1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 .abbr = sabbr, \
80 }
81
82 struct rcu_state rcu_sched_state =
83 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85
86 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88
89 static struct rcu_state *rcu_state;
90 LIST_HEAD(rcu_struct_flavors);
91
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94 module_param(rcu_fanout_leaf, int, 0444);
95 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
97 NUM_RCU_LVL_0,
98 NUM_RCU_LVL_1,
99 NUM_RCU_LVL_2,
100 NUM_RCU_LVL_3,
101 NUM_RCU_LVL_4,
102 };
103 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
104
105 /*
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
109 * optimize synchronize_sched() to a simple barrier(). When this variable
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
113 */
114 int rcu_scheduler_active __read_mostly;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
116
117 /*
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
124 *
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
127 * a time.
128 */
129 static int rcu_scheduler_fully_active __read_mostly;
130
131 #ifdef CONFIG_RCU_BOOST
132
133 /*
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
136 */
137 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work);
141
142 #endif /* #ifdef CONFIG_RCU_BOOST */
143
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
147
148 /*
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
156 */
157 unsigned long rcutorture_testseq;
158 unsigned long rcutorture_vernum;
159
160 /*
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
164 */
rcu_gp_in_progress(struct rcu_state * rsp)165 static int rcu_gp_in_progress(struct rcu_state *rsp)
166 {
167 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
168 }
169
170 /*
171 * Note a quiescent state. Because we do not need to know
172 * how many quiescent states passed, just if there was at least
173 * one since the start of the grace period, this just sets a flag.
174 * The caller must have disabled preemption.
175 */
rcu_sched_qs(int cpu)176 void rcu_sched_qs(int cpu)
177 {
178 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
179
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
rcu_bh_qs(int cpu)185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 if (rdp->passed_quiesce == 0)
190 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191 rdp->passed_quiesce = 1;
192 }
193
194 /*
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
197 * The caller must have disabled preemption.
198 */
rcu_note_context_switch(int cpu)199 void rcu_note_context_switch(int cpu)
200 {
201 trace_rcu_utilization("Start context switch");
202 rcu_sched_qs(cpu);
203 rcu_preempt_note_context_switch(cpu);
204 trace_rcu_utilization("End context switch");
205 }
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 .dynticks = ATOMIC_INIT(1),
211 };
212
213 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214 static long qhimark = 10000; /* If this many pending, ignore blimit. */
215 static long qlowmark = 100; /* Once only this many pending, use blimit. */
216
217 module_param(blimit, long, 0444);
218 module_param(qhimark, long, 0444);
219 module_param(qlowmark, long, 0444);
220
221 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
223
224 module_param(jiffies_till_first_fqs, ulong, 0644);
225 module_param(jiffies_till_next_fqs, ulong, 0644);
226
227 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
228 struct rcu_data *rdp);
229 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
230 static void force_quiescent_state(struct rcu_state *rsp);
231 static int rcu_pending(int cpu);
232
233 /*
234 * Return the number of RCU-sched batches processed thus far for debug & stats.
235 */
rcu_batches_completed_sched(void)236 long rcu_batches_completed_sched(void)
237 {
238 return rcu_sched_state.completed;
239 }
240 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
241
242 /*
243 * Return the number of RCU BH batches processed thus far for debug & stats.
244 */
rcu_batches_completed_bh(void)245 long rcu_batches_completed_bh(void)
246 {
247 return rcu_bh_state.completed;
248 }
249 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
250
251 /*
252 * Force a quiescent state for RCU BH.
253 */
rcu_bh_force_quiescent_state(void)254 void rcu_bh_force_quiescent_state(void)
255 {
256 force_quiescent_state(&rcu_bh_state);
257 }
258 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
259
260 /*
261 * Record the number of times rcutorture tests have been initiated and
262 * terminated. This information allows the debugfs tracing stats to be
263 * correlated to the rcutorture messages, even when the rcutorture module
264 * is being repeatedly loaded and unloaded. In other words, we cannot
265 * store this state in rcutorture itself.
266 */
rcutorture_record_test_transition(void)267 void rcutorture_record_test_transition(void)
268 {
269 rcutorture_testseq++;
270 rcutorture_vernum = 0;
271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
273
274 /*
275 * Record the number of writer passes through the current rcutorture test.
276 * This is also used to correlate debugfs tracing stats with the rcutorture
277 * messages.
278 */
rcutorture_record_progress(unsigned long vernum)279 void rcutorture_record_progress(unsigned long vernum)
280 {
281 rcutorture_vernum++;
282 }
283 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
284
285 /*
286 * Force a quiescent state for RCU-sched.
287 */
rcu_sched_force_quiescent_state(void)288 void rcu_sched_force_quiescent_state(void)
289 {
290 force_quiescent_state(&rcu_sched_state);
291 }
292 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
293
294 /*
295 * Does the CPU have callbacks ready to be invoked?
296 */
297 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)298 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
299 {
300 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
301 rdp->nxttail[RCU_DONE_TAIL] != NULL;
302 }
303
304 /*
305 * Does the current CPU require a not-yet-started grace period?
306 * The caller must have disabled interrupts to prevent races with
307 * normal callback registry.
308 */
309 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)310 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311 {
312 int i;
313
314 if (rcu_gp_in_progress(rsp))
315 return 0; /* No, a grace period is already in progress. */
316 if (rcu_nocb_needs_gp(rsp))
317 return 1; /* Yes, a no-CBs CPU needs one. */
318 if (!rdp->nxttail[RCU_NEXT_TAIL])
319 return 0; /* No, this is a no-CBs (or offline) CPU. */
320 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
321 return 1; /* Yes, this CPU has newly registered callbacks. */
322 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
323 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
324 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
325 rdp->nxtcompleted[i]))
326 return 1; /* Yes, CBs for future grace period. */
327 return 0; /* No grace period needed. */
328 }
329
330 /*
331 * Return the root node of the specified rcu_state structure.
332 */
rcu_get_root(struct rcu_state * rsp)333 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
334 {
335 return &rsp->node[0];
336 }
337
338 /*
339 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
340 *
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
344 */
rcu_eqs_enter_common(struct rcu_dynticks * rdtp,long long oldval,bool user)345 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
346 bool user)
347 {
348 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
349 if (!user && !is_idle_task(current)) {
350 struct task_struct *idle = idle_task(smp_processor_id());
351
352 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
353 ftrace_dump(DUMP_ORIG);
354 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 current->pid, current->comm,
356 idle->pid, idle->comm); /* must be idle task! */
357 }
358 rcu_prepare_for_idle(smp_processor_id());
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp->dynticks);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
364
365 /*
366 * It is illegal to enter an extended quiescent state while
367 * in an RCU read-side critical section.
368 */
369 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
370 "Illegal idle entry in RCU read-side critical section.");
371 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
372 "Illegal idle entry in RCU-bh read-side critical section.");
373 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
374 "Illegal idle entry in RCU-sched read-side critical section.");
375 }
376
377 /*
378 * Enter an RCU extended quiescent state, which can be either the
379 * idle loop or adaptive-tickless usermode execution.
380 */
rcu_eqs_enter(bool user)381 static void rcu_eqs_enter(bool user)
382 {
383 long long oldval;
384 struct rcu_dynticks *rdtp;
385
386 rdtp = &__get_cpu_var(rcu_dynticks);
387 oldval = rdtp->dynticks_nesting;
388 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
389 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
390 rdtp->dynticks_nesting = 0;
391 else
392 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
393 rcu_eqs_enter_common(rdtp, oldval, user);
394 }
395
396 /**
397 * rcu_idle_enter - inform RCU that current CPU is entering idle
398 *
399 * Enter idle mode, in other words, -leave- the mode in which RCU
400 * read-side critical sections can occur. (Though RCU read-side
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
403 *
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
407 */
rcu_idle_enter(void)408 void rcu_idle_enter(void)
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 rcu_eqs_enter(false);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL_GPL(rcu_idle_enter);
417
418 #ifdef CONFIG_RCU_USER_QS
419 /**
420 * rcu_user_enter - inform RCU that we are resuming userspace.
421 *
422 * Enter RCU idle mode right before resuming userspace. No use of RCU
423 * is permitted between this call and rcu_user_exit(). This way the
424 * CPU doesn't need to maintain the tick for RCU maintenance purposes
425 * when the CPU runs in userspace.
426 */
rcu_user_enter(void)427 void rcu_user_enter(void)
428 {
429 rcu_eqs_enter(1);
430 }
431
432 /**
433 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434 * after the current irq returns.
435 *
436 * This is similar to rcu_user_enter() but in the context of a non-nesting
437 * irq. After this call, RCU enters into idle mode when the interrupt
438 * returns.
439 */
rcu_user_enter_after_irq(void)440 void rcu_user_enter_after_irq(void)
441 {
442 unsigned long flags;
443 struct rcu_dynticks *rdtp;
444
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
447 /* Ensure this irq is interrupting a non-idle RCU state. */
448 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
449 rdtp->dynticks_nesting = 1;
450 local_irq_restore(flags);
451 }
452 #endif /* CONFIG_RCU_USER_QS */
453
454 /**
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
456 *
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
460 *
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
465 *
466 * Use things like work queues to work around this limitation.
467 *
468 * You have been warned.
469 */
rcu_irq_exit(void)470 void rcu_irq_exit(void)
471 {
472 unsigned long flags;
473 long long oldval;
474 struct rcu_dynticks *rdtp;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 rdtp->dynticks_nesting--;
480 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
481 if (rdtp->dynticks_nesting)
482 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
483 else
484 rcu_eqs_enter_common(rdtp, oldval, true);
485 local_irq_restore(flags);
486 }
487
488 /*
489 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
490 *
491 * If the new value of the ->dynticks_nesting counter was previously zero,
492 * we really have exited idle, and must do the appropriate accounting.
493 * The caller must have disabled interrupts.
494 */
rcu_eqs_exit_common(struct rcu_dynticks * rdtp,long long oldval,int user)495 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
496 int user)
497 {
498 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
499 atomic_inc(&rdtp->dynticks);
500 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 smp_mb__after_atomic_inc(); /* See above. */
502 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
503 rcu_cleanup_after_idle(smp_processor_id());
504 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
505 if (!user && !is_idle_task(current)) {
506 struct task_struct *idle = idle_task(smp_processor_id());
507
508 trace_rcu_dyntick("Error on exit: not idle task",
509 oldval, rdtp->dynticks_nesting);
510 ftrace_dump(DUMP_ORIG);
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current->pid, current->comm,
513 idle->pid, idle->comm); /* must be idle task! */
514 }
515 }
516
517 /*
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
520 */
rcu_eqs_exit(bool user)521 static void rcu_eqs_exit(bool user)
522 {
523 struct rcu_dynticks *rdtp;
524 long long oldval;
525
526 rdtp = &__get_cpu_var(rcu_dynticks);
527 oldval = rdtp->dynticks_nesting;
528 WARN_ON_ONCE(oldval < 0);
529 if (oldval & DYNTICK_TASK_NEST_MASK)
530 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 else
532 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
533 rcu_eqs_exit_common(rdtp, oldval, user);
534 }
535
536 /**
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
538 *
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
541 *
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
545 * now starting.
546 */
rcu_idle_exit(void)547 void rcu_idle_exit(void)
548 {
549 unsigned long flags;
550
551 local_irq_save(flags);
552 rcu_eqs_exit(false);
553 local_irq_restore(flags);
554 }
555 EXPORT_SYMBOL_GPL(rcu_idle_exit);
556
557 #ifdef CONFIG_RCU_USER_QS
558 /**
559 * rcu_user_exit - inform RCU that we are exiting userspace.
560 *
561 * Exit RCU idle mode while entering the kernel because it can
562 * run a RCU read side critical section anytime.
563 */
rcu_user_exit(void)564 void rcu_user_exit(void)
565 {
566 rcu_eqs_exit(1);
567 }
568
569 /**
570 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571 * idle mode after the current non-nesting irq returns.
572 *
573 * This is similar to rcu_user_exit() but in the context of an irq.
574 * This is called when the irq has interrupted a userspace RCU idle mode
575 * context. When the current non-nesting interrupt returns after this call,
576 * the CPU won't restore the RCU idle mode.
577 */
rcu_user_exit_after_irq(void)578 void rcu_user_exit_after_irq(void)
579 {
580 unsigned long flags;
581 struct rcu_dynticks *rdtp;
582
583 local_irq_save(flags);
584 rdtp = &__get_cpu_var(rcu_dynticks);
585 /* Ensure we are interrupting an RCU idle mode. */
586 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
587 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
588 local_irq_restore(flags);
589 }
590 #endif /* CONFIG_RCU_USER_QS */
591
592 /**
593 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
594 *
595 * Enter an interrupt handler, which might possibly result in exiting
596 * idle mode, in other words, entering the mode in which read-side critical
597 * sections can occur.
