• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/timer.h>
18 
19 #include "rtmutex_common.h"
20 
21 /*
22  * lock->owner state tracking:
23  *
24  * lock->owner holds the task_struct pointer of the owner. Bit 0
25  * is used to keep track of the "lock has waiters" state.
26  *
27  * owner	bit0
28  * NULL		0	lock is free (fast acquire possible)
29  * NULL		1	lock is free and has waiters and the top waiter
30  *				is going to take the lock*
31  * taskpointer	0	lock is held (fast release possible)
32  * taskpointer	1	lock is held and has waiters**
33  *
34  * The fast atomic compare exchange based acquire and release is only
35  * possible when bit 0 of lock->owner is 0.
36  *
37  * (*) It also can be a transitional state when grabbing the lock
38  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39  * we need to set the bit0 before looking at the lock, and the owner may be
40  * NULL in this small time, hence this can be a transitional state.
41  *
42  * (**) There is a small time when bit 0 is set but there are no
43  * waiters. This can happen when grabbing the lock in the slow path.
44  * To prevent a cmpxchg of the owner releasing the lock, we need to
45  * set this bit before looking at the lock.
46  */
47 
48 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
50 {
51 	unsigned long val = (unsigned long)owner;
52 
53 	if (rt_mutex_has_waiters(lock))
54 		val |= RT_MUTEX_HAS_WAITERS;
55 
56 	lock->owner = (struct task_struct *)val;
57 }
58 
clear_rt_mutex_waiters(struct rt_mutex * lock)59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
60 {
61 	lock->owner = (struct task_struct *)
62 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
63 }
64 
fixup_rt_mutex_waiters(struct rt_mutex * lock)65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
66 {
67 	if (!rt_mutex_has_waiters(lock))
68 		clear_rt_mutex_waiters(lock);
69 }
70 
71 /*
72  * We can speed up the acquire/release, if the architecture
73  * supports cmpxchg and if there's no debugging state to be set up
74  */
75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76 # define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
mark_rt_mutex_waiters(struct rt_mutex * lock)77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
78 {
79 	unsigned long owner, *p = (unsigned long *) &lock->owner;
80 
81 	do {
82 		owner = *p;
83 	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
84 }
85 #else
86 # define rt_mutex_cmpxchg(l,c,n)	(0)
mark_rt_mutex_waiters(struct rt_mutex * lock)87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
88 {
89 	lock->owner = (struct task_struct *)
90 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
91 }
92 #endif
93 
94 /*
95  * Calculate task priority from the waiter list priority
96  *
97  * Return task->normal_prio when the waiter list is empty or when
98  * the waiter is not allowed to do priority boosting
99  */
rt_mutex_getprio(struct task_struct * task)100 int rt_mutex_getprio(struct task_struct *task)
101 {
102 	if (likely(!task_has_pi_waiters(task)))
103 		return task->normal_prio;
104 
105 	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
106 		   task->normal_prio);
107 }
108 
109 /*
110  * Adjust the priority of a task, after its pi_waiters got modified.
111  *
112  * This can be both boosting and unboosting. task->pi_lock must be held.
113  */
__rt_mutex_adjust_prio(struct task_struct * task)114 static void __rt_mutex_adjust_prio(struct task_struct *task)
115 {
116 	int prio = rt_mutex_getprio(task);
117 
118 	if (task->prio != prio)
119 		rt_mutex_setprio(task, prio);
120 }
121 
122 /*
123  * Adjust task priority (undo boosting). Called from the exit path of
124  * rt_mutex_slowunlock() and rt_mutex_slowlock().
125  *
126  * (Note: We do this outside of the protection of lock->wait_lock to
127  * allow the lock to be taken while or before we readjust the priority
128  * of task. We do not use the spin_xx_mutex() variants here as we are
129  * outside of the debug path.)
130  */
rt_mutex_adjust_prio(struct task_struct * task)131 static void rt_mutex_adjust_prio(struct task_struct *task)
132 {
133 	unsigned long flags;
134 
135 	raw_spin_lock_irqsave(&task->pi_lock, flags);
136 	__rt_mutex_adjust_prio(task);
137 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
138 }
139 
140 /*
141  * Max number of times we'll walk the boosting chain:
142  */
143 int max_lock_depth = 1024;
144 
145 /*
146  * Adjust the priority chain. Also used for deadlock detection.
