1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
sched_rt_period_timer(struct hrtimer * timer)16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
start_rt_bandwidth(struct rt_bandwidth * rt_b)49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
init_rt_rq(struct rt_rq * rt_rq,struct rq * rq)62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88
89 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
rt_task_of(struct sched_rt_entity * rt_se)97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 return container_of(rt_se, struct task_struct, rt);
103 }
104
rq_of_rt_rq(struct rt_rq * rt_rq)105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 return rt_rq->rq;
108 }
109
rt_rq_of_se(struct sched_rt_entity * rt_se)110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 return rt_se->rt_rq;
113 }
114
free_rt_sched_group(struct task_group * tg)115 void free_rt_sched_group(struct task_group *tg)
116 {
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131 }
132
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136 {
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158 }
159
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194 err_free_rq:
195 kfree(rt_rq);
196 err:
197 return 0;
198 }
199
200 #else /* CONFIG_RT_GROUP_SCHED */
201
202 #define rt_entity_is_task(rt_se) (1)
203
rt_task_of(struct sched_rt_entity * rt_se)204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 return container_of(rt_se, struct task_struct, rt);
207 }
208
rq_of_rt_rq(struct rt_rq * rt_rq)209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 return container_of(rt_rq, struct rq, rt);
212 }
213
rt_rq_of_se(struct sched_rt_entity * rt_se)214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220 }
221
free_rt_sched_group(struct task_group * tg)222 void free_rt_sched_group(struct task_group *tg) { }
223
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229
230 #ifdef CONFIG_SMP
231
rt_overloaded(struct rq * rq)232 static inline int rt_overloaded(struct rq *rq)
233 {
234 return atomic_read(&rq->rd->rto_count);
235 }
236
rt_set_overload(struct rq * rq)237 static inline void rt_set_overload(struct rq *rq)
238 {
239 if (!rq->online)
240 return;
241
242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
249 */
250 wmb();
251 atomic_inc(&rq->rd->rto_count);
252 }
253
rt_clear_overload(struct rq * rq)254 static inline void rt_clear_overload(struct rq *rq)
255 {
256 if (!rq->online)
257 return;
258
259 /* the order here really doesn't matter */
260 atomic_dec(&rq->rd->rto_count);
261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
262 }
263
update_rt_migration(struct rt_rq * rt_rq)264 static void update_rt_migration(struct rt_rq *rt_rq)
265 {
266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
270 }
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
274 }
275 }
276
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)277 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278 {
279 struct task_struct *p;
280
281 if (!rt_entity_is_task(rt_se))
282 return;
283
284 p = rt_task_of(rt_se);
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286
287 rt_rq->rt_nr_total++;
288 if (p->nr_cpus_allowed > 1)
289 rt_rq->rt_nr_migratory++;
290
291 update_rt_migration(rt_rq);
292 }
293
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)294 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295 {
296 struct task_struct *p;
297
298 if (!rt_entity_is_task(rt_se))
299 return;
300
301 p = rt_task_of(rt_se);
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303
304 rt_rq->rt_nr_total--;
305 if (p->nr_cpus_allowed > 1)
306 rt_rq->rt_nr_migratory--;
307
308 update_rt_migration(rt_rq);
309 }
310
has_pushable_tasks(struct rq * rq)311 static inline int has_pushable_tasks(struct rq *rq)
312 {
313 return !plist_head_empty(&rq->rt.pushable_tasks);
314 }
315
enqueue_pushable_task(struct rq * rq,struct task_struct * p)316 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317 {
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
325 }
326
dequeue_pushable_task(struct rq * rq,struct task_struct * p)327 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328 {
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
330
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
338 }
339
340 #else
341
enqueue_pushable_task(struct rq * rq,struct task_struct * p)342 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
343 {
344 }
345
dequeue_pushable_task(struct rq * rq,struct task_struct * p)346 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 }
349
350 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)351 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352 {
353 }
354
355 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)356 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357 {
358 }
359
360 #endif /* CONFIG_SMP */
361
on_rt_rq(struct sched_rt_entity * rt_se)362 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363 {
364 return !list_empty(&rt_se->run_list);
365 }
366
367 #ifdef CONFIG_RT_GROUP_SCHED
368
sched_rt_runtime(struct rt_rq * rt_rq)369 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
370 {
371 if (!rt_rq->tg)
372 return RUNTIME_INF;
373
374 return rt_rq->rt_runtime;
375 }
376
sched_rt_period(struct rt_rq * rt_rq)377 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378 {
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
380 }
381
382 typedef struct task_group *rt_rq_iter_t;
383
next_task_group(struct task_group * tg)384 static inline struct task_group *next_task_group(struct task_group *tg)
385 {
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390
391 if (&tg->list == &task_groups)
392 tg = NULL;
393
394 return tg;
395 }
396
397 #define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
401
list_add_leaf_rt_rq(struct rt_rq * rt_rq)402 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
403 {
404 list_add_rcu(&rt_rq->leaf_rt_rq_list,
405 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
406 }
407
list_del_leaf_rt_rq(struct rt_rq * rt_rq)408 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
409 {
410 list_del_rcu(&rt_rq->leaf_rt_rq_list);
411 }
412
413 #define for_each_leaf_rt_rq(rt_rq, rq) \
414 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
415
416 #define for_each_sched_rt_entity(rt_se) \
417 for (; rt_se; rt_se = rt_se->parent)
418
group_rt_rq(struct sched_rt_entity * rt_se)419 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
420 {
421 return rt_se->my_q;
422 }
423
424 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
425 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
426
sched_rt_rq_enqueue(struct rt_rq * rt_rq)427 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
428 {
429 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
430 struct sched_rt_entity *rt_se;
431
432 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
433
434 rt_se = rt_rq->tg->rt_se[cpu];
435
436 if (rt_rq->rt_nr_running) {
437 if (rt_se && !on_rt_rq(rt_se))
438 enqueue_rt_entity(rt_se, false);
439 if (rt_rq->highest_prio.curr < curr->prio)