598 *
599 * Note that the Linux kernel is fully capable of entering an interrupt
600 * handler that it never exits, for example when doing upcalls to
601 * user mode! This code assumes that the idle loop never does upcalls to
602 * user mode. If your architecture does do upcalls from the idle loop (or
603 * does anything else that results in unbalanced calls to the irq_enter()
604 * and irq_exit() functions), RCU will give you what you deserve, good
605 * and hard. But very infrequently and irreproducibly.
606 *
607 * Use things like work queues to work around this limitation.
608 *
609 * You have been warned.
610 */
rcu_irq_enter(void)611 void rcu_irq_enter(void)
612 {
613 unsigned long flags;
614 struct rcu_dynticks *rdtp;
615 long long oldval;
616
617 local_irq_save(flags);
618 rdtp = &__get_cpu_var(rcu_dynticks);
619 oldval = rdtp->dynticks_nesting;
620 rdtp->dynticks_nesting++;
621 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
622 if (oldval)
623 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
624 else
625 rcu_eqs_exit_common(rdtp, oldval, true);
626 local_irq_restore(flags);
627 }
628
629 /**
630 * rcu_nmi_enter - inform RCU of entry to NMI context
631 *
632 * If the CPU was idle with dynamic ticks active, and there is no
633 * irq handler running, this updates rdtp->dynticks_nmi to let the
634 * RCU grace-period handling know that the CPU is active.
635 */
rcu_nmi_enter(void)636 void rcu_nmi_enter(void)
637 {
638 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
639
640 if (rdtp->dynticks_nmi_nesting == 0 &&
641 (atomic_read(&rdtp->dynticks) & 0x1))
642 return;
643 rdtp->dynticks_nmi_nesting++;
644 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
645 atomic_inc(&rdtp->dynticks);
646 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 smp_mb__after_atomic_inc(); /* See above. */
648 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
649 }
650
651 /**
652 * rcu_nmi_exit - inform RCU of exit from NMI context
653 *
654 * If the CPU was idle with dynamic ticks active, and there is no
655 * irq handler running, this updates rdtp->dynticks_nmi to let the
656 * RCU grace-period handling know that the CPU is no longer active.
657 */
rcu_nmi_exit(void)658 void rcu_nmi_exit(void)
659 {
660 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
661
662 if (rdtp->dynticks_nmi_nesting == 0 ||
663 --rdtp->dynticks_nmi_nesting != 0)
664 return;
665 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 smp_mb__before_atomic_inc(); /* See above. */
667 atomic_inc(&rdtp->dynticks);
668 smp_mb__after_atomic_inc(); /* Force delay to next write. */
669 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
670 }
671
672 /**
673 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
674 *
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
677 */
rcu_is_cpu_idle(void)678 int rcu_is_cpu_idle(void)
679 {
680 int ret;
681
682 preempt_disable();
683 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
684 preempt_enable();
685 return ret;
686 }
687 EXPORT_SYMBOL(rcu_is_cpu_idle);
688
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690
691 /*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
rcu_lockdep_current_cpu_online(void)712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
721 rdp = &__get_cpu_var(rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731
732 /**
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734 *
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
738 */
rcu_is_cpu_rrupt_from_idle(void)739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
742 }
743
744 /*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
748 */
dyntick_save_progress_counter(struct rcu_data * rdp)749 static int dyntick_save_progress_counter(struct rcu_data *rdp)
750 {
751 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
752 return (rdp->dynticks_snap & 0x1) == 0;
753 }
754
755 /*
756 * Return true if the specified CPU has passed through a quiescent
757 * state by virtue of being in or having passed through an dynticks
758 * idle state since the last call to dyntick_save_progress_counter()
759 * for this same CPU, or by virtue of having been offline.
760 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)761 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
762 {
763 unsigned int curr;
764 unsigned int snap;
765
766 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
767 snap = (unsigned int)rdp->dynticks_snap;
768
769 /*
770 * If the CPU passed through or entered a dynticks idle phase with
771 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 * already acknowledged the request to pass through a quiescent
773 * state. Either way, that CPU cannot possibly be in an RCU
774 * read-side critical section that started before the beginning
775 * of the current RCU grace period.
776 */
777 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
778 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
779 rdp->dynticks_fqs++;
780 return 1;
781 }
782
783 /*
784 * Check for the CPU being offline, but only if the grace period
785 * is old enough. We don't need to worry about the CPU changing
786 * state: If we see it offline even once, it has been through a
787 * quiescent state.
788 *
789 * The reason for insisting that the grace period be at least
790 * one jiffy old is that CPUs that are not quite online and that
791 * have just gone offline can still execute RCU read-side critical
792 * sections.
793 */
794 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
795 return 0; /* Grace period is not old enough. */
796 barrier();
797 if (cpu_is_offline(rdp->cpu)) {
798 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
799 rdp->offline_fqs++;
800 return 1;
801 }
802
803 /*
804 * There is a possibility that a CPU in adaptive-ticks state
805 * might run in the kernel with the scheduling-clock tick disabled
806 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
807 * force the CPU to restart the scheduling-clock tick in this
808 * CPU is in this state.
809 */
810 rcu_kick_nohz_cpu(rdp->cpu);
811
812 return 0;
813 }
814
record_gp_stall_check_time(struct rcu_state * rsp)815 static void record_gp_stall_check_time(struct rcu_state *rsp)
816 {
817 rsp->gp_start = jiffies;
818 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
819 }
820
821 /*
822 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
823 * for architectures that do not implement trigger_all_cpu_backtrace().
824 * The NMI-triggered stack traces are more accurate because they are
825 * printed by the target CPU.
826 */
rcu_dump_cpu_stacks(struct rcu_state * rsp)827 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
828 {
829 int cpu;
830 unsigned long flags;
831 struct rcu_node *rnp;
832
833 rcu_for_each_leaf_node(rsp, rnp) {
834 raw_spin_lock_irqsave(&rnp->lock, flags);
835 if (rnp->qsmask != 0) {
836 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
837 if (rnp->qsmask & (1UL << cpu))
838 dump_cpu_task(rnp->grplo + cpu);
839 }
840 raw_spin_unlock_irqrestore(&rnp->lock, flags);
841 }
842 }
843
print_other_cpu_stall(struct rcu_state * rsp)844 static void print_other_cpu_stall(struct rcu_state *rsp)
845 {
846 int cpu;
847 long delta;
848 unsigned long flags;
849 int ndetected = 0;
850 struct rcu_node *rnp = rcu_get_root(rsp);
851 long totqlen = 0;
852
853 /* Only let one CPU complain about others per time interval. */
854
855 raw_spin_lock_irqsave(&rnp->lock, flags);
856 delta = jiffies - rsp->jiffies_stall;
857 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
858 raw_spin_unlock_irqrestore(&rnp->lock, flags);
859 return;
860 }
861 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
863
864 /*
865 * OK, time to rat on our buddy...
866 * See Documentation/RCU/stallwarn.txt for info on how to debug
867 * RCU CPU stall warnings.
868 */
869 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
870 rsp->name);
871 print_cpu_stall_info_begin();
872 rcu_for_each_leaf_node(rsp, rnp) {
873 raw_spin_lock_irqsave(&rnp->lock, flags);
874 ndetected += rcu_print_task_stall(rnp);
875 if (rnp->qsmask != 0) {
876 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
877 if (rnp->qsmask & (1UL << cpu)) {
878 print_cpu_stall_info(rsp,
879 rnp->grplo + cpu);
880 ndetected++;
881 }
882 }
883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
884 }
885
886 /*
887 * Now rat on any tasks that got kicked up to the root rcu_node
888 * due to CPU offlining.
889 */
890 rnp = rcu_get_root(rsp);
891 raw_spin_lock_irqsave(&rnp->lock, flags);
892 ndetected += rcu_print_task_stall(rnp);
893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
894
895 print_cpu_stall_info_end();
896 for_each_possible_cpu(cpu)
897 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
898 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
899 smp_processor_id(), (long)(jiffies - rsp->gp_start),
900 rsp->gpnum, rsp->completed, totqlen);
901 if (ndetected == 0)
902 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
903 else if (!trigger_all_cpu_backtrace())
904 rcu_dump_cpu_stacks(rsp);
905
906 /* Complain about tasks blocking the grace period. */
907
908 rcu_print_detail_task_stall(rsp);
909
910 force_quiescent_state(rsp); /* Kick them all. */
911 }
912
print_cpu_stall(struct rcu_state * rsp)913 static void print_cpu_stall(struct rcu_state *rsp)
914 {
915 int cpu;
916 unsigned long flags;
917 struct rcu_node *rnp = rcu_get_root(rsp);
918 long totqlen = 0;
919
920 /*
921 * OK, time to rat on ourselves...
922 * See Documentation/RCU/stallwarn.txt for info on how to debug
923 * RCU CPU stall warnings.
924 */
925 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
926 print_cpu_stall_info_begin();
927 print_cpu_stall_info(rsp, smp_processor_id());
928 print_cpu_stall_info_end();
929 for_each_possible_cpu(cpu)
930 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
931 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
932 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
933 if (!trigger_all_cpu_backtrace())
934 dump_stack();
935
936 raw_spin_lock_irqsave(&rnp->lock, flags);
937 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
938 rsp->jiffies_stall = jiffies +
939 3 * rcu_jiffies_till_stall_check() + 3;
940 raw_spin_unlock_irqrestore(&rnp->lock, flags);
941
942 set_need_resched(); /* kick ourselves to get things going. */
943 }
944
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)945 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
946 {
947 unsigned long j;
948 unsigned long js;
949 struct rcu_node *rnp;
950
951 if (rcu_cpu_stall_suppress)
952 return;
953 j = ACCESS_ONCE(jiffies);
954 js = ACCESS_ONCE(rsp->jiffies_stall);
955 rnp = rdp->mynode;
956 if (rcu_gp_in_progress(rsp) &&
957 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
958
959 /* We haven't checked in, so go dump stack. */
960 print_cpu_stall(rsp);
961
962 } else if (rcu_gp_in_progress(rsp) &&
963 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
964
965 /* They had a few time units to dump stack, so complain. */
966 print_other_cpu_stall(rsp);
967 }
968 }
969
970 /**
971 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
972 *
973 * Set the stall-warning timeout way off into the future, thus preventing
974 * any RCU CPU stall-warning messages from appearing in the current set of
975 * RCU grace periods.
976 *
977 * The caller must disable hard irqs.
978 */
rcu_cpu_stall_reset(void)979 void rcu_cpu_stall_reset(void)
980 {
981 struct rcu_state *rsp;
982
983 for_each_rcu_flavor(rsp)
984 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
985 }
986
987 /*
988 * Update CPU-local rcu_data state to record the newly noticed grace period.
989 * This is used both when we started the grace period and when we notice
990 * that someone else started the grace period. The caller must hold the
991 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
992 * and must have irqs disabled.
993 */
__note_new_gpnum(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)994 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
995 {
996 if (rdp->gpnum != rnp->gpnum) {
997 /*
998 * If the current grace period is waiting for this CPU,
999 * set up to detect a quiescent state, otherwise don't
1000 * go looking for one.
1001 */
1002 rdp->gpnum = rnp->gpnum;
1003 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1004 rdp->passed_quiesce = 0;
1005 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1006 zero_cpu_stall_ticks(rdp);
1007 }
1008 }
1009
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)1010 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1011 {
1012 unsigned long flags;
1013 struct rcu_node *rnp;
1014
1015 local_irq_save(flags);
1016 rnp = rdp->mynode;
1017 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1018 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1019 local_irq_restore(flags);
1020 return;
1021 }
1022 __note_new_gpnum(rsp, rnp, rdp);
1023 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1024 }
1025
1026 /*
1027 * Did someone else start a new RCU grace period start since we last
1028 * checked? Update local state appropriately if so. Must be called
1029 * on the CPU corresponding to rdp.
1030 */
1031 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)1032 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1033 {
1034 unsigned long flags;
1035 int ret = 0;
1036
1037 local_irq_save(flags);
1038 if (rdp->gpnum != rsp->gpnum) {
1039 note_new_gpnum(rsp, rdp);
1040 ret = 1;
1041 }
1042 local_irq_restore(flags);
1043 return ret;
1044 }
1045
1046 /*
1047 * Initialize the specified rcu_data structure's callback list to empty.
1048 */
init_callback_list(struct rcu_data * rdp)1049 static void init_callback_list(struct rcu_data *rdp)
1050 {
1051 int i;
1052
1053 if (init_nocb_callback_list(rdp))
1054 return;
1055 rdp->nxtlist = NULL;
1056 for (i = 0; i < RCU_NEXT_SIZE; i++)
1057 rdp->nxttail[i] = &rdp->nxtlist;
1058 }
1059
1060 /*
1061 * Determine the value that ->completed will have at the end of the
1062 * next subsequent grace period. This is used to tag callbacks so that
1063 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1064 * been dyntick-idle for an extended period with callbacks under the
1065 * influence of RCU_FAST_NO_HZ.