147  * Decreases task's usage by one - may thus free the task.
148  * Returns 0 or -EDEADLK.
149  */
rt_mutex_adjust_prio_chain(struct task_struct * task,int deadlock_detect,struct rt_mutex * orig_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)150 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
151 				      int deadlock_detect,
152 				      struct rt_mutex *orig_lock,
153 				      struct rt_mutex_waiter *orig_waiter,
154 				      struct task_struct *top_task)
155 {
156 	struct rt_mutex *lock;
157 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
158 	int detect_deadlock, ret = 0, depth = 0;
159 	unsigned long flags;
160 
161 	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
162 							 deadlock_detect);
163 
164 	/*
165 	 * The (de)boosting is a step by step approach with a lot of
166 	 * pitfalls. We want this to be preemptible and we want hold a
167 	 * maximum of two locks per step. So we have to check
168 	 * carefully whether things change under us.
169 	 */
170  again:
171 	if (++depth > max_lock_depth) {
172 		static int prev_max;
173 
174 		/*
175 		 * Print this only once. If the admin changes the limit,
176 		 * print a new message when reaching the limit again.
177 		 */
178 		if (prev_max != max_lock_depth) {
179 			prev_max = max_lock_depth;
180 			printk(KERN_WARNING "Maximum lock depth %d reached "
181 			       "task: %s (%d)\n", max_lock_depth,
182 			       top_task->comm, task_pid_nr(top_task));
183 		}
184 		put_task_struct(task);
185 
186 		return deadlock_detect ? -EDEADLK : 0;
187 	}
188  retry:
189 	/*
190 	 * Task can not go away as we did a get_task() before !
191 	 */
192 	raw_spin_lock_irqsave(&task->pi_lock, flags);
193 
194 	waiter = task->pi_blocked_on;
195 	/*
196 	 * Check whether the end of the boosting chain has been
197 	 * reached or the state of the chain has changed while we
198 	 * dropped the locks.
199 	 */
200 	if (!waiter)
201 		goto out_unlock_pi;
202 
203 	/*
204 	 * Check the orig_waiter state. After we dropped the locks,
205 	 * the previous owner of the lock might have released the lock.
206 	 */
207 	if (orig_waiter && !rt_mutex_owner(orig_lock))
208 		goto out_unlock_pi;
209 
210 	/*
211 	 * Drop out, when the task has no waiters. Note,
212 	 * top_waiter can be NULL, when we are in the deboosting
213 	 * mode!
214 	 */
215 	if (top_waiter && (!task_has_pi_waiters(task) ||
216 			   top_waiter != task_top_pi_waiter(task)))
217 		goto out_unlock_pi;
218 
219 	/*
220 	 * When deadlock detection is off then we check, if further
221 	 * priority adjustment is necessary.
222 	 */
223 	if (!detect_deadlock && waiter->list_entry.prio == task->prio)
224 		goto out_unlock_pi;
225 
226 	lock = waiter->lock;
227 	if (!raw_spin_trylock(&lock->wait_lock)) {
228 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
229 		cpu_relax();
230 		goto retry;
231 	}
232 
233 	/* Deadlock detection */
234 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
235 		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
236 		raw_spin_unlock(&lock->wait_lock);
237 		ret = deadlock_detect ? -EDEADLK : 0;
238 		goto out_unlock_pi;
239 	}
240 
241 	top_waiter = rt_mutex_top_waiter(lock);
242 
243 	/* Requeue the waiter */
244 	plist_del(&waiter->list_entry, &lock->wait_list);
245 	waiter->list_entry.prio = task->prio;
246 	plist_add(&waiter->list_entry, &lock->wait_list);
247 
248 	/* Release the task */
249 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
250 	if (!rt_mutex_owner(lock)) {
251 		/*
252 		 * If the requeue above changed the top waiter, then we need
253 		 * to wake the new top waiter up to try to get the lock.