440 resched_task(curr);
441 }
442 }
443
sched_rt_rq_dequeue(struct rt_rq * rt_rq)444 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
445 {
446 struct sched_rt_entity *rt_se;
447 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
448
449 rt_se = rt_rq->tg->rt_se[cpu];
450
451 if (rt_se && on_rt_rq(rt_se))
452 dequeue_rt_entity(rt_se);
453 }
454
rt_rq_throttled(struct rt_rq * rt_rq)455 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
456 {
457 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
458 }
459
rt_se_boosted(struct sched_rt_entity * rt_se)460 static int rt_se_boosted(struct sched_rt_entity *rt_se)
461 {
462 struct rt_rq *rt_rq = group_rt_rq(rt_se);
463 struct task_struct *p;
464
465 if (rt_rq)
466 return !!rt_rq->rt_nr_boosted;
467
468 p = rt_task_of(rt_se);
469 return p->prio != p->normal_prio;
470 }
471
472 #ifdef CONFIG_SMP
sched_rt_period_mask(void)473 static inline const struct cpumask *sched_rt_period_mask(void)
474 {
475 return cpu_rq(smp_processor_id())->rd->span;
476 }
477 #else
sched_rt_period_mask(void)478 static inline const struct cpumask *sched_rt_period_mask(void)
479 {
480 return cpu_online_mask;
481 }
482 #endif
483
484 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)485 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
486 {
487 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
488 }
489
sched_rt_bandwidth(struct rt_rq * rt_rq)490 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
491 {
492 return &rt_rq->tg->rt_bandwidth;
493 }
494
495 #else /* !CONFIG_RT_GROUP_SCHED */
496
sched_rt_runtime(struct rt_rq * rt_rq)497 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
498 {
499 return rt_rq->rt_runtime;
500 }
501
sched_rt_period(struct rt_rq * rt_rq)502 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
503 {
504 return ktime_to_ns(def_rt_bandwidth.rt_period);
505 }
506
507 typedef struct rt_rq *rt_rq_iter_t;
508
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
511
list_add_leaf_rt_rq(struct rt_rq * rt_rq)512 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
513 {
514 }
515
list_del_leaf_rt_rq(struct rt_rq * rt_rq)516 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
517 {
518 }
519
520 #define for_each_leaf_rt_rq(rt_rq, rq) \
521 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
522
523 #define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = NULL)
525
group_rt_rq(struct sched_rt_entity * rt_se)526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 return NULL;
529 }
530
sched_rt_rq_enqueue(struct rt_rq * rt_rq)531 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533 if (rt_rq->rt_nr_running)
534 resched_task(rq_of_rt_rq(rt_rq)->curr);
535 }
536
sched_rt_rq_dequeue(struct rt_rq * rt_rq)537 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
538 {
539 }
540
rt_rq_throttled(struct rt_rq * rt_rq)541 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
542 {
543 return rt_rq->rt_throttled;
544 }
545
sched_rt_period_mask(void)546 static inline const struct cpumask *sched_rt_period_mask(void)
547 {
548 return cpu_online_mask;
549 }
550
551 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554 return &cpu_rq(cpu)->rt;
555 }
556
sched_rt_bandwidth(struct rt_rq * rt_rq)557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559 return &def_rt_bandwidth;
560 }
561
562 #endif /* CONFIG_RT_GROUP_SCHED */
563
564 #ifdef CONFIG_SMP
565 /*
566 * We ran out of runtime, see if we can borrow some from our neighbours.
567 */
do_balance_runtime(struct rt_rq * rt_rq)568 static int do_balance_runtime(struct rt_rq *rt_rq)
569 {
570 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
571 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
572 int i, weight, more = 0;
573 u64 rt_period;
574
575 weight = cpumask_weight(rd->span);
576
577 raw_spin_lock(&rt_b->rt_runtime_lock);
578 rt_period = ktime_to_ns(rt_b->rt_period);
579 for_each_cpu(i, rd->span) {
580 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
581 s64 diff;
582
583 if (iter == rt_rq)
584 continue;
585
586 raw_spin_lock(&iter->rt_runtime_lock);
587 /*
588 * Either all rqs have inf runtime and there's nothing to steal
589 * or __disable_runtime() below sets a specific rq to inf to
590 * indicate its been disabled and disalow stealing.
591 */
592 if (iter->rt_runtime == RUNTIME_INF)
593 goto next;
594
595 /*
596 * From runqueues with spare time, take 1/n part of their
597 * spare time, but no more than our period.
598 */
599 diff = iter->rt_runtime - iter->rt_time;
600 if (diff > 0) {
601 diff = div_u64((u64)diff, weight);
602 if (rt_rq->rt_runtime + diff > rt_period)
603 diff = rt_period - rt_rq->rt_runtime;
604 iter->rt_runtime -= diff;
605 rt_rq->rt_runtime += diff;
606 more = 1;
607 if (rt_rq->rt_runtime == rt_period) {
608 raw_spin_unlock(&iter->rt_runtime_lock);
609 break;
610 }
611 }
612 next:
613 raw_spin_unlock(&iter->rt_runtime_lock);
614 }
615 raw_spin_unlock(&rt_b->rt_runtime_lock);
616
617 return more;
618 }
619
620 /*
621 * Ensure this RQ takes back all the runtime it lend to its neighbours.
622 */
__disable_runtime(struct rq * rq)623 static void __disable_runtime(struct rq *rq)
624 {
625 struct root_domain *rd = rq->rd;
626 rt_rq_iter_t iter;
627 struct rt_rq *rt_rq;
628
629 if (unlikely(!scheduler_running))
630 return;
631
632 for_each_rt_rq(rt_rq, iter, rq) {
633 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
634 s64 want;
635 int i;
636
637 raw_spin_lock(&rt_b->rt_runtime_lock);
638 raw_spin_lock(&rt_rq->rt_runtime_lock);
639 /*
640 * Either we're all inf and nobody needs to borrow, or we're
641 * already disabled and thus have nothing to do, or we have
642 * exactly the right amount of runtime to take out.
643 */
644 if (rt_rq->rt_runtime == RUNTIME_INF ||
645 rt_rq->rt_runtime == rt_b->rt_runtime)
646 goto balanced;
647 raw_spin_unlock(&rt_rq->rt_runtime_lock);
648
649 /*
650 * Calculate the difference between what we started out with
651 * and what we current have, that's the amount of runtime
652 * we lend and now have to reclaim.
653 */
654 want = rt_b->rt_runtime - rt_rq->rt_runtime;
655
656 /*
657 * Greedy reclaim, take back as much as we can.
658 */
659 for_each_cpu(i, rd->span) {
660 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661 s64 diff;
662
663 /*
664 * Can't reclaim from ourselves or disabled runqueues.
665 */
666 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
667 continue;
668
669 raw_spin_lock(&iter->rt_runtime_lock);
670 if (want > 0) {
671 diff = min_t(s64, iter->rt_runtime, want);
672 iter->rt_runtime -= diff;
673 want -= diff;
674 } else {
675 iter->rt_runtime -= want;
676 want -= want;
677 }
678 raw_spin_unlock(&iter->rt_runtime_lock);
679
680 if (!want)
681 break;
682 }
683
684 raw_spin_lock(&rt_rq->rt_runtime_lock);
685 /*
686 * We cannot be left wanting - that would mean some runtime
687 * leaked out of the system.
688 */
689 BUG_ON(want);
690 balanced:
691 /*
692 * Disable all the borrow logic by pretending we have inf
693 * runtime - in which case borrowing doesn't make sense.