1066 *
1067 * The caller must hold rnp->lock with interrupts disabled.
1068 */
rcu_cbs_completed(struct rcu_state * rsp,struct rcu_node * rnp)1069 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1070 struct rcu_node *rnp)
1071 {
1072 /*
1073 * If RCU is idle, we just wait for the next grace period.
1074 * But we can only be sure that RCU is idle if we are looking
1075 * at the root rcu_node structure -- otherwise, a new grace
1076 * period might have started, but just not yet gotten around
1077 * to initializing the current non-root rcu_node structure.
1078 */
1079 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1080 return rnp->completed + 1;
1081
1082 /*
1083 * Otherwise, wait for a possible partial grace period and
1084 * then the subsequent full grace period.
1085 */
1086 return rnp->completed + 2;
1087 }
1088
1089 /*
1090 * Trace-event helper function for rcu_start_future_gp() and
1091 * rcu_nocb_wait_gp().
1092 */
trace_rcu_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long c,char * s)1093 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1094 unsigned long c, char *s)
1095 {
1096 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1097 rnp->completed, c, rnp->level,
1098 rnp->grplo, rnp->grphi, s);
1099 }
1100
1101 /*
1102 * Start some future grace period, as needed to handle newly arrived
1103 * callbacks. The required future grace periods are recorded in each
1104 * rcu_node structure's ->need_future_gp field.
1105 *
1106 * The caller must hold the specified rcu_node structure's ->lock.
1107 */
1108 static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node * rnp,struct rcu_data * rdp)1109 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1110 {
1111 unsigned long c;
1112 int i;
1113 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1114
1115 /*
1116 * Pick up grace-period number for new callbacks. If this
1117 * grace period is already marked as needed, return to the caller.
1118 */
1119 c = rcu_cbs_completed(rdp->rsp, rnp);
1120 trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1121 if (rnp->need_future_gp[c & 0x1]) {
1122 trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1123 return c;
1124 }
1125
1126 /*
1127 * If either this rcu_node structure or the root rcu_node structure
1128 * believe that a grace period is in progress, then we must wait
1129 * for the one following, which is in "c". Because our request
1130 * will be noticed at the end of the current grace period, we don't
1131 * need to explicitly start one.
1132 */
1133 if (rnp->gpnum != rnp->completed ||
1134 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1135 rnp->need_future_gp[c & 0x1]++;
1136 trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1137 return c;
1138 }
1139
1140 /*
1141 * There might be no grace period in progress. If we don't already
1142 * hold it, acquire the root rcu_node structure's lock in order to
1143 * start one (if needed).
1144 */
1145 if (rnp != rnp_root)
1146 raw_spin_lock(&rnp_root->lock);
1147
1148 /*
1149 * Get a new grace-period number. If there really is no grace
1150 * period in progress, it will be smaller than the one we obtained
1151 * earlier. Adjust callbacks as needed. Note that even no-CBs
1152 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1153 */
1154 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1155 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1156 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1157 rdp->nxtcompleted[i] = c;
1158
1159 /*
1160 * If the needed for the required grace period is already
1161 * recorded, trace and leave.
1162 */
1163 if (rnp_root->need_future_gp[c & 0x1]) {
1164 trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1165 goto unlock_out;
1166 }
1167
1168 /* Record the need for the future grace period. */
1169 rnp_root->need_future_gp[c & 0x1]++;
1170
1171 /* If a grace period is not already in progress, start one. */
1172 if (rnp_root->gpnum != rnp_root->completed) {
1173 trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1174 } else {
1175 trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1176 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1177 }
1178 unlock_out:
1179 if (rnp != rnp_root)
1180 raw_spin_unlock(&rnp_root->lock);
1181 return c;
1182 }
1183
1184 /*
1185 * Clean up any old requests for the just-ended grace period. Also return
1186 * whether any additional grace periods have been requested. Also invoke
1187 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1188 * waiting for this grace period to complete.
1189 */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1190 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1191 {
1192 int c = rnp->completed;
1193 int needmore;
1194 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1195
1196 rcu_nocb_gp_cleanup(rsp, rnp);
1197 rnp->need_future_gp[c & 0x1] = 0;
1198 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1199 trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1200 return needmore;
1201 }
1202
1203 /*
1204 * If there is room, assign a ->completed number to any callbacks on
1205 * this CPU that have not already been assigned. Also accelerate any
1206 * callbacks that were previously assigned a ->completed number that has
1207 * since proven to be too conservative, which can happen if callbacks get
1208 * assigned a ->completed number while RCU is idle, but with reference to
1209 * a non-root rcu_node structure. This function is idempotent, so it does
1210 * not hurt to call it repeatedly.
1211 *
1212 * The caller must hold rnp->lock with interrupts disabled.
1213 */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1214 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1215 struct rcu_data *rdp)
1216 {
1217 unsigned long c;
1218 int i;
1219
1220 /* If the CPU has no callbacks, nothing to do. */
1221 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1222 return;
1223
1224 /*
1225 * Starting from the sublist containing the callbacks most
1226 * recently assigned a ->completed number and working down, find the
1227 * first sublist that is not assignable to an upcoming grace period.
1228 * Such a sublist has something in it (first two tests) and has
1229 * a ->completed number assigned that will complete sooner than
1230 * the ->completed number for newly arrived callbacks (last test).
1231 *
1232 * The key point is that any later sublist can be assigned the
1233 * same ->completed number as the newly arrived callbacks, which
1234 * means that the callbacks in any of these later sublist can be
1235 * grouped into a single sublist, whether or not they have already
1236 * been assigned a ->completed number.
1237 */
1238 c = rcu_cbs_completed(rsp, rnp);
1239 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1240 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1241 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1242 break;
1243
1244 /*
1245 * If there are no sublist for unassigned callbacks, leave.
1246 * At the same time, advance "i" one sublist, so that "i" will
1247 * index into the sublist where all the remaining callbacks should
1248 * be grouped into.
1249 */
1250 if (++i >= RCU_NEXT_TAIL)
1251 return;
1252
1253 /*
1254 * Assign all subsequent callbacks' ->completed number to the next
1255 * full grace period and group them all in the sublist initially
1256 * indexed by "i".
1257 */
1258 for (; i <= RCU_NEXT_TAIL; i++) {
1259 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1260 rdp->nxtcompleted[i] = c;
1261 }
1262 /* Record any needed additional grace periods. */
1263 rcu_start_future_gp(rnp, rdp);
1264
1265 /* Trace depending on how much we were able to accelerate. */
1266 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1267 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1268 else
1269 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1270 }
1271
1272 /*
1273 * Move any callbacks whose grace period has completed to the
1274 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1275 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1276 * sublist. This function is idempotent, so it does not hurt to
1277 * invoke it repeatedly. As long as it is not invoked -too- often...
1278 *
1279 * The caller must hold rnp->lock with interrupts disabled.
1280 */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1281 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1282 struct rcu_data *rdp)
1283 {
1284 int i, j;
1285
1286 /* If the CPU has no callbacks, nothing to do. */
1287 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1288 return;
1289
1290 /*
1291 * Find all callbacks whose ->completed numbers indicate that they
1292 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1293 */
1294 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1295 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1296 break;
1297 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1298 }
1299 /* Clean up any sublist tail pointers that were misordered above. */
1300 for (j = RCU_WAIT_TAIL; j < i; j++)
1301 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1302
1303 /* Copy down callbacks to fill in empty sublists. */
1304 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1305 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1306 break;
1307 rdp->nxttail[j] = rdp->nxttail[i];
1308 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1309 }
1310
1311 /* Classify any remaining callbacks. */
1312 rcu_accelerate_cbs(rsp, rnp, rdp);
1313 }
1314
1315 /*
1316 * Advance this CPU's callbacks, but only if the current grace period
1317 * has ended. This may be called only from the CPU to whom the rdp
1318 * belongs. In addition, the corresponding leaf rcu_node structure's
1319 * ->lock must be held by the caller, with irqs disabled.
1320 */
1321 static void
__rcu_process_gp_end(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1322 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1323 {
1324 /* Did another grace period end? */
1325 if (rdp->completed == rnp->completed) {
1326
1327 /* No, so just accelerate recent callbacks. */
1328 rcu_accelerate_cbs(rsp, rnp, rdp);
1329
1330 } else {
1331
1332 /* Advance callbacks. */
1333 rcu_advance_cbs(rsp, rnp, rdp);
1334
1335 /* Remember that we saw this grace-period completion. */
1336 rdp->completed = rnp->completed;
1337 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1338
1339 /*
1340 * If we were in an extended quiescent state, we may have
1341 * missed some grace periods that others CPUs handled on
1342 * our behalf. Catch up with this state to avoid noting
1343 * spurious new grace periods. If another grace period
1344 * has started, then rnp->gpnum will have advanced, so
1345 * we will detect this later on. Of course, any quiescent
1346 * states we found for the old GP are now invalid.
1347 */
1348 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1349 rdp->gpnum = rdp->completed;
1350 rdp->passed_quiesce = 0;
1351 }
1352
1353 /*
1354 * If RCU does not need a quiescent state from this CPU,
1355 * then make sure that this CPU doesn't go looking for one.
1356 */
1357 if ((rnp->qsmask & rdp->grpmask) == 0)
1358 rdp->qs_pending = 0;
1359 }
1360 }
1361
1362 /*
1363 * Advance this CPU's callbacks, but only if the current grace period
1364 * has ended. This may be called only from the CPU to whom the rdp
1365 * belongs.
1366 */
1367 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)1368 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1369 {
1370 unsigned long flags;
1371 struct rcu_node *rnp;
1372
1373 local_irq_save(flags);
1374 rnp = rdp->mynode;
1375 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1376 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1377 local_irq_restore(flags);
1378 return;
1379 }
1380 __rcu_process_gp_end(rsp, rnp, rdp);
1381 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382 }
1383
1384 /*
1385 * Do per-CPU grace-period initialization for running CPU. The caller
1386 * must hold the lock of the leaf rcu_node structure corresponding to
1387 * this CPU.
1388 */
1389 static void
rcu_start_gp_per_cpu(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1390 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1391 {
1392 /* Prior grace period ended, so advance callbacks for current CPU. */
1393 __rcu_process_gp_end(rsp, rnp, rdp);
1394
1395 /* Set state so that this CPU will detect the next quiescent state. */
1396 __note_new_gpnum(rsp, rnp, rdp);
1397 }
1398
1399 /*
1400 * Initialize a new grace period.
1401 */
rcu_gp_init(struct rcu_state * rsp)1402 static int rcu_gp_init(struct rcu_state *rsp)
1403 {
1404 struct rcu_data *rdp;
1405 struct rcu_node *rnp = rcu_get_root(rsp);
1406
1407 raw_spin_lock_irq(&rnp->lock);
1408 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1409
1410 if (rcu_gp_in_progress(rsp)) {
1411 /* Grace period already in progress, don't start another. */
1412 raw_spin_unlock_irq(&rnp->lock);
1413 return 0;
1414 }
1415
1416 /* Advance to a new grace period and initialize state. */
1417 rsp->gpnum++;
1418 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1419 record_gp_stall_check_time(rsp);
1420 raw_spin_unlock_irq(&rnp->lock);
1421
1422 /* Exclude any concurrent CPU-hotplug operations. */
1423 mutex_lock(&rsp->onoff_mutex);
1424
1425 /*
1426 * Set the quiescent-state-needed bits in all the rcu_node
1427 * structures for all currently online CPUs in breadth-first order,
1428 * starting from the root rcu_node structure, relying on the layout
1429 * of the tree within the rsp->node[] array. Note that other CPUs
1430 * will access only the leaves of the hierarchy, thus seeing that no
1431 * grace period is in progress, at least until the corresponding
1432 * leaf node has been initialized. In addition, we have excluded
1433 * CPU-hotplug operations.
1434 *
1435 * The grace period cannot complete until the initialization
1436 * process finishes, because this kthread handles both.