254 		 */
255 
256 		if (top_waiter != rt_mutex_top_waiter(lock))
257 			wake_up_process(rt_mutex_top_waiter(lock)->task);
258 		raw_spin_unlock(&lock->wait_lock);
259 		goto out_put_task;
260 	}
261 	put_task_struct(task);
262 
263 	/* Grab the next task */
264 	task = rt_mutex_owner(lock);
265 	get_task_struct(task);
266 	raw_spin_lock_irqsave(&task->pi_lock, flags);
267 
268 	if (waiter == rt_mutex_top_waiter(lock)) {
269 		/* Boost the owner */
270 		plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
271 		waiter->pi_list_entry.prio = waiter->list_entry.prio;
272 		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
273 		__rt_mutex_adjust_prio(task);
274 
275 	} else if (top_waiter == waiter) {
276 		/* Deboost the owner */
277 		plist_del(&waiter->pi_list_entry, &task->pi_waiters);
278 		waiter = rt_mutex_top_waiter(lock);
279 		waiter->pi_list_entry.prio = waiter->list_entry.prio;
280 		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
281 		__rt_mutex_adjust_prio(task);
282 	}
283 
284 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
285 
286 	top_waiter = rt_mutex_top_waiter(lock);
287 	raw_spin_unlock(&lock->wait_lock);
288 
289 	if (!detect_deadlock && waiter != top_waiter)
290 		goto out_put_task;
291 
292 	goto again;
293 
294  out_unlock_pi:
295 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
296  out_put_task:
297 	put_task_struct(task);
298 
299 	return ret;
300 }
301 
302 /*
303  * Try to take an rt-mutex
304  *
305  * Must be called with lock->wait_lock held.
306  *
307  * @lock:   the lock to be acquired.
308  * @task:   the task which wants to acquire the lock
309  * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
310  */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)311 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
312 		struct rt_mutex_waiter *waiter)
313 {
314 	/*
315 	 * We have to be careful here if the atomic speedups are
316 	 * enabled, such that, when
317 	 *  - no other waiter is on the lock
318 	 *  - the lock has been released since we did the cmpxchg
319 	 * the lock can be released or taken while we are doing the
320 	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
321 	 *
322 	 * The atomic acquire/release aware variant of
323 	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
324 	 * the WAITERS bit, the atomic release / acquire can not
325 	 * happen anymore and lock->wait_lock protects us from the
326 	 * non-atomic case.
327 	 *
328 	 * Note, that this might set lock->owner =
329 	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
330 	 * any more. This is fixed up when we take the ownership.
331 	 * This is the transitional state explained at the top of this file.
332 	 */
333 	mark_rt_mutex_waiters(lock);
334 
335 	if (rt_mutex_owner(lock))
336 		return 0;
337 
338 	/*
339 	 * It will get the lock because of one of these conditions:
340 	 * 1) there is no waiter
341 	 * 2) higher priority than waiters
342 	 * 3) it is top waiter
343 	 */
344 	if (rt_mutex_has_waiters(lock)) {
345 		if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
346 			if (!waiter || waiter != rt_mutex_top_waiter(lock))
347 				return 0;
348 		}
349 	}
350 
351 	if (waiter || rt_mutex_has_waiters(lock)) {
352 		unsigned long flags;
353 		struct rt_mutex_waiter *top;
354 
355 		raw_spin_lock_irqsave(&task->pi_lock, flags);
356 
357 		/* remove the queued waiter. */
358 		if (waiter) {
359 			plist_del(&waiter->list_entry, &lock->wait_list);
360 			task->pi_blocked_on = NULL;
361 		}
362 
363 		/*
364 		 * We have to enqueue the top waiter(if it exists) into
365 		 * task->pi_waiters list.
366 		 */
367 		if (rt_mutex_has_waiters(lock)) {
368 			top = rt_mutex_top_waiter(lock);
369 			top->pi_list_entry.prio = top->list_entry.prio;
370 			plist_add(&top->pi_list_entry, &task->pi_waiters);
371 		}
372 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
373 	}
374 
375 	/* We got the lock. */
376 	debug_rt_mutex_lock(lock);
377 
378 	rt_mutex_set_owner(lock, task);
379 
380 	rt_mutex_deadlock_account_lock(lock, task);
381 
382 	return 1;
383 }
384 
385 /*
386  * Task blocks on lock.