694 */
695 rt_rq->rt_runtime = RUNTIME_INF;
696 rt_rq->rt_throttled = 0;
697 raw_spin_unlock(&rt_rq->rt_runtime_lock);
698 raw_spin_unlock(&rt_b->rt_runtime_lock);
699 }
700 }
701
disable_runtime(struct rq * rq)702 static void disable_runtime(struct rq *rq)
703 {
704 unsigned long flags;
705
706 raw_spin_lock_irqsave(&rq->lock, flags);
707 __disable_runtime(rq);
708 raw_spin_unlock_irqrestore(&rq->lock, flags);
709 }
710
__enable_runtime(struct rq * rq)711 static void __enable_runtime(struct rq *rq)
712 {
713 rt_rq_iter_t iter;
714 struct rt_rq *rt_rq;
715
716 if (unlikely(!scheduler_running))
717 return;
718
719 /*
720 * Reset each runqueue's bandwidth settings
721 */
722 for_each_rt_rq(rt_rq, iter, rq) {
723 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
724
725 raw_spin_lock(&rt_b->rt_runtime_lock);
726 raw_spin_lock(&rt_rq->rt_runtime_lock);
727 rt_rq->rt_runtime = rt_b->rt_runtime;
728 rt_rq->rt_time = 0;
729 rt_rq->rt_throttled = 0;
730 raw_spin_unlock(&rt_rq->rt_runtime_lock);
731 raw_spin_unlock(&rt_b->rt_runtime_lock);
732 }
733 }
734
enable_runtime(struct rq * rq)735 static void enable_runtime(struct rq *rq)
736 {
737 unsigned long flags;
738
739 raw_spin_lock_irqsave(&rq->lock, flags);
740 __enable_runtime(rq);
741 raw_spin_unlock_irqrestore(&rq->lock, flags);
742 }
743
update_runtime(struct notifier_block * nfb,unsigned long action,void * hcpu)744 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
745 {
746 int cpu = (int)(long)hcpu;
747
748 switch (action) {
749 case CPU_DOWN_PREPARE:
750 case CPU_DOWN_PREPARE_FROZEN:
751 disable_runtime(cpu_rq(cpu));
752 return NOTIFY_OK;
753
754 case CPU_DOWN_FAILED:
755 case CPU_DOWN_FAILED_FROZEN:
756 case CPU_ONLINE:
757 case CPU_ONLINE_FROZEN:
758 enable_runtime(cpu_rq(cpu));
759 return NOTIFY_OK;
760
761 default:
762 return NOTIFY_DONE;
763 }
764 }
765
balance_runtime(struct rt_rq * rt_rq)766 static int balance_runtime(struct rt_rq *rt_rq)
767 {
768 int more = 0;
769
770 if (!sched_feat(RT_RUNTIME_SHARE))
771 return more;
772
773 if (rt_rq->rt_time > rt_rq->rt_runtime) {
774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
775 more = do_balance_runtime(rt_rq);
776 raw_spin_lock(&rt_rq->rt_runtime_lock);
777 }
778
779 return more;
780 }
781 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)782 static inline int balance_runtime(struct rt_rq *rt_rq)
783 {
784 return 0;
785 }
786 #endif /* CONFIG_SMP */
787
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)788 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
789 {
790 int i, idle = 1, throttled = 0;
791 const struct cpumask *span;
792
793 span = sched_rt_period_mask();
794 #ifdef CONFIG_RT_GROUP_SCHED
795 /*
796 * FIXME: isolated CPUs should really leave the root task group,
797 * whether they are isolcpus or were isolated via cpusets, lest
798 * the timer run on a CPU which does not service all runqueues,
799 * potentially leaving other CPUs indefinitely throttled. If
800 * isolation is really required, the user will turn the throttle
801 * off to kill the perturbations it causes anyway. Meanwhile,
802 * this maintains functionality for boot and/or troubleshooting.
803 */
804 if (rt_b == &root_task_group.rt_bandwidth)
805 span = cpu_online_mask;
806 #endif
807 for_each_cpu(i, span) {
808 int enqueue = 0;
809 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
810 struct rq *rq = rq_of_rt_rq(rt_rq);
811
812 raw_spin_lock(&rq->lock);
813 if (rt_rq->rt_time) {
814 u64 runtime;
815
816 raw_spin_lock(&rt_rq->rt_runtime_lock);
817 if (rt_rq->rt_throttled)
818 balance_runtime(rt_rq);
819 runtime = rt_rq->rt_runtime;
820 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
821 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
822 rt_rq->rt_throttled = 0;
823 enqueue = 1;
824
825 /*
826 * Force a clock update if the CPU was idle,
827 * lest wakeup -> unthrottle time accumulate.
828 */
829 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
830 rq->skip_clock_update = -1;
831 }
832 if (rt_rq->rt_time || rt_rq->rt_nr_running)
833 idle = 0;
834 raw_spin_unlock(&rt_rq->rt_runtime_lock);
835 } else if (rt_rq->rt_nr_running) {
836 idle = 0;
837 if (!rt_rq_throttled(rt_rq))
838 enqueue = 1;
839 }
840 if (rt_rq->rt_throttled)
841 throttled = 1;
842
843 if (enqueue)
844 sched_rt_rq_enqueue(rt_rq);
845 raw_spin_unlock(&rq->lock);
846 }
847
848 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
849 return 1;
850
851 return idle;
852 }
853
rt_se_prio(struct sched_rt_entity * rt_se)854 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
855 {
856 #ifdef CONFIG_RT_GROUP_SCHED
857 struct rt_rq *rt_rq = group_rt_rq(rt_se);
858
859 if (rt_rq)
860 return rt_rq->highest_prio.curr;
861 #endif
862
863 return rt_task_of(rt_se)->prio;
864 }
865
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)866 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
867 {
868 u64 runtime = sched_rt_runtime(rt_rq);
869
870 if (rt_rq->rt_throttled)
871 return rt_rq_throttled(rt_rq);
872
873 if (runtime >= sched_rt_period(rt_rq))
874 return 0;
875
876 balance_runtime(rt_rq);
877 runtime = sched_rt_runtime(rt_rq);
878 if (runtime == RUNTIME_INF)
879 return 0;
880
881 if (rt_rq->rt_time > runtime) {
882 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
883
884 /*
885 * Don't actually throttle groups that have no runtime assigned
886 * but accrue some time due to boosting.
887 */
888 if (likely(rt_b->rt_runtime)) {
889 static bool once = false;
890
891 rt_rq->rt_throttled = 1;
892
893 if (!once) {
894 once = true;
895 printk_sched("sched: RT throttling activated\n");
896 }
897 } else {
898 /*
899 * In case we did anyway, make it go away,
900 * replenishment is a joke, since it will replenish us
901 * with exactly 0 ns.
902 */
903 rt_rq->rt_time = 0;
904 }
905
906 if (rt_rq_throttled(rt_rq)) {
907 sched_rt_rq_dequeue(rt_rq);
908 return 1;
909 }
910 }
911
912 return 0;
913 }
914
915 /*
916 * Update the current task's runtime statistics. Skip current tasks that
917 * are not in our scheduling class.