1437 */
1438 rcu_for_each_node_breadth_first(rsp, rnp) {
1439 raw_spin_lock_irq(&rnp->lock);
1440 rdp = this_cpu_ptr(rsp->rda);
1441 rcu_preempt_check_blocked_tasks(rnp);
1442 rnp->qsmask = rnp->qsmaskinit;
1443 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1444 WARN_ON_ONCE(rnp->completed != rsp->completed);
1445 ACCESS_ONCE(rnp->completed) = rsp->completed;
1446 if (rnp == rdp->mynode)
1447 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1448 rcu_preempt_boost_start_gp(rnp);
1449 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1450 rnp->level, rnp->grplo,
1451 rnp->grphi, rnp->qsmask);
1452 raw_spin_unlock_irq(&rnp->lock);
1453 #ifdef CONFIG_PROVE_RCU_DELAY
1454 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1455 system_state == SYSTEM_RUNNING)
1456 udelay(200);
1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1458 cond_resched();
1459 }
1460
1461 mutex_unlock(&rsp->onoff_mutex);
1462 return 1;
1463 }
1464
1465 /*
1466 * Do one round of quiescent-state forcing.
1467 */
rcu_gp_fqs(struct rcu_state * rsp,int fqs_state_in)1468 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1469 {
1470 int fqs_state = fqs_state_in;
1471 struct rcu_node *rnp = rcu_get_root(rsp);
1472
1473 rsp->n_force_qs++;
1474 if (fqs_state == RCU_SAVE_DYNTICK) {
1475 /* Collect dyntick-idle snapshots. */
1476 force_qs_rnp(rsp, dyntick_save_progress_counter);
1477 fqs_state = RCU_FORCE_QS;
1478 } else {
1479 /* Handle dyntick-idle and offline CPUs. */
1480 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1481 }
1482 /* Clear flag to prevent immediate re-entry. */
1483 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1484 raw_spin_lock_irq(&rnp->lock);
1485 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1486 raw_spin_unlock_irq(&rnp->lock);
1487 }
1488 return fqs_state;
1489 }
1490
1491 /*
1492 * Clean up after the old grace period.
1493 */
rcu_gp_cleanup(struct rcu_state * rsp)1494 static void rcu_gp_cleanup(struct rcu_state *rsp)
1495 {
1496 unsigned long gp_duration;
1497 int nocb = 0;
1498 struct rcu_data *rdp;
1499 struct rcu_node *rnp = rcu_get_root(rsp);
1500
1501 raw_spin_lock_irq(&rnp->lock);
1502 gp_duration = jiffies - rsp->gp_start;
1503 if (gp_duration > rsp->gp_max)
1504 rsp->gp_max = gp_duration;
1505
1506 /*
1507 * We know the grace period is complete, but to everyone else
1508 * it appears to still be ongoing. But it is also the case
1509 * that to everyone else it looks like there is nothing that
1510 * they can do to advance the grace period. It is therefore
1511 * safe for us to drop the lock in order to mark the grace
1512 * period as completed in all of the rcu_node structures.
1513 */
1514 raw_spin_unlock_irq(&rnp->lock);
1515
1516 /*
1517 * Propagate new ->completed value to rcu_node structures so
1518 * that other CPUs don't have to wait until the start of the next
1519 * grace period to process their callbacks. This also avoids
1520 * some nasty RCU grace-period initialization races by forcing
1521 * the end of the current grace period to be completely recorded in
1522 * all of the rcu_node structures before the beginning of the next
1523 * grace period is recorded in any of the rcu_node structures.
1524 */
1525 rcu_for_each_node_breadth_first(rsp, rnp) {
1526 raw_spin_lock_irq(&rnp->lock);
1527 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1528 rdp = this_cpu_ptr(rsp->rda);
1529 if (rnp == rdp->mynode)
1530 __rcu_process_gp_end(rsp, rnp, rdp);
1531 nocb += rcu_future_gp_cleanup(rsp, rnp);
1532 raw_spin_unlock_irq(&rnp->lock);
1533 cond_resched();
1534 }
1535 rnp = rcu_get_root(rsp);
1536 raw_spin_lock_irq(&rnp->lock);
1537 rcu_nocb_gp_set(rnp, nocb);
1538
1539 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1540 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1541 rsp->fqs_state = RCU_GP_IDLE;
1542 rdp = this_cpu_ptr(rsp->rda);
1543 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1544 if (cpu_needs_another_gp(rsp, rdp))
1545 rsp->gp_flags = 1;
1546 raw_spin_unlock_irq(&rnp->lock);
1547 }
1548
1549 /*
1550 * Body of kthread that handles grace periods.
1551 */
rcu_gp_kthread(void * arg)1552 static int __noreturn rcu_gp_kthread(void *arg)
1553 {
1554 int fqs_state;
1555 unsigned long j;
1556 int ret;
1557 struct rcu_state *rsp = arg;
1558 struct rcu_node *rnp = rcu_get_root(rsp);
1559
1560 for (;;) {
1561
1562 /* Handle grace-period start. */
1563 for (;;) {
1564 wait_event_interruptible(rsp->gp_wq,
1565 rsp->gp_flags &
1566 RCU_GP_FLAG_INIT);
1567 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1568 rcu_gp_init(rsp))
1569 break;
1570 cond_resched();
1571 flush_signals(current);
1572 }
1573
1574 /* Handle quiescent-state forcing. */
1575 fqs_state = RCU_SAVE_DYNTICK;
1576 j = jiffies_till_first_fqs;
1577 if (j > HZ) {
1578 j = HZ;
1579 jiffies_till_first_fqs = HZ;
1580 }
1581 for (;;) {
1582 rsp->jiffies_force_qs = jiffies + j;
1583 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1584 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1585 (!ACCESS_ONCE(rnp->qsmask) &&
1586 !rcu_preempt_blocked_readers_cgp(rnp)),
1587 j);
1588 /* If grace period done, leave loop. */
1589 if (!ACCESS_ONCE(rnp->qsmask) &&
1590 !rcu_preempt_blocked_readers_cgp(rnp))
1591 break;
1592 /* If time for quiescent-state forcing, do it. */
1593 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1594 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1595 cond_resched();
1596 } else {
1597 /* Deal with stray signal. */
1598 cond_resched();
1599 flush_signals(current);
1600 }
1601 j = jiffies_till_next_fqs;
1602 if (j > HZ) {
1603 j = HZ;
1604 jiffies_till_next_fqs = HZ;
1605 } else if (j < 1) {
1606 j = 1;
1607 jiffies_till_next_fqs = 1;
1608 }
1609 }
1610
1611 /* Handle grace-period end. */
1612 rcu_gp_cleanup(rsp);
1613 }
1614 }
1615
rsp_wakeup(struct irq_work * work)1616 static void rsp_wakeup(struct irq_work *work)
1617 {
1618 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1619
1620 /* Wake up rcu_gp_kthread() to start the grace period. */
1621 wake_up(&rsp->gp_wq);
1622 }
1623
1624 /*
1625 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1626 * in preparation for detecting the next grace period. The caller must hold
1627 * the root node's ->lock and hard irqs must be disabled.
1628 *
1629 * Note that it is legal for a dying CPU (which is marked as offline) to
1630 * invoke this function. This can happen when the dying CPU reports its
1631 * quiescent state.
1632 */
1633 static void
rcu_start_gp_advanced(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1634 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1635 struct rcu_data *rdp)
1636 {
1637 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1638 /*
1639 * Either we have not yet spawned the grace-period
1640 * task, this CPU does not need another grace period,
1641 * or a grace period is already in progress.
1642 * Either way, don't start a new grace period.
1643 */
1644 return;
1645 }
1646 rsp->gp_flags = RCU_GP_FLAG_INIT;
1647
1648 /*
1649 * We can't do wakeups while holding the rnp->lock, as that
1650 * could cause possible deadlocks with the rq->lock. Deter
1651 * the wakeup to interrupt context.
1652 */
1653 irq_work_queue(&rsp->wakeup_work);
1654 }
1655
1656 /*
1657 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1658 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1659 * is invoked indirectly from rcu_advance_cbs(), which would result in
1660 * endless recursion -- or would do so if it wasn't for the self-deadlock
1661 * that is encountered beforehand.
1662 */
1663 static void
rcu_start_gp(struct rcu_state * rsp)1664 rcu_start_gp(struct rcu_state *rsp)
1665 {
1666 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1667 struct rcu_node *rnp = rcu_get_root(rsp);
1668
1669 /*
1670 * If there is no grace period in progress right now, any
1671 * callbacks we have up to this point will be satisfied by the
1672 * next grace period. Also, advancing the callbacks reduces the
1673 * probability of false positives from cpu_needs_another_gp()
1674 * resulting in pointless grace periods. So, advance callbacks
1675 * then start the grace period!
1676 */
1677 rcu_advance_cbs(rsp, rnp, rdp);
1678 rcu_start_gp_advanced(rsp, rnp, rdp);
1679 }
1680
1681 /*
1682 * Report a full set of quiescent states to the specified rcu_state
1683 * data structure. This involves cleaning up after the prior grace
1684 * period and letting rcu_start_gp() start up the next grace period
1685 * if one is needed. Note that the caller must hold rnp->lock, which
1686 * is released before return.
1687 */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1688 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1689 __releases(rcu_get_root(rsp)->lock)
1690 {
1691 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1692 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1693 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1694 }
1695
1696 /*
1697 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1698 * Allows quiescent states for a group of CPUs to be reported at one go
1699 * to the specified rcu_node structure, though all the CPUs in the group
1700 * must be represented by the same rcu_node structure (which need not be
1701 * a leaf rcu_node structure, though it often will be). That structure's
1702 * lock must be held upon entry, and it is released before return.
1703 */
1704 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1705 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1706 struct rcu_node *rnp, unsigned long flags)
1707 __releases(rnp->lock)
1708 {
1709 struct rcu_node *rnp_c;
1710
1711 /* Walk up the rcu_node hierarchy. */
1712 for (;;) {
1713 if (!(rnp->qsmask & mask)) {
1714
1715 /* Our bit has already been cleared, so done. */
1716 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1717 return;
1718 }
1719 rnp->qsmask &= ~mask;
1720 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1721 mask, rnp->qsmask, rnp->level,
1722 rnp->grplo, rnp->grphi,
1723 !!rnp->gp_tasks);
1724 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1725
1726 /* Other bits still set at this level, so done. */
1727 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1728 return;
1729 }
1730 mask = rnp->grpmask;
1731 if (rnp->parent == NULL) {
1732
1733 /* No more levels. Exit loop holding root lock. */
1734
1735 break;
1736 }
1737 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1738 rnp_c = rnp;
1739 rnp = rnp->parent;
1740 raw_spin_lock_irqsave(&rnp->lock, flags);
1741 WARN_ON_ONCE(rnp_c->qsmask);
1742 }
1743
1744 /*
1745 * Get here if we are the last CPU to pass through a quiescent
1746 * state for this grace period. Invoke rcu_report_qs_rsp()
1747 * to clean up and start the next grace period if one is needed.
1748 */
1749 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1750 }
1751
1752 /*
1753 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1754 * structure. This must be either called from the specified CPU, or
1755 * called when the specified CPU is known to be offline (and when it is
1756 * also known that no other CPU is concurrently trying to help the offline
1757 * CPU). The lastcomp argument is used to make sure we are still in the
1758 * grace period of interest. We don't want to end the current grace period
1759 * based on quiescent states detected in an earlier grace period!
1760 */
1761 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)1762 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1763 {
1764 unsigned long flags;
1765 unsigned long mask;
1766 struct rcu_node *rnp;
1767
1768 rnp = rdp->mynode;
1769 raw_spin_lock_irqsave(&rnp->lock, flags);
1770 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1771 rnp->completed == rnp->gpnum) {
1772
1773 /*
1774 * The grace period in which this quiescent state was
1775 * recorded has ended, so don't report it upwards.
1776 * We will instead need a new quiescent state that lies
1777 * within the current grace period.
1778 */
1779 rdp->passed_quiesce = 0; /* need qs for new gp. */
1780 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1781 return;
1782 }
1783 mask = rdp->grpmask;
1784 if ((rnp->qsmask & mask) == 0) {
1785 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1786 } else {
1787 rdp->qs_pending = 0;
1788
1789 /*
1790 * This GP can't end until cpu checks in, so all of our
1791 * callbacks can be processed during the next GP.
1792 */
1793 rcu_accelerate_cbs(rsp, rnp, rdp);
1794
1795 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1796 }
1797 }
1798
1799 /*
1800 * Check to see if there is a new grace period of which this CPU
1801 * is not yet aware, and if so, set up local rcu_data state for it.
1802 * Otherwise, see if this CPU has just passed through its first
1803 * quiescent state for this grace period, and record that fact if so.
1804 */
1805 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)1806 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1807 {
1808 /* If there is now a new grace period, record and return. */
1809 if (check_for_new_grace_period(rsp, rdp))
1810 return;
1811
1812 /*
1813 * Does this CPU still need to do its part for current grace period?
1814 * If no, return and let the other CPUs do their part as well.
1815 */
1816 if (!rdp->qs_pending)
1817 return;
1818
1819 /*
1820 * Was there a quiescent state since the beginning of the grace
1821 * period? If no, then exit and wait for the next call.
