261 /*
3262  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3263  * replace the definitions in rcutree.h because those are needed to size
3264  * the ->node array in the rcu_state structure.
3265  */
rcu_init_geometry(void)3266 static void __init rcu_init_geometry(void)
3267 {
3268 	int i;
3269 	int j;
3270 	int n = nr_cpu_ids;
3271 	int rcu_capacity[MAX_RCU_LVLS + 1];
3272 
3273 	/* If the compile-time values are accurate, just leave. */
3274 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3275 	    nr_cpu_ids == NR_CPUS)
3276 		return;
3277 
3278 	/*
3279 	 * Compute number of nodes that can be handled an rcu_node tree
3280 	 * with the given number of levels.  Setting rcu_capacity[0] makes
3281 	 * some of the arithmetic easier.
3282 	 */
3283 	rcu_capacity[0] = 1;
3284 	rcu_capacity[1] = rcu_fanout_leaf;
3285 	for (i = 2; i <= MAX_RCU_LVLS; i++)
3286 		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3287 
3288 	/*
3289 	 * The boot-time rcu_fanout_leaf parameter is only permitted
3290 	 * to increase the leaf-level fanout, not decrease it.  Of course,
3291 	 * the leaf-level fanout cannot exceed the number of bits in
3292 	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3293 	 * the configured number of CPUs.  Complain and fall back to the
3294 	 * compile-time values if these limits are exceeded.
3295 	 */
3296 	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3297 	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3298 	    n > rcu_capacity[MAX_RCU_LVLS]) {
3299 		WARN_ON(1);
3300 		return;
3301 	}
3302 
3303 	/* Calculate the number of rcu_nodes at each level of the tree. */
3304 	for (i = 1; i <= MAX_RCU_LVLS; i++)
3305 		if (n <= rcu_capacity[i]) {
3306 			for (j = 0; j <= i; j++)
3307 				num_rcu_lvl[j] =
3308 					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3309 			rcu_num_lvls = i;
3310 			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3311 				num_rcu_lvl[j] = 0;
3312 			break;
3313 		}
3314 
3315 	/* Calculate the total number of rcu_node structures. */
3316 	rcu_num_nodes = 0;
3317 	for (i = 0; i <= MAX_RCU_LVLS; i++)
3318 		rcu_num_nodes += num_rcu_lvl[i];
3319 	rcu_num_nodes -= n;
3320 }
3321 
rcu_init(void)3322 void __init rcu_init(void)
3323 {
3324 	int cpu;
3325 
3326 	rcu_bootup_announce();
3327 	rcu_init_geometry();
3328 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3329 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3330 	__rcu_init_preempt();
3331 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3332 
3333 	/*
3334 	 * We don't need protection against CPU-hotplug here because
3335 	 * this is called early in boot, before either interrupts
3336 	 * or the scheduler are operational.
3337 	 */
3338 	cpu_notifier(rcu_cpu_notify, 0);
3339 	for_each_online_cpu(cpu)
3340 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3341 }
3342 
3343 #include "rcutree_plugin.h"
3344