918 */
update_curr_rt(struct rq * rq)919 static void update_curr_rt(struct rq *rq)
920 {
921 struct task_struct *curr = rq->curr;
922 struct sched_rt_entity *rt_se = &curr->rt;
923 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
924 u64 delta_exec;
925
926 if (curr->sched_class != &rt_sched_class)
927 return;
928
929 delta_exec = rq->clock_task - curr->se.exec_start;
930 if (unlikely((s64)delta_exec <= 0))
931 return;
932
933 schedstat_set(curr->se.statistics.exec_max,
934 max(curr->se.statistics.exec_max, delta_exec));
935
936 curr->se.sum_exec_runtime += delta_exec;
937 account_group_exec_runtime(curr, delta_exec);
938
939 curr->se.exec_start = rq->clock_task;
940 cpuacct_charge(curr, delta_exec);
941
942 sched_rt_avg_update(rq, delta_exec);
943
944 if (!rt_bandwidth_enabled())
945 return;
946
947 for_each_sched_rt_entity(rt_se) {
948 rt_rq = rt_rq_of_se(rt_se);
949
950 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
951 raw_spin_lock(&rt_rq->rt_runtime_lock);
952 rt_rq->rt_time += delta_exec;
953 if (sched_rt_runtime_exceeded(rt_rq))
954 resched_task(curr);
955 raw_spin_unlock(&rt_rq->rt_runtime_lock);
956 }
957 }
958 }
959
960 #if defined CONFIG_SMP
961
962 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)963 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
964 {
965 struct rq *rq = rq_of_rt_rq(rt_rq);
966
967 if (rq->online && prio < prev_prio)
968 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
969 }
970
971 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)972 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
973 {
974 struct rq *rq = rq_of_rt_rq(rt_rq);
975
976 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
977 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
978 }
979
980 #else /* CONFIG_SMP */
981
982 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)983 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
984 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)985 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
986
987 #endif /* CONFIG_SMP */
988
989 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
990 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)991 inc_rt_prio(struct rt_rq *rt_rq, int prio)
992 {
993 int prev_prio = rt_rq->highest_prio.curr;
994
995 if (prio < prev_prio)
996 rt_rq->highest_prio.curr = prio;
997
998 inc_rt_prio_smp(rt_rq, prio, prev_prio);
999 }
1000
1001 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1002 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1003 {
1004 int prev_prio = rt_rq->highest_prio.curr;
1005
1006 if (rt_rq->rt_nr_running) {
1007
1008 WARN_ON(prio < prev_prio);
1009
1010 /*
1011 * This may have been our highest task, and therefore
1012 * we may have some recomputation to do
1013 */
1014 if (prio == prev_prio) {
1015 struct rt_prio_array *array = &rt_rq->active;
1016
1017 rt_rq->highest_prio.curr =
1018 sched_find_first_bit(array->bitmap);
1019 }
1020
1021 } else
1022 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1023
1024 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1025 }
1026
1027 #else
1028
inc_rt_prio(struct rt_rq * rt_rq,int prio)1029 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1030 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1031
1032 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1033
1034 #ifdef CONFIG_RT_GROUP_SCHED
1035
1036 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1037 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038 {
1039 if (rt_se_boosted(rt_se))
1040 rt_rq->rt_nr_boosted++;
1041
1042 if (rt_rq->tg)
1043 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1044 }
1045
1046 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1047 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1048 {
1049 if (rt_se_boosted(rt_se))
1050 rt_rq->rt_nr_boosted--;
1051
1052 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1053 }
1054
1055 #else /* CONFIG_RT_GROUP_SCHED */
1056
1057 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1058 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1059 {
1060 start_rt_bandwidth(&def_rt_bandwidth);
1061 }
1062
1063 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1064 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1065
1066 #endif /* CONFIG_RT_GROUP_SCHED */
1067
1068 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1069 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1070 {
1071 int prio = rt_se_prio(rt_se);
1072
1073 WARN_ON(!rt_prio(prio));
1074 rt_rq->rt_nr_running++;
1075
1076 inc_rt_prio(rt_rq, prio);
1077 inc_rt_migration(rt_se, rt_rq);
1078 inc_rt_group(rt_se, rt_rq);
1079 }
1080
1081 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1082 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1083 {
1084 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1085 WARN_ON(!rt_rq->rt_nr_running);
1086 rt_rq->rt_nr_running--;
1087
1088 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1089 dec_rt_migration(rt_se, rt_rq);
1090 dec_rt_group(rt_se, rt_rq);
1091 }
1092
__enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)1093 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1094 {
1095 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1096 struct rt_prio_array *array = &rt_rq->active;
1097 struct rt_rq *group_rq = group_rt_rq(rt_se);
1098 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1099
1100 /*
1101 * Don't enqueue the group if its throttled, or when empty.
1102 * The latter is a consequence of the former when a child group
1103 * get throttled and the current group doesn't have any other
1104 * active members.
1105 */
1106 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1107 return;
1108
1109 if (!rt_rq->rt_nr_running)
1110 list_add_leaf_rt_rq(rt_rq);
1111
1112 if (head)
1113 list_add(&rt_se->run_list, queue);
1114 else
1115 list_add_tail(&rt_se->run_list, queue);
1116 __set_bit(rt_se_prio(rt_se), array->bitmap);
1117
1118 inc_rt_tasks(rt_se, rt_rq);
1119 }
1120
__dequeue_rt_entity(struct sched_rt_entity * rt_se)1121 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1122 {
1123 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1124 struct rt_prio_array *array = &rt_rq->active;
1125
1126 list_del_init(&rt_se->run_list);
1127 if (list_empty(array->queue + rt_se_prio(rt_se)))
1128 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1129
1130 dec_rt_tasks(rt_se, rt_rq);
1131 if (!rt_rq->rt_nr_running)
1132 list_del_leaf_rt_rq(rt_rq);
1133 }
1134
1135 /*
1136 * Because the prio of an upper entry depends on the lower
1137 * entries, we must remove entries top - down.
1138 */
dequeue_rt_stack(struct sched_rt_entity * rt_se)1139 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1140 {
1141 struct sched_rt_entity *back = NULL;
1142
1143 for_each_sched_rt_entity(rt_se) {
1144 rt_se->back = back;
1145 back = rt_se;
1146 }
1147
1148 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1149 if (on_rt_rq(rt_se))
1150 __dequeue_rt_entity(rt_se);
1151 }
1152 }
1153
enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)1154 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1155 {
1156 dequeue_rt_stack(rt_se);
1157 for_each_sched_rt_entity(rt_se)
1158 __enqueue_rt_entity(rt_se, head);
1159 }
1160
dequeue_rt_entity(struct sched_rt_entity * rt_se)1161 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1162 {
1163 dequeue_rt_stack(rt_se);
1164
1165 for_each_sched_rt_entity(rt_se) {
1166 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1167
1168 if (rt_rq && rt_rq->rt_nr_running)
1169 __enqueue_rt_entity(rt_se, false);
1170 }
1171 }
1172
1173 /*
1174 * Adding/removing a task to/from a priority array:
1175 */
1176 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1177 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1178 {
1179 struct sched_rt_entity *rt_se = &p->rt;
1180
1181 if (flags & ENQUEUE_WAKEUP)
1182 rt_se->timeout = 0;
1183
1184 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1185
1186 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1187 enqueue_pushable_task(rq, p);
1188
1189 inc_nr_running(rq);
1190 }
1191
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1192 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1193 {
1194 struct sched_rt_entity *rt_se = &p->rt;
1195
1196 update_curr_rt(rq);
1197 dequeue_rt_entity(rt_se);
1198
1199 dequeue_pushable_task(rq, p);
1200
1201 dec_nr_running(rq);
1202 }
1203
1204 /*
1205 * Put task to the head or the end of the run list without the overhead of
1206 * dequeue followed by enqueue.