1822 */
1823 if (!rdp->passed_quiesce)
1824 return;
1825
1826 /*
1827 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1828 * judge of that).
1829 */
1830 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1831 }
1832
1833 #ifdef CONFIG_HOTPLUG_CPU
1834
1835 /*
1836 * Send the specified CPU's RCU callbacks to the orphanage. The
1837 * specified CPU must be offline, and the caller must hold the
1838 * ->orphan_lock.
1839 */
1840 static void
rcu_send_cbs_to_orphanage(int cpu,struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1841 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1842 struct rcu_node *rnp, struct rcu_data *rdp)
1843 {
1844 /* No-CBs CPUs do not have orphanable callbacks. */
1845 if (rcu_is_nocb_cpu(rdp->cpu))
1846 return;
1847
1848 /*
1849 * Orphan the callbacks. First adjust the counts. This is safe
1850 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1851 * cannot be running now. Thus no memory barrier is required.
1852 */
1853 if (rdp->nxtlist != NULL) {
1854 rsp->qlen_lazy += rdp->qlen_lazy;
1855 rsp->qlen += rdp->qlen;
1856 rdp->n_cbs_orphaned += rdp->qlen;
1857 rdp->qlen_lazy = 0;
1858 ACCESS_ONCE(rdp->qlen) = 0;
1859 }
1860
1861 /*
1862 * Next, move those callbacks still needing a grace period to
1863 * the orphanage, where some other CPU will pick them up.
1864 * Some of the callbacks might have gone partway through a grace
1865 * period, but that is too bad. They get to start over because we
1866 * cannot assume that grace periods are synchronized across CPUs.
1867 * We don't bother updating the ->nxttail[] array yet, instead
1868 * we just reset the whole thing later on.
1869 */
1870 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1871 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1872 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1873 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1874 }
1875
1876 /*
1877 * Then move the ready-to-invoke callbacks to the orphanage,
1878 * where some other CPU will pick them up. These will not be
1879 * required to pass though another grace period: They are done.
1880 */
1881 if (rdp->nxtlist != NULL) {
1882 *rsp->orphan_donetail = rdp->nxtlist;
1883 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1884 }
1885
1886 /* Finally, initialize the rcu_data structure's list to empty. */
1887 init_callback_list(rdp);
1888 }
1889
1890 /*
1891 * Adopt the RCU callbacks from the specified rcu_state structure's
1892 * orphanage. The caller must hold the ->orphan_lock.
1893 */
rcu_adopt_orphan_cbs(struct rcu_state * rsp)1894 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1895 {
1896 int i;
1897 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1898
1899 /* No-CBs CPUs are handled specially. */
1900 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1901 return;
1902
1903 /* Do the accounting first. */
1904 rdp->qlen_lazy += rsp->qlen_lazy;
1905 rdp->qlen += rsp->qlen;
1906 rdp->n_cbs_adopted += rsp->qlen;
1907 if (rsp->qlen_lazy != rsp->qlen)
1908 rcu_idle_count_callbacks_posted();
1909 rsp->qlen_lazy = 0;
1910 rsp->qlen = 0;
1911
1912 /*
1913 * We do not need a memory barrier here because the only way we
1914 * can get here if there is an rcu_barrier() in flight is if
1915 * we are the task doing the rcu_barrier().
1916 */
1917
1918 /* First adopt the ready-to-invoke callbacks. */
1919 if (rsp->orphan_donelist != NULL) {
1920 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1921 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1922 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1923 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1924 rdp->nxttail[i] = rsp->orphan_donetail;
1925 rsp->orphan_donelist = NULL;
1926 rsp->orphan_donetail = &rsp->orphan_donelist;
1927 }
1928
1929 /* And then adopt the callbacks that still need a grace period. */
1930 if (rsp->orphan_nxtlist != NULL) {
1931 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1932 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1933 rsp->orphan_nxtlist = NULL;
1934 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1935 }
1936 }
1937
1938 /*
1939 * Trace the fact that this CPU is going offline.
1940 */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1941 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1942 {
1943 RCU_TRACE(unsigned long mask);
1944 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1945 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1946
1947 RCU_TRACE(mask = rdp->grpmask);
1948 trace_rcu_grace_period(rsp->name,
1949 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1950 "cpuofl");
1951 }
1952
1953 /*
1954 * The CPU has been completely removed, and some other CPU is reporting
1955 * this fact from process context. Do the remainder of the cleanup,
1956 * including orphaning the outgoing CPU's RCU callbacks, and also
1957 * adopting them. There can only be one CPU hotplug operation at a time,
1958 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1959 */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1960 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1961 {
1962 unsigned long flags;
1963 unsigned long mask;
1964 int need_report = 0;
1965 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1966 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1967
1968 /* Adjust any no-longer-needed kthreads. */
1969 rcu_boost_kthread_setaffinity(rnp, -1);
1970
1971 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1972
1973 /* Exclude any attempts to start a new grace period. */
1974 mutex_lock(&rsp->onoff_mutex);
1975 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1976
1977 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1978 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1979 rcu_adopt_orphan_cbs(rsp);
1980
1981 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1982 mask = rdp->grpmask; /* rnp->grplo is constant. */
1983 do {
1984 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1985 rnp->qsmaskinit &= ~mask;
1986 if (rnp->qsmaskinit != 0) {
1987 if (rnp != rdp->mynode)
1988 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1989 break;
1990 }
1991 if (rnp == rdp->mynode)
1992 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1993 else
1994 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1995 mask = rnp->grpmask;
1996 rnp = rnp->parent;
1997 } while (rnp != NULL);
1998
1999 /*
2000 * We still hold the leaf rcu_node structure lock here, and
2001 * irqs are still disabled. The reason for this subterfuge is
2002 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2003 * held leads to deadlock.
2004 */
2005 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2006 rnp = rdp->mynode;
2007 if (need_report & RCU_OFL_TASKS_NORM_GP)
2008 rcu_report_unblock_qs_rnp(rnp, flags);
2009 else
2010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2011 if (need_report & RCU_OFL_TASKS_EXP_GP)
2012 rcu_report_exp_rnp(rsp, rnp, true);
2013 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2014 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2015 cpu, rdp->qlen, rdp->nxtlist);
2016 init_callback_list(rdp);
2017 /* Disallow further callbacks on this CPU. */
2018 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2019 mutex_unlock(&rsp->onoff_mutex);
2020 }
2021
2022 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2023
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2024 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2025 {
2026 }
2027
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2028 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2029 {
2030 }
2031
2032 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2033
2034 /*
2035 * Invoke any RCU callbacks that have made it to the end of their grace
2036 * period. Thottle as specified by rdp->blimit.
2037 */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2038 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2039 {
2040 unsigned long flags;
2041 struct rcu_head *next, *list, **tail;
2042 long bl, count, count_lazy;
2043 int i;
2044
2045 /* If no callbacks are ready, just return. */
2046 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2047 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2048 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2049 need_resched(), is_idle_task(current),
2050 rcu_is_callbacks_kthread());
2051 return;
2052 }
2053
2054 /*
2055 * Extract the list of ready callbacks, disabling to prevent
2056 * races with call_rcu() from interrupt handlers.
2057 */
2058 local_irq_save(flags);
2059 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2060 bl = rdp->blimit;
2061 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2062 list = rdp->nxtlist;
2063 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2064 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2065 tail = rdp->nxttail[RCU_DONE_TAIL];
2066 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2067 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2068 rdp->nxttail[i] = &rdp->nxtlist;
2069 local_irq_restore(flags);
2070
2071 /* Invoke callbacks. */
2072 count = count_lazy = 0;
2073 while (list) {
2074 next = list->next;
2075 prefetch(next);
2076 debug_rcu_head_unqueue(list);
2077 if (__rcu_reclaim(rsp->name, list))
2078 count_lazy++;
2079 list = next;
2080 /* Stop only if limit reached and CPU has something to do. */
2081 if (++count >= bl &&
2082 (need_resched() ||
2083 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2084 break;
2085 }
2086
2087 local_irq_save(flags);
2088 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2089 is_idle_task(current),
2090 rcu_is_callbacks_kthread());
2091
2092 /* Update count, and requeue any remaining callbacks. */
2093 if (list != NULL) {
2094 *tail = rdp->nxtlist;
2095 rdp->nxtlist = list;
2096 for (i = 0; i < RCU_NEXT_SIZE; i++)
2097 if (&rdp->nxtlist == rdp->nxttail[i])
2098 rdp->nxttail[i] = tail;
2099 else
2100 break;
2101 }
2102 smp_mb(); /* List handling before counting for rcu_barrier(). */
2103 rdp->qlen_lazy -= count_lazy;
2104 ACCESS_ONCE(rdp->qlen) -= count;
2105 rdp->n_cbs_invoked += count;
2106
2107 /* Reinstate batch limit if we have worked down the excess. */
2108 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2109 rdp->blimit = blimit;
2110
2111 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2112 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2113 rdp->qlen_last_fqs_check = 0;
2114 rdp->n_force_qs_snap = rsp->n_force_qs;
2115 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2116 rdp->qlen_last_fqs_check = rdp->qlen;
2117 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2118
2119 local_irq_restore(flags);
2120
2121 /* Re-invoke RCU core processing if there are callbacks remaining. */
2122 if (cpu_has_callbacks_ready_to_invoke(rdp))
2123 invoke_rcu_core();
2124 }
2125
2126 /*
2127 * Check to see if this CPU is in a non-context-switch quiescent state
2128 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2129 * Also schedule RCU core processing.
2130 *
2131 * This function must be called from hardirq context. It is normally
2132 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2133 * false, there is no point in invoking rcu_check_callbacks().
2134 */
rcu_check_callbacks(int cpu,int user)2135 void rcu_check_callbacks(int cpu, int user)
2136 {
2137 trace_rcu_utilization("Start scheduler-tick");
2138 increment_cpu_stall_ticks();
2139 if (user || rcu_is_cpu_rrupt_from_idle()) {
2140
2141 /*
2142 * Get here if this CPU took its interrupt from user
2143 * mode or from the idle loop, and if this is not a
2144 * nested interrupt. In this case, the CPU is in
2145 * a quiescent state, so note it.
2146 *
2147 * No memory barrier is required here because both
2148 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2149 * variables that other CPUs neither access nor modify,
2150 * at least not while the corresponding CPU is online.
2151 */
2152
2153 rcu_sched_qs(cpu);
2154 rcu_bh_qs(cpu);
2155
2156 } else if (!in_softirq()) {
2157
2158 /*
2159 * Get here if this CPU did not take its interrupt from
2160 * softirq, in other words, if it is not interrupting
2161 * a rcu_bh read-side critical section. This is an _bh
2162 * critical section, so note it.
2163 */
2164
2165 rcu_bh_qs(cpu);
2166 }
2167 rcu_preempt_check_callbacks(cpu);
2168 if (rcu_pending(cpu))
2169 invoke_rcu_core();
2170 trace_rcu_utilization("End scheduler-tick");
2171 }
2172
2173 /*
2174 * Scan the leaf rcu_node structures, processing dyntick state for any that
2175 * have not yet encountered a quiescent state, using the function specified.
2176 * Also initiate boosting for any threads blocked on the root rcu_node.
2177 *
2178 * The caller must have suppressed start of new grace periods.
2179 */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data *))2180 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2181 {
2182 unsigned long bit;
2183 int cpu;
2184 unsigned long flags;
2185 unsigned long mask;
2186 struct rcu_node *rnp;
2187
2188 rcu_for_each_leaf_node(rsp, rnp) {
2189 cond_resched();
2190 mask = 0;
2191 raw_spin_lock_irqsave(&rnp->lock, flags);
2192 if (!rcu_gp_in_progress(rsp)) {
2193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2194 return;
2195 }
2196 if (rnp->qsmask == 0) {
2197 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2198 continue;
2199 }
2200 cpu = rnp->grplo;
2201 bit = 1;
2202 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2203 if ((rnp->qsmask & bit) != 0 &&
2204 f(per_cpu_ptr(rsp->rda, cpu)))
2205 mask |= bit;
2206 }
2207 if (mask != 0) {
2208
2209 /* rcu_report_qs_rnp() releases rnp->lock. */
2210 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2211 continue;
2212 }
2213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2214 }
2215 rnp = rcu_get_root(rsp);
2216 if (rnp->qsmask == 0) {
2217 raw_spin_lock_irqsave(&rnp->lock, flags);
2218 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2219 }
2220 }
2221
2222 /*
2223 * Force quiescent states on reluctant CPUs, and also detect which
2224 * CPUs are in dyntick-idle mode.