387  *
388  * Prepare waiter and propagate pi chain
389  *
390  * This must be called with lock->wait_lock held.
391  */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,int detect_deadlock)392 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
393 				   struct rt_mutex_waiter *waiter,
394 				   struct task_struct *task,
395 				   int detect_deadlock)
396 {
397 	struct task_struct *owner = rt_mutex_owner(lock);
398 	struct rt_mutex_waiter *top_waiter = waiter;
399 	unsigned long flags;
400 	int chain_walk = 0, res;
401 
402 	raw_spin_lock_irqsave(&task->pi_lock, flags);
403 	__rt_mutex_adjust_prio(task);
404 	waiter->task = task;
405 	waiter->lock = lock;
406 	plist_node_init(&waiter->list_entry, task->prio);
407 	plist_node_init(&waiter->pi_list_entry, task->prio);
408 
409 	/* Get the top priority waiter on the lock */
410 	if (rt_mutex_has_waiters(lock))
411 		top_waiter = rt_mutex_top_waiter(lock);
412 	plist_add(&waiter->list_entry, &lock->wait_list);
413 
414 	task->pi_blocked_on = waiter;
415 
416 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
417 
418 	if (!owner)
419 		return 0;
420 
421 	if (waiter == rt_mutex_top_waiter(lock)) {
422 		raw_spin_lock_irqsave(&owner->pi_lock, flags);
423 		plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
424 		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
425 
426 		__rt_mutex_adjust_prio(owner);
427 		if (owner->pi_blocked_on)
428 			chain_walk = 1;
429 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
430 	}
431 	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
432 		chain_walk = 1;
433 
434 	if (!chain_walk)
435 		return 0;
436 
437 	/*
438 	 * The owner can't disappear while holding a lock,
439 	 * so the owner struct is protected by wait_lock.
440 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
441 	 */
442 	get_task_struct(owner);
443 
444 	raw_spin_unlock(&lock->wait_lock);
445 
446 	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
447 					 task);
448 
449 	raw_spin_lock(&lock->wait_lock);
450 
451 	return res;
452 }
453 
454 /*
455  * Wake up the next waiter on the lock.
456  *
457  * Remove the top waiter from the current tasks waiter list and wake it up.
458  *
459  * Called with lock->wait_lock held.
460  */
wakeup_next_waiter(struct rt_mutex * lock)461 static void wakeup_next_waiter(struct rt_mutex *lock)
462 {
463 	struct rt_mutex_waiter *waiter;
464 	unsigned long flags;
465 
466 	raw_spin_lock_irqsave(&current->pi_lock, flags);
467 
468 	waiter = rt_mutex_top_waiter(lock);
469 
470 	/*
471 	 * Remove it from current->pi_waiters. We do not adjust a
472 	 * possible priority boost right now. We execute wakeup in the
473 	 * boosted mode and go back to normal after releasing
474 	 * lock->wait_lock.
475 	 */
476 	plist_del(&waiter->pi_list_entry, &current->pi_waiters);
477 
478 	rt_mutex_set_owner(lock, NULL);
479 
480 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
481 
482 	wake_up_process(waiter->task);
483 }
484 
485 /*
486  * Remove a waiter from a lock and give up
487  *
488  * Must be called with lock->wait_lock held and
489  * have just failed to try_to_take_rt_mutex().