1207 */
1208 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1209 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1210 {
1211 if (on_rt_rq(rt_se)) {
1212 struct rt_prio_array *array = &rt_rq->active;
1213 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1214
1215 if (head)
1216 list_move(&rt_se->run_list, queue);
1217 else
1218 list_move_tail(&rt_se->run_list, queue);
1219 }
1220 }
1221
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1222 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1223 {
1224 struct sched_rt_entity *rt_se = &p->rt;
1225 struct rt_rq *rt_rq;
1226
1227 for_each_sched_rt_entity(rt_se) {
1228 rt_rq = rt_rq_of_se(rt_se);
1229 requeue_rt_entity(rt_rq, rt_se, head);
1230 }
1231 }
1232
yield_task_rt(struct rq * rq)1233 static void yield_task_rt(struct rq *rq)
1234 {
1235 requeue_task_rt(rq, rq->curr, 0);
1236 }
1237
1238 #ifdef CONFIG_SMP
1239 static int find_lowest_rq(struct task_struct *task);
1240
1241 static int
select_task_rq_rt(struct task_struct * p,int sd_flag,int flags)1242 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1243 {
1244 struct task_struct *curr;
1245 struct rq *rq;
1246 int cpu;
1247
1248 cpu = task_cpu(p);
1249
1250 if (p->nr_cpus_allowed == 1)
1251 goto out;
1252
1253 /* For anything but wake ups, just return the task_cpu */
1254 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1255 goto out;
1256
1257 rq = cpu_rq(cpu);
1258
1259 rcu_read_lock();
1260 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1261
1262 /*
1263 * If the current task on @p's runqueue is an RT task, then
1264 * try to see if we can wake this RT task up on another
1265 * runqueue. Otherwise simply start this RT task
1266 * on its current runqueue.
1267 *
1268 * We want to avoid overloading runqueues. If the woken
1269 * task is a higher priority, then it will stay on this CPU
1270 * and the lower prio task should be moved to another CPU.
1271 * Even though this will probably make the lower prio task
1272 * lose its cache, we do not want to bounce a higher task
1273 * around just because it gave up its CPU, perhaps for a
1274 * lock?
1275 *
1276 * For equal prio tasks, we just let the scheduler sort it out.
1277 *
1278 * Otherwise, just let it ride on the affined RQ and the
1279 * post-schedule router will push the preempted task away
1280 *
1281 * This test is optimistic, if we get it wrong the load-balancer
1282 * will have to sort it out.
1283 */
1284 if (curr && unlikely(rt_task(curr)) &&
1285 (curr->nr_cpus_allowed < 2 ||
1286 curr->prio <= p->prio) &&
1287 (p->nr_cpus_allowed > 1)) {
1288 int target = find_lowest_rq(p);
1289
1290 if (target != -1)
1291 cpu = target;
1292 }
1293 rcu_read_unlock();
1294
1295 out:
1296 return cpu;
1297 }
1298
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1299 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1300 {
1301 if (rq->curr->nr_cpus_allowed == 1)
1302 return;
1303
1304 if (p->nr_cpus_allowed != 1
1305 && cpupri_find(&rq->rd->cpupri, p, NULL))
1306 return;
1307
1308 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1309 return;
1310
1311 /*
1312 * There appears to be other cpus that can accept
1313 * current and none to run 'p', so lets reschedule
1314 * to try and push current away:
1315 */
1316 requeue_task_rt(rq, p, 1);
1317 resched_task(rq->curr);
1318 }
1319
1320 #endif /* CONFIG_SMP */
1321
1322 /*
1323 * Preempt the current task with a newly woken task if needed:
1324 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1325 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1326 {
1327 if (p->prio < rq->curr->prio) {
1328 resched_task(rq->curr);
1329 return;
1330 }
1331
1332 #ifdef CONFIG_SMP
1333 /*
1334 * If:
1335 *
1336 * - the newly woken task is of equal priority to the current task
1337 * - the newly woken task is non-migratable while current is migratable
1338 * - current will be preempted on the next reschedule
1339 *
1340 * we should check to see if current can readily move to a different
1341 * cpu. If so, we will reschedule to allow the push logic to try
1342 * to move current somewhere else, making room for our non-migratable
1343 * task.
1344 */
1345 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1346 check_preempt_equal_prio(rq, p);
1347 #endif
1348 }
1349
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1350 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1351 struct rt_rq *rt_rq)
1352 {
1353 struct rt_prio_array *array = &rt_rq->active;
1354 struct sched_rt_entity *next = NULL;
1355 struct list_head *queue;
1356 int idx;
1357
1358 idx = sched_find_first_bit(array->bitmap);
1359 BUG_ON(idx >= MAX_RT_PRIO);
1360
1361 queue = array->queue + idx;
1362 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1363
1364 return next;
1365 }
1366
_pick_next_task_rt(struct rq * rq)1367 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1368 {
1369 struct sched_rt_entity *rt_se;
1370 struct task_struct *p;
1371 struct rt_rq *rt_rq;
1372
1373 rt_rq = &rq->rt;
1374
1375 if (!rt_rq->rt_nr_running)
1376 return NULL;
1377
1378 if (rt_rq_throttled(rt_rq))
1379 return NULL;
1380
1381 do {
1382 rt_se = pick_next_rt_entity(rq, rt_rq);
1383 BUG_ON(!rt_se);
1384 rt_rq = group_rt_rq(rt_se);
1385 } while (rt_rq);
1386
1387 p = rt_task_of(rt_se);
1388 p->se.exec_start = rq->clock_task;
1389
1390 return p;
1391 }
1392
pick_next_task_rt(struct rq * rq)1393 static struct task_struct *pick_next_task_rt(struct rq *rq)
1394 {
1395 struct task_struct *p = _pick_next_task_rt(rq);
1396
1397 /* The running task is never eligible for pushing */
1398 if (p)
1399 dequeue_pushable_task(rq, p);
1400
1401 #ifdef CONFIG_SMP
1402 /*
1403 * We detect this state here so that we can avoid taking the RQ
1404 * lock again later if there is no need to push
1405 */
1406 rq->post_schedule = has_pushable_tasks(rq);
1407 #endif
1408
1409 return p;
1410 }
1411
put_prev_task_rt(struct rq * rq,struct task_struct * p)1412 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1413 {
1414 update_curr_rt(rq);
1415
1416 /*
1417 * The previous task needs to be made eligible for pushing
1418 * if it is still active
1419 */
1420 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1421 enqueue_pushable_task(rq, p);
1422 }
1423
1424 #ifdef CONFIG_SMP
1425
1426 /* Only try algorithms three times */