2225 */
force_quiescent_state(struct rcu_state * rsp)2226 static void force_quiescent_state(struct rcu_state *rsp)
2227 {
2228 unsigned long flags;
2229 bool ret;
2230 struct rcu_node *rnp;
2231 struct rcu_node *rnp_old = NULL;
2232
2233 /* Funnel through hierarchy to reduce memory contention. */
2234 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2235 for (; rnp != NULL; rnp = rnp->parent) {
2236 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2237 !raw_spin_trylock(&rnp->fqslock);
2238 if (rnp_old != NULL)
2239 raw_spin_unlock(&rnp_old->fqslock);
2240 if (ret) {
2241 rsp->n_force_qs_lh++;
2242 return;
2243 }
2244 rnp_old = rnp;
2245 }
2246 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2247
2248 /* Reached the root of the rcu_node tree, acquire lock. */
2249 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2250 raw_spin_unlock(&rnp_old->fqslock);
2251 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2252 rsp->n_force_qs_lh++;
2253 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2254 return; /* Someone beat us to it. */
2255 }
2256 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2257 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2258 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2259 }
2260
2261 /*
2262 * This does the RCU core processing work for the specified rcu_state
2263 * and rcu_data structures. This may be called only from the CPU to
2264 * whom the rdp belongs.
2265 */
2266 static void
__rcu_process_callbacks(struct rcu_state * rsp)2267 __rcu_process_callbacks(struct rcu_state *rsp)
2268 {
2269 unsigned long flags;
2270 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2271
2272 WARN_ON_ONCE(rdp->beenonline == 0);
2273
2274 /* Handle the end of a grace period that some other CPU ended. */
2275 rcu_process_gp_end(rsp, rdp);
2276
2277 /* Update RCU state based on any recent quiescent states. */
2278 rcu_check_quiescent_state(rsp, rdp);
2279
2280 /* Does this CPU require a not-yet-started grace period? */
2281 local_irq_save(flags);
2282 if (cpu_needs_another_gp(rsp, rdp)) {
2283 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2284 rcu_start_gp(rsp);
2285 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2286 } else {
2287 local_irq_restore(flags);
2288 }
2289
2290 /* If there are callbacks ready, invoke them. */
2291 if (cpu_has_callbacks_ready_to_invoke(rdp))
2292 invoke_rcu_callbacks(rsp, rdp);
2293 }
2294
2295 /*
2296 * Do RCU core processing for the current CPU.
2297 */
rcu_process_callbacks(struct softirq_action * unused)2298 static void rcu_process_callbacks(struct softirq_action *unused)
2299 {
2300 struct rcu_state *rsp;
2301
2302 if (cpu_is_offline(smp_processor_id()))
2303 return;
2304 trace_rcu_utilization("Start RCU core");
2305 for_each_rcu_flavor(rsp)
2306 __rcu_process_callbacks(rsp);
2307 trace_rcu_utilization("End RCU core");
2308 }
2309
2310 /*
2311 * Schedule RCU callback invocation. If the specified type of RCU
2312 * does not support RCU priority boosting, just do a direct call,
2313 * otherwise wake up the per-CPU kernel kthread. Note that because we
2314 * are running on the current CPU with interrupts disabled, the
2315 * rcu_cpu_kthread_task cannot disappear out from under us.
2316 */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)2317 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2318 {
2319 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2320 return;
2321 if (likely(!rsp->boost)) {
2322 rcu_do_batch(rsp, rdp);
2323 return;
2324 }
2325 invoke_rcu_callbacks_kthread();
2326 }
2327
invoke_rcu_core(void)2328 static void invoke_rcu_core(void)
2329 {
2330 if (cpu_online(smp_processor_id()))
2331 raise_softirq(RCU_SOFTIRQ);
2332 }
2333
2334 /*
2335 * Handle any core-RCU processing required by a call_rcu() invocation.
2336 */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2337 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2338 struct rcu_head *head, unsigned long flags)
2339 {
2340 /*
2341 * If called from an extended quiescent state, invoke the RCU
2342 * core in order to force a re-evaluation of RCU's idleness.
2343 */
2344 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2345 invoke_rcu_core();
2346
2347 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2348 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2349 return;
2350
2351 /*
2352 * Force the grace period if too many callbacks or too long waiting.
2353 * Enforce hysteresis, and don't invoke force_quiescent_state()
2354 * if some other CPU has recently done so. Also, don't bother
2355 * invoking force_quiescent_state() if the newly enqueued callback
2356 * is the only one waiting for a grace period to complete.
2357 */
2358 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2359
2360 /* Are we ignoring a completed grace period? */
2361 rcu_process_gp_end(rsp, rdp);
2362 check_for_new_grace_period(rsp, rdp);
2363
2364 /* Start a new grace period if one not already started. */
2365 if (!rcu_gp_in_progress(rsp)) {
2366 struct rcu_node *rnp_root = rcu_get_root(rsp);
2367
2368 raw_spin_lock(&rnp_root->lock);
2369 rcu_start_gp(rsp);
2370 raw_spin_unlock(&rnp_root->lock);
2371 } else {
2372 /* Give the grace period a kick. */
2373 rdp->blimit = LONG_MAX;
2374 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2375 *rdp->nxttail[RCU_DONE_TAIL] != head)
2376 force_quiescent_state(rsp);
2377 rdp->n_force_qs_snap = rsp->n_force_qs;
2378 rdp->qlen_last_fqs_check = rdp->qlen;
2379 }
2380 }
2381 }
2382
2383 /*
2384 * Helper function for call_rcu() and friends. The cpu argument will
2385 * normally be -1, indicating "currently running CPU". It may specify
2386 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2387 * is expected to specify a CPU.
2388 */
2389 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,int cpu,bool lazy)2390 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2391 struct rcu_state *rsp, int cpu, bool lazy)
2392 {
2393 unsigned long flags;
2394 struct rcu_data *rdp;
2395
2396 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2397 debug_rcu_head_queue(head);
2398 head->func = func;
2399 head->next = NULL;
2400
2401 /*
2402 * Opportunistically note grace-period endings and beginnings.
2403 * Note that we might see a beginning right after we see an
2404 * end, but never vice versa, since this CPU has to pass through
2405 * a quiescent state betweentimes.
2406 */
2407 local_irq_save(flags);
2408 rdp = this_cpu_ptr(rsp->rda);
2409
2410 /* Add the callback to our list. */
2411 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2412 int offline;
2413
2414 if (cpu != -1)
2415 rdp = per_cpu_ptr(rsp->rda, cpu);
2416 offline = !__call_rcu_nocb(rdp, head, lazy);
2417 WARN_ON_ONCE(offline);
2418 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2419 local_irq_restore(flags);
2420 return;
2421 }
2422 ACCESS_ONCE(rdp->qlen)++;
2423 if (lazy)
2424 rdp->qlen_lazy++;
2425 else
2426 rcu_idle_count_callbacks_posted();
2427 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2428 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2429 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2430
2431 if (__is_kfree_rcu_offset((unsigned long)func))
2432 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2433 rdp->qlen_lazy, rdp->qlen);
2434 else
2435 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2436
2437 /* Go handle any RCU core processing required. */
2438 __call_rcu_core(rsp, rdp, head, flags);
2439 local_irq_restore(flags);
2440 }
2441
2442 /*
2443 * Queue an RCU-sched callback for invocation after a grace period.
2444 */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2445 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2446 {
2447 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2448 }
2449 EXPORT_SYMBOL_GPL(call_rcu_sched);
2450
2451 /*
2452 * Queue an RCU callback for invocation after a quicker grace period.
2453 */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))2454 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2455 {
2456 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2457 }
2458 EXPORT_SYMBOL_GPL(call_rcu_bh);
2459
2460 /*
2461 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2462 * any blocking grace-period wait automatically implies a grace period
2463 * if there is only one CPU online at any point time during execution
2464 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2465 * occasionally incorrectly indicate that there are multiple CPUs online
2466 * when there was in fact only one the whole time, as this just adds
2467 * some overhead: RCU still operates correctly.
2468 */
rcu_blocking_is_gp(void)2469 static inline int rcu_blocking_is_gp(void)
2470 {
2471 int ret;
2472
2473 might_sleep(); /* Check for RCU read-side critical section. */
2474 preempt_disable();
2475 ret = num_online_cpus() <= 1;
2476 preempt_enable();
2477 return ret;
2478 }
2479
2480 /**
2481 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2482 *
2483 * Control will return to the caller some time after a full rcu-sched
2484 * grace period has elapsed, in other words after all currently executing
2485 * rcu-sched read-side critical sections have completed. These read-side
2486 * critical sections are delimited by rcu_read_lock_sched() and
2487 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2488 * local_irq_disable(), and so on may be used in place of
2489 * rcu_read_lock_sched().
2490 *
2491 * This means that all preempt_disable code sequences, including NMI and
2492 * non-threaded hardware-interrupt handlers, in progress on entry will
2493 * have completed before this primitive returns. However, this does not
2494 * guarantee that softirq handlers will have completed, since in some
2495 * kernels, these handlers can run in process context, and can block.
2496 *
2497 * Note that this guarantee implies further memory-ordering guarantees.
2498 * On systems with more than one CPU, when synchronize_sched() returns,
2499 * each CPU is guaranteed to have executed a full memory barrier since the
2500 * end of its last RCU-sched read-side critical section whose beginning
2501 * preceded the call to synchronize_sched(). In addition, each CPU having
2502 * an RCU read-side critical section that extends beyond the return from
2503 * synchronize_sched() is guaranteed to have executed a full memory barrier
2504 * after the beginning of synchronize_sched() and before the beginning of
2505 * that RCU read-side critical section. Note that these guarantees include
2506 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2507 * that are executing in the kernel.
2508 *
2509 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2510 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2511 * to have executed a full memory barrier during the execution of
2512 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2513 * again only if the system has more than one CPU).
2514 *
2515 * This primitive provides the guarantees made by the (now removed)
2516 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2517 * guarantees that rcu_read_lock() sections will have completed.
2518 * In "classic RCU", these two guarantees happen to be one and
2519 * the same, but can differ in realtime RCU implementations.
2520 */
synchronize_sched(void)2521 void synchronize_sched(void)
2522 {
2523 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2524 !lock_is_held(&rcu_lock_map) &&
2525 !lock_is_held(&rcu_sched_lock_map),
2526 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2527 if (rcu_blocking_is_gp())
2528 return;
2529 if (rcu_expedited)
2530 synchronize_sched_expedited();
2531 else
2532 wait_rcu_gp(call_rcu_sched);
2533 }
2534 EXPORT_SYMBOL_GPL(synchronize_sched);
2535
2536 /**
2537 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2538 *
2539 * Control will return to the caller some time after a full rcu_bh grace
2540 * period has elapsed, in other words after all currently executing rcu_bh
2541 * read-side critical sections have completed. RCU read-side critical
2542 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2543 * and may be nested.
2544 *
2545 * See the description of synchronize_sched() for more detailed information
2546 * on memory ordering guarantees.
2547 */
synchronize_rcu_bh(void)2548 void synchronize_rcu_bh(void)
2549 {
2550 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2551 !lock_is_held(&rcu_lock_map) &&
2552 !lock_is_held(&rcu_sched_lock_map),
2553 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2554 if (rcu_blocking_is_gp())
2555 return;
2556 if (rcu_expedited)
2557 synchronize_rcu_bh_expedited();
2558 else
2559 wait_rcu_gp(call_rcu_bh);
2560 }
2561 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2562
synchronize_sched_expedited_cpu_stop(void * data)2563 static int synchronize_sched_expedited_cpu_stop(void *data)
2564 {
2565 /*
2566 * There must be a full memory barrier on each affected CPU
2567 * between the time that try_stop_cpus() is called and the
2568 * time that it returns.
2569 *
2570 * In the current initial implementation of cpu_stop, the
2571 * above condition is already met when the control reaches
2572 * this point and the following smp_mb() is not strictly
2573 * necessary. Do smp_mb() anyway for documentation and
2574 * robustness against future implementation changes.
2575 */
2576 smp_mb(); /* See above comment block. */
2577 return 0;
2578 }
2579
2580 /**
2581 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2582 *
2583 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2584 * approach to force the grace period to end quickly. This consumes
2585 * significant time on all CPUs and is unfriendly to real-time workloads,
2586 * so is thus not recommended for any sort of common-case code. In fact,
2587 * if you are using synchronize_sched_expedited() in a loop, please
2588 * restructure your code to batch your updates, and then use a single
2589 * synchronize_sched() instead.
2590 *
2591 * Note that it is illegal to call this function while holding any lock
2592 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2593 * to call this function from a CPU-hotplug notifier. Failing to observe
2594 * these restriction will result in deadlock.