490  */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)491 static void remove_waiter(struct rt_mutex *lock,
492 			  struct rt_mutex_waiter *waiter)
493 {
494 	int first = (waiter == rt_mutex_top_waiter(lock));
495 	struct task_struct *owner = rt_mutex_owner(lock);
496 	unsigned long flags;
497 	int chain_walk = 0;
498 
499 	raw_spin_lock_irqsave(&current->pi_lock, flags);
500 	plist_del(&waiter->list_entry, &lock->wait_list);
501 	current->pi_blocked_on = NULL;
502 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
503 
504 	if (!owner)
505 		return;
506 
507 	if (first) {
508 
509 		raw_spin_lock_irqsave(&owner->pi_lock, flags);
510 
511 		plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
512 
513 		if (rt_mutex_has_waiters(lock)) {
514 			struct rt_mutex_waiter *next;
515 
516 			next = rt_mutex_top_waiter(lock);
517 			plist_add(&next->pi_list_entry, &owner->pi_waiters);
518 		}
519 		__rt_mutex_adjust_prio(owner);
520 
521 		if (owner->pi_blocked_on)
522 			chain_walk = 1;
523 
524 		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
525 	}
526 
527 	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
528 
529 	if (!chain_walk)
530 		return;
531 
532 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
533 	get_task_struct(owner);
534 
535 	raw_spin_unlock(&lock->wait_lock);
536 
537 	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
538 
539 	raw_spin_lock(&lock->wait_lock);
540 }
541 
542 /*
543  * Recheck the pi chain, in case we got a priority setting
544  *
545  * Called from sched_setscheduler
546  */
rt_mutex_adjust_pi(struct task_struct * task)547 void rt_mutex_adjust_pi(struct task_struct *task)
548 {
549 	struct rt_mutex_waiter *waiter;
550 	unsigned long flags;
551 
552 	raw_spin_lock_irqsave(&task->pi_lock, flags);
553 
554 	waiter = task->pi_blocked_on;
555 	if (!waiter || waiter->list_entry.prio == task->prio) {
556 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
557 		return;
558 	}
559 
560 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
561 
562 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
563 	get_task_struct(task);
564 	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
565 }
566 
567 /**
568  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
569  * @lock:		 the rt_mutex to take
570  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
571  * 			 or TASK_UNINTERRUPTIBLE)
572  * @timeout:		 the pre-initialized and started timer, or NULL for none
573  * @waiter:		 the pre-initialized rt_mutex_waiter
574  *
575  * lock->wait_lock must be held by the caller.
576  */
577 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)578 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
579 		    struct hrtimer_sleeper *timeout,
580 		    struct rt_mutex_waiter *waiter)
581 {
582 	int ret = 0;
583 
584 	for (;;) {
585 		/* Try to acquire the lock: */
586 		if (try_to_take_rt_mutex(lock, current, waiter))
587 			break;
588 
589 		/*
590 		 * TASK_INTERRUPTIBLE checks for signals and
591 		 * timeout. Ignored otherwise.
592 		 */
593 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
594 			/* Signal pending? */
595 			if (signal_pending(current))
596 				ret = -EINTR;
597 			if (timeout && !timeout->task)
598 				ret = -ETIMEDOUT;
599 			if (ret)
600 				break;
601 		}
602 
603 		raw_spin_unlock(&lock->wait_lock);
604 
605 		debug_rt_mutex_print_deadlock(waiter);
606 
607 		schedule_rt_mutex(lock);
608 
609 		raw_spin_lock(&lock->wait_lock);
610 		set_current_state(state);
611 	}
612 
613 	return ret;
614 }
615 
616 /*
617  * Slow path lock function:
618  */
619 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock)620 rt_mutex_slowlock(struct rt_mutex *lock, int state,
621 		  struct hrtimer_sleeper *timeout,
622 		  int detect_deadlock)
623 {
624 	struct rt_mutex_waiter waiter;
625 	int ret = 0;
626 
627 	debug_rt_mutex_init_waiter(&waiter);
628 
629 	raw_spin_lock(&lock->wait_lock);
630 
631 	/* Try to acquire the lock again: */
632 	if (try_to_take_rt_mutex(lock, current, NULL)) {
633 		raw_spin_unlock(&lock->wait_lock);
634 		return 0;
635 	}
636 
637 	set_current_state(state);
638 
639 	/* Setup the timer, when timeout != NULL */
640 	if (unlikely(timeout)) {
641 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
642 		if (!hrtimer_active(&timeout->timer))
643 			timeout->task = NULL;
644 	}
645 
646 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
647 
648 	if (likely(!ret))
649 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
650 
651 	set_current_state(TASK_RUNNING);
652 
653 	if (unlikely(ret))
654 		remove_waiter(lock, &waiter);
655 
656 	/*
657 	 * try_to_take_rt_mutex() sets the waiter bit
658 	 * unconditionally. We might have to fix that up.