1427 #define RT_MAX_TRIES 3
1428
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1429 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1430 {
1431 if (!task_running(rq, p) &&
1432 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1433 return 1;
1434 return 0;
1435 }
1436
1437 /* Return the second highest RT task, NULL otherwise */
pick_next_highest_task_rt(struct rq * rq,int cpu)1438 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1439 {
1440 struct task_struct *next = NULL;
1441 struct sched_rt_entity *rt_se;
1442 struct rt_prio_array *array;
1443 struct rt_rq *rt_rq;
1444 int idx;
1445
1446 for_each_leaf_rt_rq(rt_rq, rq) {
1447 array = &rt_rq->active;
1448 idx = sched_find_first_bit(array->bitmap);
1449 next_idx:
1450 if (idx >= MAX_RT_PRIO)
1451 continue;
1452 if (next && next->prio <= idx)
1453 continue;
1454 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1455 struct task_struct *p;
1456
1457 if (!rt_entity_is_task(rt_se))
1458 continue;
1459
1460 p = rt_task_of(rt_se);
1461 if (pick_rt_task(rq, p, cpu)) {
1462 next = p;
1463 break;
1464 }
1465 }
1466 if (!next) {
1467 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1468 goto next_idx;
1469 }
1470 }
1471
1472 return next;
1473 }
1474
1475 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1476
find_lowest_rq(struct task_struct * task)1477 static int find_lowest_rq(struct task_struct *task)
1478 {
1479 struct sched_domain *sd;
1480 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1481 int this_cpu = smp_processor_id();
1482 int cpu = task_cpu(task);
1483
1484 /* Make sure the mask is initialized first */
1485 if (unlikely(!lowest_mask))
1486 return -1;
1487
1488 if (task->nr_cpus_allowed == 1)
1489 return -1; /* No other targets possible */
1490
1491 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1492 return -1; /* No targets found */
1493
1494 /*
1495 * At this point we have built a mask of cpus representing the
1496 * lowest priority tasks in the system. Now we want to elect
1497 * the best one based on our affinity and topology.
1498 *
1499 * We prioritize the last cpu that the task executed on since
1500 * it is most likely cache-hot in that location.
1501 */
1502 if (cpumask_test_cpu(cpu, lowest_mask))
1503 return cpu;
1504
1505 /*
1506 * Otherwise, we consult the sched_domains span maps to figure
1507 * out which cpu is logically closest to our hot cache data.
1508 */
1509 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1510 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1511
1512 rcu_read_lock();
1513 for_each_domain(cpu, sd) {
1514 if (sd->flags & SD_WAKE_AFFINE) {
1515 int best_cpu;
1516
1517 /*
1518 * "this_cpu" is cheaper to preempt than a
1519 * remote processor.
1520 */
1521 if (this_cpu != -1 &&
1522 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1523 rcu_read_unlock();
1524 return this_cpu;
1525 }
1526
1527 best_cpu = cpumask_first_and(lowest_mask,
1528 sched_domain_span(sd));
1529 if (best_cpu < nr_cpu_ids) {
1530 rcu_read_unlock();
1531 return best_cpu;
1532 }
1533 }
1534 }
1535 rcu_read_unlock();
1536
1537 /*
1538 * And finally, if there were no matches within the domains
1539 * just give the caller *something* to work with from the compatible
1540 * locations.
1541 */
1542 if (this_cpu != -1)
1543 return this_cpu;
1544
1545 cpu = cpumask_any(lowest_mask);
1546 if (cpu < nr_cpu_ids)
1547 return cpu;
1548 return -1;
1549 }
1550
1551 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1552 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1553 {
1554 struct rq *lowest_rq = NULL;
1555 int tries;
1556 int cpu;
1557
1558 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1559 cpu = find_lowest_rq(task);
1560
1561 if ((cpu == -1) || (cpu == rq->cpu))
1562 break;
1563
1564 lowest_rq = cpu_rq(cpu);
1565
1566 /* if the prio of this runqueue changed, try again */
1567 if (double_lock_balance(rq, lowest_rq)) {
1568 /*
1569 * We had to unlock the run queue. In
1570 * the mean time, task could have
1571 * migrated already or had its affinity changed.
1572 * Also make sure that it wasn't scheduled on its rq.
1573 */
1574 if (unlikely(task_rq(task) != rq ||
1575 !cpumask_test_cpu(lowest_rq->cpu,
1576 tsk_cpus_allowed(task)) ||
1577 task_running(rq, task) ||
1578 !task->on_rq)) {
1579
1580 double_unlock_balance(rq, lowest_rq);
1581 lowest_rq = NULL;
1582 break;
1583 }
1584 }
1585
1586 /* If this rq is still suitable use it. */
1587 if (lowest_rq->rt.highest_prio.curr > task->prio)
1588 break;
1589
1590 /* try again */
1591 double_unlock_balance(rq, lowest_rq);
1592 lowest_rq = NULL;
1593 }
1594
1595 return lowest_rq;
1596 }
1597
pick_next_pushable_task(struct rq * rq)1598 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1599 {
1600 struct task_struct *p;
1601
1602 if (!has_pushable_tasks(rq))
1603 return NULL;
1604
1605 p = plist_first_entry(&rq->rt.pushable_tasks,
1606 struct task_struct, pushable_tasks);
1607
1608 BUG_ON(rq->cpu != task_cpu(p));
1609 BUG_ON(task_current(rq, p));
1610 BUG_ON(p->nr_cpus_allowed <= 1);
1611
1612 BUG_ON(!p->on_rq);
1613 BUG_ON(!rt_task(p));
1614
1615 return p;
1616 }
1617
1618 /*
1619 * If the current CPU has more than one RT task, see if the non
1620 * running task can migrate over to a CPU that is running a task
1621 * of lesser priority.
1622 */
push_rt_task(struct rq * rq)1623 static int push_rt_task(struct rq *rq)
1624 {
1625 struct task_struct *next_task;
1626 struct rq *lowest_rq;
1627 int ret = 0;
1628
1629 if (!rq->rt.overloaded)
1630 return 0;
1631
1632 next_task = pick_next_pushable_task(rq);
1633 if (!next_task)
1634 return 0;
1635
1636 retry:
1637 if (unlikely(next_task == rq->curr)) {
1638 WARN_ON(1);
1639 return 0;
1640 }
1641
1642 /*
1643 * It's possible that the next_task slipped in of
1644 * higher priority than current. If that's the case
1645 * just reschedule current.
1646 */
1647 if (unlikely(next_task->prio < rq->curr->prio)) {
1648 resched_task(rq->curr);
1649 return 0;
1650 }
1651
1652 /* We might release rq lock */
1653 get_task_struct(next_task);
1654
1655 /* find_lock_lowest_rq locks the rq if found */
1656 lowest_rq = find_lock_lowest_rq(next_task, rq);
1657 if (!lowest_rq) {
1658 struct task_struct *task;
1659 /*
1660 * find_lock_lowest_rq releases rq->lock
1661 * so it is possible that next_task has migrated.