2595 *
2596 * This implementation can be thought of as an application of ticket
2597 * locking to RCU, with sync_sched_expedited_started and
2598 * sync_sched_expedited_done taking on the roles of the halves
2599 * of the ticket-lock word. Each task atomically increments
2600 * sync_sched_expedited_started upon entry, snapshotting the old value,
2601 * then attempts to stop all the CPUs. If this succeeds, then each
2602 * CPU will have executed a context switch, resulting in an RCU-sched
2603 * grace period. We are then done, so we use atomic_cmpxchg() to
2604 * update sync_sched_expedited_done to match our snapshot -- but
2605 * only if someone else has not already advanced past our snapshot.
2606 *
2607 * On the other hand, if try_stop_cpus() fails, we check the value
2608 * of sync_sched_expedited_done. If it has advanced past our
2609 * initial snapshot, then someone else must have forced a grace period
2610 * some time after we took our snapshot. In this case, our work is
2611 * done for us, and we can simply return. Otherwise, we try again,
2612 * but keep our initial snapshot for purposes of checking for someone
2613 * doing our work for us.
2614 *
2615 * If we fail too many times in a row, we fall back to synchronize_sched().
2616 */
synchronize_sched_expedited(void)2617 void synchronize_sched_expedited(void)
2618 {
2619 long firstsnap, s, snap;
2620 int trycount = 0;
2621 struct rcu_state *rsp = &rcu_sched_state;
2622
2623 /*
2624 * If we are in danger of counter wrap, just do synchronize_sched().
2625 * By allowing sync_sched_expedited_started to advance no more than
2626 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2627 * that more than 3.5 billion CPUs would be required to force a
2628 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2629 * course be required on a 64-bit system.
2630 */
2631 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2632 (ulong)atomic_long_read(&rsp->expedited_done) +
2633 ULONG_MAX / 8)) {
2634 synchronize_sched();
2635 atomic_long_inc(&rsp->expedited_wrap);
2636 return;
2637 }
2638
2639 /*
2640 * Take a ticket. Note that atomic_inc_return() implies a
2641 * full memory barrier.
2642 */
2643 snap = atomic_long_inc_return(&rsp->expedited_start);
2644 firstsnap = snap;
2645 get_online_cpus();
2646 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2647
2648 /*
2649 * Each pass through the following loop attempts to force a
2650 * context switch on each CPU.
2651 */
2652 while (try_stop_cpus(cpu_online_mask,
2653 synchronize_sched_expedited_cpu_stop,
2654 NULL) == -EAGAIN) {
2655 put_online_cpus();
2656 atomic_long_inc(&rsp->expedited_tryfail);
2657
2658 /* Check to see if someone else did our work for us. */
2659 s = atomic_long_read(&rsp->expedited_done);
2660 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2661 /* ensure test happens before caller kfree */
2662 smp_mb__before_atomic_inc(); /* ^^^ */
2663 atomic_long_inc(&rsp->expedited_workdone1);
2664 return;
2665 }
2666
2667 /* No joy, try again later. Or just synchronize_sched(). */
2668 if (trycount++ < 10) {
2669 udelay(trycount * num_online_cpus());
2670 } else {
2671 wait_rcu_gp(call_rcu_sched);
2672 atomic_long_inc(&rsp->expedited_normal);
2673 return;
2674 }
2675
2676 /* Recheck to see if someone else did our work for us. */
2677 s = atomic_long_read(&rsp->expedited_done);
2678 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2679 /* ensure test happens before caller kfree */
2680 smp_mb__before_atomic_inc(); /* ^^^ */
2681 atomic_long_inc(&rsp->expedited_workdone2);
2682 return;
2683 }
2684
2685 /*
2686 * Refetching sync_sched_expedited_started allows later
2687 * callers to piggyback on our grace period. We retry
2688 * after they started, so our grace period works for them,
2689 * and they started after our first try, so their grace
2690 * period works for us.
2691 */
2692 get_online_cpus();
2693 snap = atomic_long_read(&rsp->expedited_start);
2694 smp_mb(); /* ensure read is before try_stop_cpus(). */
2695 }
2696 atomic_long_inc(&rsp->expedited_stoppedcpus);
2697
2698 /*
2699 * Everyone up to our most recent fetch is covered by our grace
2700 * period. Update the counter, but only if our work is still
2701 * relevant -- which it won't be if someone who started later
2702 * than we did already did their update.
2703 */
2704 do {
2705 atomic_long_inc(&rsp->expedited_done_tries);
2706 s = atomic_long_read(&rsp->expedited_done);
2707 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2708 /* ensure test happens before caller kfree */
2709 smp_mb__before_atomic_inc(); /* ^^^ */
2710 atomic_long_inc(&rsp->expedited_done_lost);
2711 break;
2712 }
2713 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2714 atomic_long_inc(&rsp->expedited_done_exit);
2715
2716 put_online_cpus();
2717 }
2718 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2719
2720 /*
2721 * Check to see if there is any immediate RCU-related work to be done
2722 * by the current CPU, for the specified type of RCU, returning 1 if so.
2723 * The checks are in order of increasing expense: checks that can be
2724 * carried out against CPU-local state are performed first. However,
2725 * we must check for CPU stalls first, else we might not get a chance.
2726 */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)2727 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2728 {
2729 struct rcu_node *rnp = rdp->mynode;
2730
2731 rdp->n_rcu_pending++;
2732
2733 /* Check for CPU stalls, if enabled. */
2734 check_cpu_stall(rsp, rdp);
2735
2736 /* Is the RCU core waiting for a quiescent state from this CPU? */
2737 if (rcu_scheduler_fully_active &&
2738 rdp->qs_pending && !rdp->passed_quiesce) {
2739 rdp->n_rp_qs_pending++;
2740 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2741 rdp->n_rp_report_qs++;
2742 return 1;
2743 }
2744
2745 /* Does this CPU have callbacks ready to invoke? */
2746 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2747 rdp->n_rp_cb_ready++;
2748 return 1;
2749 }
2750
2751 /* Has RCU gone idle with this CPU needing another grace period? */
2752 if (cpu_needs_another_gp(rsp, rdp)) {
2753 rdp->n_rp_cpu_needs_gp++;
2754 return 1;
2755 }
2756
2757 /* Has another RCU grace period completed? */
2758 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2759 rdp->n_rp_gp_completed++;
2760 return 1;
2761 }
2762
2763 /* Has a new RCU grace period started? */
2764 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2765 rdp->n_rp_gp_started++;
2766 return 1;
2767 }
2768
2769 /* nothing to do */
2770 rdp->n_rp_need_nothing++;
2771 return 0;
2772 }
2773
2774 /*
2775 * Check to see if there is any immediate RCU-related work to be done
2776 * by the current CPU, returning 1 if so. This function is part of the
2777 * RCU implementation; it is -not- an exported member of the RCU API.
2778 */
rcu_pending(int cpu)2779 static int rcu_pending(int cpu)
2780 {
2781 struct rcu_state *rsp;
2782
2783 for_each_rcu_flavor(rsp)
2784 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2785 return 1;
2786 return 0;
2787 }
2788
2789 /*
2790 * Return true if the specified CPU has any callback. If all_lazy is
2791 * non-NULL, store an indication of whether all callbacks are lazy.
2792 * (If there are no callbacks, all of them are deemed to be lazy.)
2793 */
rcu_cpu_has_callbacks(int cpu,bool * all_lazy)2794 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2795 {
2796 bool al = true;
2797 bool hc = false;
2798 struct rcu_data *rdp;
2799 struct rcu_state *rsp;
2800
2801 for_each_rcu_flavor(rsp) {
2802 rdp = per_cpu_ptr(rsp->rda, cpu);
2803 if (rdp->qlen != rdp->qlen_lazy)
2804 al = false;
2805 if (rdp->nxtlist)
2806 hc = true;
2807 }
2808 if (all_lazy)
2809 *all_lazy = al;
2810 return hc;
2811 }
2812
2813 /*
2814 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2815 * the compiler is expected to optimize this away.
2816 */
_rcu_barrier_trace(struct rcu_state * rsp,char * s,int cpu,unsigned long done)2817 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2818 int cpu, unsigned long done)
2819 {
2820 trace_rcu_barrier(rsp->name, s, cpu,
2821 atomic_read(&rsp->barrier_cpu_count), done);
2822 }
2823
2824 /*
2825 * RCU callback function for _rcu_barrier(). If we are last, wake
2826 * up the task executing _rcu_barrier().
2827 */
rcu_barrier_callback(struct rcu_head * rhp)2828 static void rcu_barrier_callback(struct rcu_head *rhp)
2829 {
2830 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2831 struct rcu_state *rsp = rdp->rsp;
2832
2833 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2834 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2835 complete(&rsp->barrier_completion);
2836 } else {
2837 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2838 }
2839 }
2840
2841 /*
2842 * Called with preemption disabled, and from cross-cpu IRQ context.
2843 */
rcu_barrier_func(void * type)2844 static void rcu_barrier_func(void *type)
2845 {
2846 struct rcu_state *rsp = type;
2847 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2848
2849 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2850 atomic_inc(&rsp->barrier_cpu_count);
2851 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2852 }
2853
2854 /*
2855 * Orchestrate the specified type of RCU barrier, waiting for all
2856 * RCU callbacks of the specified type to complete.
2857 */
_rcu_barrier(struct rcu_state * rsp)2858 static void _rcu_barrier(struct rcu_state *rsp)
2859 {
2860 int cpu;
2861 struct rcu_data *rdp;
2862 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2863 unsigned long snap_done;
2864
2865 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2866
2867 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2868 mutex_lock(&rsp->barrier_mutex);
2869
2870 /*
2871 * Ensure that all prior references, including to ->n_barrier_done,
2872 * are ordered before the _rcu_barrier() machinery.
2873 */
2874 smp_mb(); /* See above block comment. */
2875
2876 /*
2877 * Recheck ->n_barrier_done to see if others did our work for us.
2878 * This means checking ->n_barrier_done for an even-to-odd-to-even
2879 * transition. The "if" expression below therefore rounds the old
2880 * value up to the next even number and adds two before comparing.
2881 */
2882 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2883 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2884 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2885 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2886 smp_mb(); /* caller's subsequent code after above check. */
2887 mutex_unlock(&rsp->barrier_mutex);
2888 return;
2889 }
2890
2891 /*
2892 * Increment ->n_barrier_done to avoid duplicate work. Use
2893 * ACCESS_ONCE() to prevent the compiler from speculating
2894 * the increment to precede the early-exit check.
2895 */
2896 ACCESS_ONCE(rsp->n_barrier_done)++;
2897 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2898 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2899 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2900
2901 /*
2902 * Initialize the count to one rather than to zero in order to
2903 * avoid a too-soon return to zero in case of a short grace period
2904 * (or preemption of this task). Exclude CPU-hotplug operations
2905 * to ensure that no offline CPU has callbacks queued.
2906 */
2907 init_completion(&rsp->barrier_completion);
2908 atomic_set(&rsp->barrier_cpu_count, 1);
2909 get_online_cpus();
2910
2911 /*
2912 * Force each CPU with callbacks to register a new callback.
2913 * When that callback is invoked, we will know that all of the
2914 * corresponding CPU's preceding callbacks have been invoked.
2915 */
2916 for_each_possible_cpu(cpu) {
2917 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2918 continue;
2919 rdp = per_cpu_ptr(rsp->rda, cpu);
2920 if (rcu_is_nocb_cpu(cpu)) {
2921 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2922 rsp->n_barrier_done);
2923 atomic_inc(&rsp->barrier_cpu_count);
2924 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2925 rsp, cpu, 0);
2926 } else if (ACCESS_ONCE(rdp->qlen)) {
2927 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2928 rsp->n_barrier_done);
2929 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2930 } else {
2931 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2932 rsp->n_barrier_done);
2933 }
2934 }
2935 put_online_cpus();
2936
2937 /*
2938 * Now that we have an rcu_barrier_callback() callback on each
2939 * CPU, and thus each counted, remove the initial count.
2940 */
2941 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2942 complete(&rsp->barrier_completion);
2943
2944 /* Increment ->n_barrier_done to prevent duplicate work. */
2945 smp_mb(); /* Keep increment after above mechanism. */
2946 ACCESS_ONCE(rsp->n_barrier_done)++;
2947 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2948 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2949 smp_mb(); /* Keep increment before caller's subsequent code. */
2950
2951 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2952 wait_for_completion(&rsp->barrier_completion);
2953
2954 /* Other rcu_barrier() invocations can now safely proceed. */
2955 mutex_unlock(&rsp->barrier_mutex);
2956 }
2957
2958 /**
2959 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2960 */
rcu_barrier_bh(void)2961 void rcu_barrier_bh(void)
2962 {
2963 _rcu_barrier(&rcu_bh_state);
2964 }
2965 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2966
2967 /**
2968 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2969 */
rcu_barrier_sched(void)2970 void rcu_barrier_sched(void)
2971 {
2972 _rcu_barrier(&rcu_sched_state);
2973 }
2974 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2975
2976 /*
2977 * Do boot-time initialization of a CPU's per-CPU RCU data.