659 	 */
660 	fixup_rt_mutex_waiters(lock);
661 
662 	raw_spin_unlock(&lock->wait_lock);
663 
664 	/* Remove pending timer: */
665 	if (unlikely(timeout))
666 		hrtimer_cancel(&timeout->timer);
667 
668 	debug_rt_mutex_free_waiter(&waiter);
669 
670 	return ret;
671 }
672 
673 /*
674  * Slow path try-lock function:
675  */
676 static inline int
rt_mutex_slowtrylock(struct rt_mutex * lock)677 rt_mutex_slowtrylock(struct rt_mutex *lock)
678 {
679 	int ret = 0;
680 
681 	raw_spin_lock(&lock->wait_lock);
682 
683 	if (likely(rt_mutex_owner(lock) != current)) {
684 
685 		ret = try_to_take_rt_mutex(lock, current, NULL);
686 		/*
687 		 * try_to_take_rt_mutex() sets the lock waiters
688 		 * bit unconditionally. Clean this up.
689 		 */
690 		fixup_rt_mutex_waiters(lock);
691 	}
692 
693 	raw_spin_unlock(&lock->wait_lock);
694 
695 	return ret;
696 }
697 
698 /*
699  * Slow path to release a rt-mutex:
700  */
701 static void __sched
rt_mutex_slowunlock(struct rt_mutex * lock)702 rt_mutex_slowunlock(struct rt_mutex *lock)
703 {
704 	raw_spin_lock(&lock->wait_lock);
705 
706 	debug_rt_mutex_unlock(lock);
707 
708 	rt_mutex_deadlock_account_unlock(current);
709 
710 	if (!rt_mutex_has_waiters(lock)) {
711 		lock->owner = NULL;
712 		raw_spin_unlock(&lock->wait_lock);
713 		return;
714 	}
715 
716 	wakeup_next_waiter(lock);
717 
718 	raw_spin_unlock(&lock->wait_lock);
719 
720 	/* Undo pi boosting if necessary: */
721 	rt_mutex_adjust_prio(current);
722 }
723 
724 /*
725  * debug aware fast / slowpath lock,trylock,unlock
726  *
727  * The atomic acquire/release ops are compiled away, when either the
728  * architecture does not support cmpxchg or when debugging is enabled.
729  */
730 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int detect_deadlock,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock))731 rt_mutex_fastlock(struct rt_mutex *lock, int state,
732 		  int detect_deadlock,
733 		  int (*slowfn)(struct rt_mutex *lock, int state,
734 				struct hrtimer_sleeper *timeout,
735 				int detect_deadlock))
736 {
737 	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
738 		rt_mutex_deadlock_account_lock(lock, current);
739 		return 0;
740 	} else
741 		return slowfn(lock, state, NULL, detect_deadlock);
742 }
743 
744 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,int detect_deadlock))745 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
746 			struct hrtimer_sleeper *timeout, int detect_deadlock,
747 			int (*slowfn)(struct rt_mutex *lock, int state,
748 				      struct hrtimer_sleeper *timeout,
749 				      int detect_deadlock))
750 {
751 	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
752 		rt_mutex_deadlock_account_lock(lock, current);
753 		return 0;
754 	} else
755 		return slowfn(lock, state, timeout, detect_deadlock);
756 }
757 
758 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))759 rt_mutex_fasttrylock(struct rt_mutex *lock,
760 		     int (*slowfn)(struct rt_mutex *lock))
761 {
762 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
763 		rt_mutex_deadlock_account_lock(lock, current);
764 		return 1;
765 	}
766 	return slowfn(lock);
767 }
768 
769 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,void (* slowfn)(struct rt_mutex * lock))770 rt_mutex_fastunlock(struct rt_mutex *lock,
771 		    void (*slowfn)(struct rt_mutex *lock))
772 {
773 	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