1662 *
1663 * We need to make sure that the task is still on the same
1664 * run-queue and is also still the next task eligible for
1665 * pushing.
1666 */
1667 task = pick_next_pushable_task(rq);
1668 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1669 /*
1670 * The task hasn't migrated, and is still the next
1671 * eligible task, but we failed to find a run-queue
1672 * to push it to. Do not retry in this case, since
1673 * other cpus will pull from us when ready.
1674 */
1675 goto out;
1676 }
1677
1678 if (!task)
1679 /* No more tasks, just exit */
1680 goto out;
1681
1682 /*
1683 * Something has shifted, try again.
1684 */
1685 put_task_struct(next_task);
1686 next_task = task;
1687 goto retry;
1688 }
1689
1690 deactivate_task(rq, next_task, 0);
1691 set_task_cpu(next_task, lowest_rq->cpu);
1692 activate_task(lowest_rq, next_task, 0);
1693 ret = 1;
1694
1695 resched_task(lowest_rq->curr);
1696
1697 double_unlock_balance(rq, lowest_rq);
1698
1699 out:
1700 put_task_struct(next_task);
1701
1702 return ret;
1703 }
1704
push_rt_tasks(struct rq * rq)1705 static void push_rt_tasks(struct rq *rq)
1706 {
1707 /* push_rt_task will return true if it moved an RT */
1708 while (push_rt_task(rq))
1709 ;
1710 }
1711
pull_rt_task(struct rq * this_rq)1712 static int pull_rt_task(struct rq *this_rq)
1713 {
1714 int this_cpu = this_rq->cpu, ret = 0, cpu;
1715 struct task_struct *p;
1716 struct rq *src_rq;
1717
1718 if (likely(!rt_overloaded(this_rq)))
1719 return 0;
1720
1721 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1722 if (this_cpu == cpu)
1723 continue;
1724
1725 src_rq = cpu_rq(cpu);
1726
1727 /*
1728 * Don't bother taking the src_rq->lock if the next highest
1729 * task is known to be lower-priority than our current task.
1730 * This may look racy, but if this value is about to go
1731 * logically higher, the src_rq will push this task away.
1732 * And if its going logically lower, we do not care
1733 */
1734 if (src_rq->rt.highest_prio.next >=
1735 this_rq->rt.highest_prio.curr)
1736 continue;
1737
1738 /*
1739 * We can potentially drop this_rq's lock in
1740 * double_lock_balance, and another CPU could
1741 * alter this_rq
1742 */
1743 double_lock_balance(this_rq, src_rq);
1744
1745 /*
1746 * Are there still pullable RT tasks?
1747 */
1748 if (src_rq->rt.rt_nr_running <= 1)
1749 goto skip;
1750
1751 p = pick_next_highest_task_rt(src_rq, this_cpu);
1752
1753 /*
1754 * Do we have an RT task that preempts
1755 * the to-be-scheduled task?
1756 */
1757 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1758 WARN_ON(p == src_rq->curr);
1759 WARN_ON(!p->on_rq);
1760
1761 /*
1762 * There's a chance that p is higher in priority
1763 * than what's currently running on its cpu.
1764 * This is just that p is wakeing up and hasn't
1765 * had a chance to schedule. We only pull
1766 * p if it is lower in priority than the
1767 * current task on the run queue
1768 */
1769 if (p->prio < src_rq->curr->prio)
1770 goto skip;
1771
1772 ret = 1;
1773
1774 deactivate_task(src_rq, p, 0);
1775 set_task_cpu(p, this_cpu);
1776 activate_task(this_rq, p, 0);
1777 /*
1778 * We continue with the search, just in
1779 * case there's an even higher prio task
1780 * in another runqueue. (low likelihood
1781 * but possible)
1782 */
1783 }
1784 skip:
1785 double_unlock_balance(this_rq, src_rq);
1786 }
1787
1788 return ret;
1789 }
1790
pre_schedule_rt(struct rq * rq,struct task_struct * prev)1791 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1792 {
1793 /* Try to pull RT tasks here if we lower this rq's prio */
1794 if (rq->rt.highest_prio.curr > prev->prio)
1795 pull_rt_task(rq);
1796 }
1797
post_schedule_rt(struct rq * rq)1798 static void post_schedule_rt(struct rq *rq)
1799 {
1800 push_rt_tasks(rq);
1801 }
1802
1803 /*
1804 * If we are not running and we are not going to reschedule soon, we should
1805 * try to push tasks away now
1806 */
task_woken_rt(struct rq * rq,struct task_struct * p)1807 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1808 {
1809 if (!task_running(rq, p) &&
1810 !test_tsk_need_resched(rq->curr) &&
1811 has_pushable_tasks(rq) &&
1812 p->nr_cpus_allowed > 1 &&
1813 rt_task(rq->curr) &&
1814 (rq->curr->nr_cpus_allowed < 2 ||
1815 rq->curr->prio <= p->prio))
1816 push_rt_tasks(rq);
1817 }
1818
set_cpus_allowed_rt(struct task_struct * p,const struct cpumask * new_mask)1819 static void set_cpus_allowed_rt(struct task_struct *p,
1820 const struct cpumask *new_mask)
1821 {
1822 struct rq *rq;
1823 int weight;
1824
1825 BUG_ON(!rt_task(p));
1826
1827 if (!p->on_rq)
1828 return;
1829
1830 weight = cpumask_weight(new_mask);
1831
1832 /*
1833 * Only update if the process changes its state from whether it
1834 * can migrate or not.
1835 */
1836 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1837 return;
1838
1839 rq = task_rq(p);
1840
1841 /*
1842 * The process used to be able to migrate OR it can now migrate
1843 */
1844 if (weight <= 1) {
1845 if (!task_current(rq, p))
1846 dequeue_pushable_task(rq, p);
1847 BUG_ON(!rq->rt.rt_nr_migratory);
1848 rq->rt.rt_nr_migratory--;
1849 } else {
1850 if (!task_current(rq, p))
1851 enqueue_pushable_task(rq, p);
1852 rq->rt.rt_nr_migratory++;
1853 }
1854
1855 update_rt_migration(&rq->rt);
1856 }
1857
1858 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)1859 static void rq_online_rt(struct rq *rq)
1860 {
1861 if (rq->rt.overloaded)
1862 rt_set_overload(rq);
1863
1864 __enable_runtime(rq);
1865
1866 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1867 }
1868
1869 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)1870 static void rq_offline_rt(struct rq *rq)
1871 {
1872 if (rq->rt.overloaded)
1873 rt_clear_overload(rq);
1874
1875 __disable_runtime(rq);
1876
1877 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1878 }
1879
1880 /*
1881 * When switch from the rt queue, we bring ourselves to a position
1882 * that we might want to pull RT tasks from other runqueues.