2978 */
2979 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)2980 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2981 {
2982 unsigned long flags;
2983 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2984 struct rcu_node *rnp = rcu_get_root(rsp);
2985
2986 /* Set up local state, ensuring consistent view of global state. */
2987 raw_spin_lock_irqsave(&rnp->lock, flags);
2988 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2989 init_callback_list(rdp);
2990 rdp->qlen_lazy = 0;
2991 ACCESS_ONCE(rdp->qlen) = 0;
2992 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2993 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2994 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2995 rdp->cpu = cpu;
2996 rdp->rsp = rsp;
2997 rcu_boot_init_nocb_percpu_data(rdp);
2998 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2999 }
3000
3001 /*
3002 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3003 * offline event can be happening at a given time. Note also that we
3004 * can accept some slop in the rsp->completed access due to the fact
3005 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3006 */
3007 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp,int preemptible)3008 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3009 {
3010 unsigned long flags;
3011 unsigned long mask;
3012 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3013 struct rcu_node *rnp = rcu_get_root(rsp);
3014
3015 /* Exclude new grace periods. */
3016 mutex_lock(&rsp->onoff_mutex);
3017
3018 /* Set up local state, ensuring consistent view of global state. */
3019 raw_spin_lock_irqsave(&rnp->lock, flags);
3020 rdp->beenonline = 1; /* We have now been online. */
3021 rdp->preemptible = preemptible;
3022 rdp->qlen_last_fqs_check = 0;
3023 rdp->n_force_qs_snap = rsp->n_force_qs;
3024 rdp->blimit = blimit;
3025 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3026 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3027 atomic_set(&rdp->dynticks->dynticks,
3028 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3029 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3030
3031 /* Add CPU to rcu_node bitmasks. */
3032 rnp = rdp->mynode;
3033 mask = rdp->grpmask;
3034 do {
3035 /* Exclude any attempts to start a new GP on small systems. */
3036 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3037 rnp->qsmaskinit |= mask;
3038 mask = rnp->grpmask;
3039 if (rnp == rdp->mynode) {
3040 /*
3041 * If there is a grace period in progress, we will
3042 * set up to wait for it next time we run the
3043 * RCU core code.
3044 */
3045 rdp->gpnum = rnp->completed;
3046 rdp->completed = rnp->completed;
3047 rdp->passed_quiesce = 0;
3048 rdp->qs_pending = 0;
3049 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
3050 }
3051 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3052 rnp = rnp->parent;
3053 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3054 local_irq_restore(flags);
3055
3056 mutex_unlock(&rsp->onoff_mutex);
3057 }
3058
rcu_prepare_cpu(int cpu)3059 static void __cpuinit rcu_prepare_cpu(int cpu)
3060 {
3061 struct rcu_state *rsp;
3062
3063 for_each_rcu_flavor(rsp)
3064 rcu_init_percpu_data(cpu, rsp,
3065 strcmp(rsp->name, "rcu_preempt") == 0);
3066 }
3067
3068 /*
3069 * Handle CPU online/offline notification events.
3070 */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3071 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
3072 unsigned long action, void *hcpu)
3073 {
3074 long cpu = (long)hcpu;
3075 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3076 struct rcu_node *rnp = rdp->mynode;
3077 struct rcu_state *rsp;
3078
3079 trace_rcu_utilization("Start CPU hotplug");
3080 switch (action) {
3081 case CPU_UP_PREPARE:
3082 case CPU_UP_PREPARE_FROZEN:
3083 rcu_prepare_cpu(cpu);
3084 rcu_prepare_kthreads(cpu);
3085 break;
3086 case CPU_ONLINE:
3087 case CPU_DOWN_FAILED:
3088 rcu_boost_kthread_setaffinity(rnp, -1);
3089 break;
3090 case CPU_DOWN_PREPARE:
3091 rcu_boost_kthread_setaffinity(rnp, cpu);
3092 break;
3093 case CPU_DYING:
3094 case CPU_DYING_FROZEN:
3095 for_each_rcu_flavor(rsp)
3096 rcu_cleanup_dying_cpu(rsp);
3097 break;
3098 case CPU_DEAD:
3099 case CPU_DEAD_FROZEN:
3100 case CPU_UP_CANCELED:
3101 case CPU_UP_CANCELED_FROZEN:
3102 for_each_rcu_flavor(rsp)
3103 rcu_cleanup_dead_cpu(cpu, rsp);
3104 break;
3105 default:
3106 break;
3107 }
3108 trace_rcu_utilization("End CPU hotplug");
3109 return NOTIFY_OK;
3110 }
3111
3112 /*
3113 * Spawn the kthread that handles this RCU flavor's grace periods.
3114 */
rcu_spawn_gp_kthread(void)3115 static int __init rcu_spawn_gp_kthread(void)
3116 {
3117 unsigned long flags;
3118 struct rcu_node *rnp;
3119 struct rcu_state *rsp;
3120 struct task_struct *t;
3121
3122 for_each_rcu_flavor(rsp) {
3123 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3124 BUG_ON(IS_ERR(t));
3125 rnp = rcu_get_root(rsp);
3126 raw_spin_lock_irqsave(&rnp->lock, flags);
3127 rsp->gp_kthread = t;
3128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3129 rcu_spawn_nocb_kthreads(rsp);
3130 }
3131 return 0;
3132 }
3133 early_initcall(rcu_spawn_gp_kthread);
3134
3135 /*
3136 * This function is invoked towards the end of the scheduler's initialization
3137 * process. Before this is called, the idle task might contain
3138 * RCU read-side critical sections (during which time, this idle
3139 * task is booting the system). After this function is called, the
3140 * idle tasks are prohibited from containing RCU read-side critical
3141 * sections. This function also enables RCU lockdep checking.
3142 */
rcu_scheduler_starting(void)3143 void rcu_scheduler_starting(void)
3144 {
3145 WARN_ON(num_online_cpus() != 1);
3146 WARN_ON(nr_context_switches() > 0);
3147 rcu_scheduler_active = 1;
3148 }
3149
3150 /*
3151 * Compute the per-level fanout, either using the exact fanout specified
3152 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3153 */
3154 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)3155 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3156 {
3157 int i;
3158
3159 for (i = rcu_num_lvls - 1; i > 0; i--)
3160 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3161 rsp->levelspread[0] = rcu_fanout_leaf;
3162 }
3163 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)3164 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3165 {
3166 int ccur;
3167 int cprv;
3168 int i;
3169
3170 cprv = nr_cpu_ids;
3171 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3172 ccur = rsp->levelcnt[i];
3173 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3174 cprv = ccur;
3175 }
3176 }
3177 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3178
3179 /*
3180 * Helper function for rcu_init() that initializes one rcu_state structure.
3181 */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)3182 static void __init rcu_init_one(struct rcu_state *rsp,
3183 struct rcu_data __percpu *rda)
3184 {
3185 static char *buf[] = { "rcu_node_0",
3186 "rcu_node_1",
3187 "rcu_node_2",
3188 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3189 static char *fqs[] = { "rcu_node_fqs_0",
3190 "rcu_node_fqs_1",
3191 "rcu_node_fqs_2",
3192 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3193 int cpustride = 1;
3194 int i;
3195 int j;
3196 struct rcu_node *rnp;
3197
3198 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3199
3200 /* Silence gcc 4.8 warning about array index out of range. */
3201 if (rcu_num_lvls > RCU_NUM_LVLS)
3202 panic("rcu_init_one: rcu_num_lvls overflow");
3203
3204 /* Initialize the level-tracking arrays. */
3205
3206 for (i = 0; i < rcu_num_lvls; i++)
3207 rsp->levelcnt[i] = num_rcu_lvl[i];
3208 for (i = 1; i < rcu_num_lvls; i++)
3209 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3210 rcu_init_levelspread(rsp);
3211
3212 /* Initialize the elements themselves, starting from the leaves. */
3213
3214 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3215 cpustride *= rsp->levelspread[i];
3216 rnp = rsp->level[i];
3217 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3218 raw_spin_lock_init(&rnp->lock);
3219 lockdep_set_class_and_name(&rnp->lock,
3220 &rcu_node_class[i], buf[i]);
3221 raw_spin_lock_init(&rnp->fqslock);
3222 lockdep_set_class_and_name(&rnp->fqslock,
3223 &rcu_fqs_class[i], fqs[i]);
3224 rnp->gpnum = rsp->gpnum;
3225 rnp->completed = rsp->completed;
3226 rnp->qsmask = 0;
3227 rnp->qsmaskinit = 0;
3228 rnp->grplo = j * cpustride;
3229 rnp->grphi = (j + 1) * cpustride - 1;
3230 if (rnp->grphi >= NR_CPUS)
3231 rnp->grphi = NR_CPUS - 1;
3232 if (i == 0) {
3233 rnp->grpnum = 0;
3234 rnp->grpmask = 0;
3235 rnp->parent = NULL;
3236 } else {
3237 rnp->grpnum = j % rsp->levelspread[i - 1];
3238 rnp->grpmask = 1UL << rnp->grpnum;
3239 rnp->parent = rsp->level[i - 1] +
3240 j / rsp->levelspread[i - 1];
3241 }
3242 rnp->level = i;
3243 INIT_LIST_HEAD(&rnp->blkd_tasks);
3244 rcu_init_one_nocb(rnp);
3245 }
3246 }
3247
3248 rsp->rda = rda;
3249 init_waitqueue_head(&rsp->gp_wq);
3250 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3251 rnp = rsp->level[rcu_num_lvls - 1];
3252 for_each_possible_cpu(i) {
3253 while (i > rnp->grphi)
3254 rnp++;
3255 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3256 rcu_boot_init_percpu_data(i, rsp);
3257 }
3258 list_add(&rsp->flavors, &rcu_struct_flavors);
3259 }
3260
3261 /*
3262 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3263 * replace the definitions in rcutree.h because those are needed to size
3264 * the ->node array in the rcu_state structure.
3265 */
rcu_init_geometry(void)3266 static void __init rcu_init_geometry(void)
3267 {
3268 int i;
3269 int j;
3270 int n = nr_cpu_ids;
3271 int rcu_capacity[MAX_RCU_LVLS + 1];
3272
3273 /* If the compile-time values are accurate, just leave. */
3274 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3275 nr_cpu_ids == NR_CPUS)
3276 return;
3277
3278 /*
3279 * Compute number of nodes that can be handled an rcu_node tree
3280 * with the given number of levels. Setting rcu_capacity[0] makes
3281 * some of the arithmetic easier.
3282 */
3283 rcu_capacity[0] = 1;
3284 rcu_capacity[1] = rcu_fanout_leaf;
3285 for (i = 2; i <= MAX_RCU_LVLS; i++)
3286 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3287
3288 /*
3289 * The boot-time rcu_fanout_leaf parameter is only permitted
3290 * to increase the leaf-level fanout, not decrease it. Of course,
3291 * the leaf-level fanout cannot exceed the number of bits in
3292 * the rcu_node masks. Finally, the tree must be able to accommodate
3293 * the configured number of CPUs. Complain and fall back to the
3294 * compile-time values if these limits are exceeded.
3295 */
3296 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3297 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3298 n > rcu_capacity[MAX_RCU_LVLS]) {
3299 WARN_ON(1);
3300 return;
3301 }
3302
3303 /* Calculate the number of rcu_nodes at each level of the tree. */
3304 for (i = 1; i <= MAX_RCU_LVLS; i++)
3305 if (n <= rcu_capacity[i]) {
3306 for (j = 0; j <= i; j++)
3307 num_rcu_lvl[j] =
3308 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3309 rcu_num_lvls = i;
3310 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3311 num_rcu_lvl[j] = 0;
3312 break;
3313 }
3314
3315 /* Calculate the total number of rcu_node structures. */
3316 rcu_num_nodes = 0;
3317 for (i = 0; i <= MAX_RCU_LVLS; i++)
3318 rcu_num_nodes += num_rcu_lvl[i];
3319 rcu_num_nodes -= n;
3320 }
3321
rcu_init(void)3322 void __init rcu_init(void)
3323 {
3324 int cpu;
3325
3326 rcu_bootup_announce();
3327 rcu_init_geometry();
3328 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3329 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3330 __rcu_init_preempt();
3331 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3332
3333 /*
3334 * We don't need protection against CPU-hotplug here because
3335 * this is called early in boot, before either interrupts
3336 * or the scheduler are operational.
3337 */
3338 cpu_notifier(rcu_cpu_notify, 0);
3339 for_each_online_cpu(cpu)
3340 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3341 }
3342
3343 #include "rcutree_plugin.h"
3344