774 		rt_mutex_deadlock_account_unlock(current);
775 	else
776 		slowfn(lock);
777 }
778 
779 /**
780  * rt_mutex_lock - lock a rt_mutex
781  *
782  * @lock: the rt_mutex to be locked
783  */
rt_mutex_lock(struct rt_mutex * lock)784 void __sched rt_mutex_lock(struct rt_mutex *lock)
785 {
786 	might_sleep();
787 
788 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
789 }
790 EXPORT_SYMBOL_GPL(rt_mutex_lock);
791 
792 /**
793  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
794  *
795  * @lock: 		the rt_mutex to be locked
796  * @detect_deadlock:	deadlock detection on/off
797  *
798  * Returns:
799  *  0 		on success
800  * -EINTR 	when interrupted by a signal
801  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
802  */
rt_mutex_lock_interruptible(struct rt_mutex * lock,int detect_deadlock)803 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
804 						 int detect_deadlock)
805 {
806 	might_sleep();
807 
808 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
809 				 detect_deadlock, rt_mutex_slowlock);
810 }
811 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
812 
813 /**
814  * rt_mutex_timed_lock - lock a rt_mutex interruptible
815  *			the timeout structure is provided
816  *			by the caller
817  *
818  * @lock: 		the rt_mutex to be locked
819  * @timeout:		timeout structure or NULL (no timeout)
820  * @detect_deadlock:	deadlock detection on/off
821  *
822  * Returns:
823  *  0 		on success
824  * -EINTR 	when interrupted by a signal
825  * -ETIMEDOUT	when the timeout expired
826  * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
827  */
828 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout,int detect_deadlock)829 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
830 		    int detect_deadlock)
831 {
832 	might_sleep();
833 
834 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
835 				       detect_deadlock, rt_mutex_slowlock);
836 }
837 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
838 
839 /**
840  * rt_mutex_trylock - try to lock a rt_mutex
841  *
842  * @lock:	the rt_mutex to be locked
843  *
844  * Returns 1 on success and 0 on contention
845  */
rt_mutex_trylock(struct rt_mutex * lock)846 int __sched rt_mutex_trylock(struct rt_mutex *lock)
847 {
848 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
849 }
850 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
851 
852 /**
853  * rt_mutex_unlock - unlock a rt_mutex
854  *
855  * @lock: the rt_mutex to be unlocked
856  */
rt_mutex_unlock(struct rt_mutex * lock)857 void __sched rt_mutex_unlock(struct rt_mutex *lock)
858 {
859 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
860 }
861 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
862 
863 /**
864  * rt_mutex_destroy - mark a mutex unusable
865  * @lock: the mutex to be destroyed
866  *
867  * This function marks the mutex uninitialized, and any subsequent
868  * use of the mutex is forbidden. The mutex must not be locked when
869  * this function is called.
870  */
rt_mutex_destroy(struct rt_mutex * lock)871 void rt_mutex_destroy(struct rt_mutex *lock)
872 {
873 	WARN_ON(rt_mutex_is_locked(lock));
874 #ifdef CONFIG_DEBUG_RT_MUTEXES
875 	lock->magic = NULL;
876 #endif
877 }
878 
879 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
880 
881 /**
882  * __rt_mutex_init - initialize the rt lock
883  *
884  * @lock: the rt lock to be initialized
885  *
886  * Initialize the rt lock to unlocked state.