1883 */
switched_from_rt(struct rq * rq,struct task_struct * p)1884 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1885 {
1886 /*
1887 * If there are other RT tasks then we will reschedule
1888 * and the scheduling of the other RT tasks will handle
1889 * the balancing. But if we are the last RT task
1890 * we may need to handle the pulling of RT tasks
1891 * now.
1892 */
1893 if (!p->on_rq || rq->rt.rt_nr_running)
1894 return;
1895
1896 if (pull_rt_task(rq))
1897 resched_task(rq->curr);
1898 }
1899
init_sched_rt_class(void)1900 void init_sched_rt_class(void)
1901 {
1902 unsigned int i;
1903
1904 for_each_possible_cpu(i) {
1905 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1906 GFP_KERNEL, cpu_to_node(i));
1907 }
1908 }
1909 #endif /* CONFIG_SMP */
1910
1911 /*
1912 * When switching a task to RT, we may overload the runqueue
1913 * with RT tasks. In this case we try to push them off to
1914 * other runqueues.
1915 */
switched_to_rt(struct rq * rq,struct task_struct * p)1916 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1917 {
1918 int check_resched = 1;
1919
1920 /*
1921 * If we are already running, then there's nothing
1922 * that needs to be done. But if we are not running
1923 * we may need to preempt the current running task.
1924 * If that current running task is also an RT task
1925 * then see if we can move to another run queue.
1926 */
1927 if (p->on_rq && rq->curr != p) {
1928 #ifdef CONFIG_SMP
1929 if (rq->rt.overloaded && push_rt_task(rq) &&
1930 /* Don't resched if we changed runqueues */
1931 rq != task_rq(p))
1932 check_resched = 0;
1933 #endif /* CONFIG_SMP */
1934 if (check_resched && p->prio < rq->curr->prio)
1935 resched_task(rq->curr);
1936 }
1937 }
1938
1939 /*
1940 * Priority of the task has changed. This may cause
1941 * us to initiate a push or pull.
1942 */
1943 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)1944 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1945 {
1946 if (!p->on_rq)
1947 return;
1948
1949 if (rq->curr == p) {
1950 #ifdef CONFIG_SMP
1951 /*
1952 * If our priority decreases while running, we
1953 * may need to pull tasks to this runqueue.
1954 */
1955 if (oldprio < p->prio)
1956 pull_rt_task(rq);
1957 /*
1958 * If there's a higher priority task waiting to run
1959 * then reschedule. Note, the above pull_rt_task
1960 * can release the rq lock and p could migrate.
1961 * Only reschedule if p is still on the same runqueue.
1962 */
1963 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1964 resched_task(p);
1965 #else
1966 /* For UP simply resched on drop of prio */
1967 if (oldprio < p->prio)
1968 resched_task(p);
1969 #endif /* CONFIG_SMP */
1970 } else {
1971 /*
1972 * This task is not running, but if it is
1973 * greater than the current running task
1974 * then reschedule.
1975 */
1976 if (p->prio < rq->curr->prio)
1977 resched_task(rq->curr);
1978 }
1979 }
1980
watchdog(struct rq * rq,struct task_struct * p)1981 static void watchdog(struct rq *rq, struct task_struct *p)
1982 {
1983 unsigned long soft, hard;
1984
1985 /* max may change after cur was read, this will be fixed next tick */
1986 soft = task_rlimit(p, RLIMIT_RTTIME);
1987 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1988
1989 if (soft != RLIM_INFINITY) {
1990 unsigned long next;
1991
1992 if (p->rt.watchdog_stamp != jiffies) {
1993 p->rt.timeout++;
1994 p->rt.watchdog_stamp = jiffies;
1995 }
1996
1997 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1998 if (p->rt.timeout > next)
1999 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2000 }
2001 }
2002
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2003 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2004 {
2005 struct sched_rt_entity *rt_se = &p->rt;
2006
2007 update_curr_rt(rq);
2008
2009 watchdog(rq, p);
2010
2011 /*
2012 * RR tasks need a special form of timeslice management.
2013 * FIFO tasks have no timeslices.
2014 */
2015 if (p->policy != SCHED_RR)
2016 return;
2017
2018 if (--p->rt.time_slice)
2019 return;
2020
2021 p->rt.time_slice = sched_rr_timeslice;
2022
2023 /*
2024 * Requeue to the end of queue if we (and all of our ancestors) are the
2025 * only element on the queue
2026 */
2027 for_each_sched_rt_entity(rt_se) {
2028 if (rt_se->run_list.prev != rt_se->run_list.next) {
2029 requeue_task_rt(rq, p, 0);
2030 set_tsk_need_resched(p);
2031 return;
2032 }
2033 }
2034 }
2035
set_curr_task_rt(struct rq * rq)2036 static void set_curr_task_rt(struct rq *rq)
2037 {
2038 struct task_struct *p = rq->curr;
2039
2040 p->se.exec_start = rq->clock_task;
2041
2042 /* The running task is never eligible for pushing */
2043 dequeue_pushable_task(rq, p);
2044 }
2045
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2046 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2047 {
2048 /*
2049 * Time slice is 0 for SCHED_FIFO tasks
2050 */
2051 if (task->policy == SCHED_RR)
2052 return sched_rr_timeslice;
2053 else
2054 return 0;
2055 }
2056
2057 const struct sched_class rt_sched_class = {
2058 .next = &fair_sched_class,
2059 .enqueue_task = enqueue_task_rt,
2060 .dequeue_task = dequeue_task_rt,
2061 .yield_task = yield_task_rt,
2062
2063 .check_preempt_curr = check_preempt_curr_rt,
2064
2065 .pick_next_task = pick_next_task_rt,
2066 .put_prev_task = put_prev_task_rt,
2067
2068 #ifdef CONFIG_SMP
2069 .select_task_rq = select_task_rq_rt,
2070
2071 .set_cpus_allowed = set_cpus_allowed_rt,
2072 .rq_online = rq_online_rt,
2073 .rq_offline = rq_offline_rt,
2074 .pre_schedule = pre_schedule_rt,
2075 .post_schedule = post_schedule_rt,
2076 .task_woken = task_woken_rt,
2077 .switched_from = switched_from_rt,
2078 #endif
2079
2080 .set_curr_task = set_curr_task_rt,
2081 .task_tick = task_tick_rt,
2082
2083 .get_rr_interval = get_rr_interval_rt,
2084
2085 .prio_changed = prio_changed_rt,
2086 .switched_to = switched_to_rt,
2087 };
2088
2089 #ifdef CONFIG_SCHED_DEBUG
2090 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2091
print_rt_stats(struct seq_file * m,int cpu)2092 void print_rt_stats(struct seq_file *m, int cpu)
2093 {
2094 rt_rq_iter_t iter;
2095 struct rt_rq *rt_rq;
2096
2097 rcu_read_lock();
2098 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2099 print_rt_rq(m, cpu, rt_rq);
2100 rcu_read_unlock();
2101 }
2102 #endif /* CONFIG_SCHED_DEBUG */
2103