887  *
888  * Initializing of a locked rt lock is not allowed
889  */
__rt_mutex_init(struct rt_mutex * lock,const char * name)890 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
891 {
892 	lock->owner = NULL;
893 	raw_spin_lock_init(&lock->wait_lock);
894 	plist_head_init(&lock->wait_list);
895 
896 	debug_rt_mutex_init(lock, name);
897 }
898 EXPORT_SYMBOL_GPL(__rt_mutex_init);
899 
900 /**
901  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
902  *				proxy owner
903  *
904  * @lock: 	the rt_mutex to be locked
905  * @proxy_owner:the task to set as owner
906  *
907  * No locking. Caller has to do serializing itself
908  * Special API call for PI-futex support
909  */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)910 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
911 				struct task_struct *proxy_owner)
912 {
913 	__rt_mutex_init(lock, NULL);
914 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
915 	rt_mutex_set_owner(lock, proxy_owner);
916 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
917 }
918 
919 /**
920  * rt_mutex_proxy_unlock - release a lock on behalf of owner
921  *
922  * @lock: 	the rt_mutex to be locked
923  *
924  * No locking. Caller has to do serializing itself
925  * Special API call for PI-futex support
926  */
rt_mutex_proxy_unlock(struct rt_mutex * lock,struct task_struct * proxy_owner)927 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
928 			   struct task_struct *proxy_owner)
929 {
930 	debug_rt_mutex_proxy_unlock(lock);
931 	rt_mutex_set_owner(lock, NULL);
932 	rt_mutex_deadlock_account_unlock(proxy_owner);
933 }
934 
935 /**
936  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
937  * @lock:		the rt_mutex to take
938  * @waiter:		the pre-initialized rt_mutex_waiter
939  * @task:		the task to prepare
940  * @detect_deadlock:	perform deadlock detection (1) or not (0)
941  *
942  * Returns:
943  *  0 - task blocked on lock
944  *  1 - acquired the lock for task, caller should wake it up
945  * <0 - error
946  *
947  * Special API call for FUTEX_REQUEUE_PI support.
948  */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,int detect_deadlock)949 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
950 			      struct rt_mutex_waiter *waiter,
951 			      struct task_struct *task, int detect_deadlock)
952 {
953 	int ret;
954 
955 	raw_spin_lock(&lock->wait_lock);
956 
957 	if (try_to_take_rt_mutex(lock, task, NULL)) {
958 		raw_spin_unlock(&lock->wait_lock);
959 		return 1;
960 	}
961 
962 	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
963 
964 	if (ret && !rt_mutex_owner(lock)) {
965 		/*
966 		 * Reset the return value. We might have
967 		 * returned with -EDEADLK and the owner
968 		 * released the lock while we were walking the
969 		 * pi chain.  Let the waiter sort it out.
970 		 */
971 		ret = 0;
972 	}
973 
974 	if (unlikely(ret))
975 		remove_waiter(lock, waiter);
976 
977 	raw_spin_unlock(&lock->wait_lock);
978 
979 	debug_rt_mutex_print_deadlock(waiter);
980 
981 	return ret;
982 }
983 
984 /**
985  * rt_mutex_next_owner - return the next owner of the lock
986  *
987  * @lock: the rt lock query
988  *
989  * Returns the next owner of the lock or NULL
990  *
991  * Caller has to serialize against other accessors to the lock
992  * itself.
993  *
994  * Special API call for PI-futex support
995  */
rt_mutex_next_owner(struct rt_mutex * lock)996 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
997 {
998 	if (!rt_mutex_has_waiters(lock))
999 		return NULL;
1000 
1001 	return rt_mutex_top_waiter(lock)->task;
1002 }
1003 
1004 /**
1005  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1006  * @lock:		the rt_mutex we were woken on
1007  * @to:			the timeout, null if none. hrtimer should already have
1008  * 			been started.
1009  * @waiter:		the pre-initialized rt_mutex_waiter
1010  * @detect_deadlock:	perform deadlock detection (1) or not (0)
1011  *
1012  * Complete the lock acquisition started our behalf by another thread.
1013  *
1014  * Returns:
1015  *  0 - success
1016  * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1017  *
1018  * Special API call for PI-futex requeue support
1019  */
rt_mutex_finish_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter,int detect_deadlock)1020 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1021 			       struct hrtimer_sleeper *to,
1022 			       struct rt_mutex_waiter *waiter,
1023 			       int detect_deadlock)
1024 {
1025 	int ret;
1026 
1027 	raw_spin_lock(&lock->wait_lock);
1028 
1029 	set_current_state(TASK_INTERRUPTIBLE);
1030 
1031 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1032 
1033 	set_current_state(TASK_RUNNING);
1034 
1035 	if (unlikely(ret))
1036 		remove_waiter(lock, waiter);
1037 
1038 	/*
1039 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1040 	 * have to fix that up.
1041 	 */
1042 	fixup_rt_mutex_waiters(lock);
1043 
1044 	raw_spin_unlock(&lock->wait_lock);
1045 
1046 	return ret;
1047 }
1048