• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  * 		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/srcu.h>
38 
39 #include <trace/events/rcu.h>
40 
41 #include "rcu.h"
42 
43 /*
44  * Initialize an rcu_batch structure to empty.
45  */
rcu_batch_init(struct rcu_batch * b)46 static inline void rcu_batch_init(struct rcu_batch *b)
47 {
48 	b->head = NULL;
49 	b->tail = &b->head;
50 }
51 
52 /*
53  * Enqueue a callback onto the tail of the specified rcu_batch structure.
54  */
rcu_batch_queue(struct rcu_batch * b,struct rcu_head * head)55 static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
56 {
57 	*b->tail = head;
58 	b->tail = &head->next;
59 }
60 
61 /*
62  * Is the specified rcu_batch structure empty?
63  */
rcu_batch_empty(struct rcu_batch * b)64 static inline bool rcu_batch_empty(struct rcu_batch *b)
65 {
66 	return b->tail == &b->head;
67 }
68 
69 /*
70  * Remove the callback at the head of the specified rcu_batch structure
71  * and return a pointer to it, or return NULL if the structure is empty.
72  */
rcu_batch_dequeue(struct rcu_batch * b)73 static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
74 {
75 	struct rcu_head *head;
76 
77 	if (rcu_batch_empty(b))
78 		return NULL;
79 
80 	head = b->head;
81 	b->head = head->next;
82 	if (b->tail == &head->next)
83 		rcu_batch_init(b);
84 
85 	return head;
86 }
87 
88 /*
89  * Move all callbacks from the rcu_batch structure specified by "from" to
90  * the structure specified by "to".
91  */
rcu_batch_move(struct rcu_batch * to,struct rcu_batch * from)92 static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
93 {
94 	if (!rcu_batch_empty(from)) {
95 		*to->tail = from->head;
96 		to->tail = from->tail;
97 		rcu_batch_init(from);
98 	}
99 }
100 
init_srcu_struct_fields(struct srcu_struct * sp)101 static int init_srcu_struct_fields(struct srcu_struct *sp)
102 {
103 	sp->completed = 0;
104 	spin_lock_init(&sp->queue_lock);
105 	sp->running = false;
106 	rcu_batch_init(&sp->batch_queue);
107 	rcu_batch_init(&sp->batch_check0);
108 	rcu_batch_init(&sp->batch_check1);
109 	rcu_batch_init(&sp->batch_done);
110 	INIT_DELAYED_WORK(&sp->work, process_srcu);
111 	sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
112 	return sp->per_cpu_ref ? 0 : -ENOMEM;
113 }
114 
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
116 
__init_srcu_struct(struct srcu_struct * sp,const char * name,struct lock_class_key * key)117 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
118 		       struct lock_class_key *key)
119 {
120 	/* Don't re-initialize a lock while it is held. */
121 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
122 	lockdep_init_map(&sp->dep_map, name, key, 0);
123 	return init_srcu_struct_fields(sp);
124 }
125 EXPORT_SYMBOL_GPL(__init_srcu_struct);
126 
127 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
128 
129 /**
130  * init_srcu_struct - initialize a sleep-RCU structure
131  * @sp: structure to initialize.
132  *
133  * Must invoke this on a given srcu_struct before passing that srcu_struct
134  * to any other function.  Each srcu_struct represents a separate domain
135  * of SRCU protection.
136  */
init_srcu_struct(struct srcu_struct * sp)137 int init_srcu_struct(struct srcu_struct *sp)
138 {
139 	return init_srcu_struct_fields(sp);
140 }
141 EXPORT_SYMBOL_GPL(init_srcu_struct);
142 
143 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
144 
145 /*
146  * Returns approximate total of the readers' ->seq[] values for the
147  * rank of per-CPU counters specified by idx.
148  */
srcu_readers_seq_idx(struct srcu_struct * sp,int idx)149 static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
150 {
151 	int cpu;
152 	unsigned long sum = 0;
153 	unsigned long t;
154 
155 	for_each_possible_cpu(cpu) {
156 		t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
157 		sum += t;
158 	}
159 	return sum;
160 }
161 
162 /*
163  * Returns approximate number of readers active on the specified rank
164  * of the per-CPU ->c[] counters.
165  */
srcu_readers_active_idx(struct srcu_struct * sp,int idx)166 static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
167 {
168 	int cpu;
169 	unsigned long sum = 0;
170 	unsigned long t;
171 
172 	for_each_possible_cpu(cpu) {
173 		t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
174 		sum += t;
175 	}
176 	return sum;
177 }
178 
179 /*
180  * Return true if the number of pre-existing readers is determined to
181  * be stably zero.  An example unstable zero can occur if the call
182  * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
183  * but due to task migration, sees the corresponding __srcu_read_unlock()
184  * decrement.  This can happen because srcu_readers_active_idx() takes
185  * time to sum the array, and might in fact be interrupted or preempted
186  * partway through the summation.
187  */
srcu_readers_active_idx_check(struct srcu_struct * sp,int idx)188 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
189 {
190 	unsigned long seq;
191 
192 	seq = srcu_readers_seq_idx(sp, idx);
193 
194 	/*
195 	 * The following smp_mb() A pairs with the smp_mb() B located in
196 	 * __srcu_read_lock().  This pairing ensures that if an
197 	 * __srcu_read_lock() increments its counter after the summation
198 	 * in srcu_readers_active_idx(), then the corresponding SRCU read-side
199 	 * critical section will see any changes made prior to the start
200 	 * of the current SRCU grace period.
201 	 *
202 	 * Also, if the above call to srcu_readers_seq_idx() saw the
203 	 * increment of ->seq[], then the call to srcu_readers_active_idx()
204 	 * must see the increment of ->c[].
205 	 */
206 	smp_mb(); /* A */
207 
208 	/*
209 	 * Note that srcu_readers_active_idx() can incorrectly return
210 	 * zero even though there is a pre-existing reader throughout.
211 	 * To see this, suppose that task A is in a very long SRCU
212 	 * read-side critical section that started on CPU 0, and that
213 	 * no other reader exists, so that the sum of the counters
214 	 * is equal to one.  Then suppose that task B starts executing
215 	 * srcu_readers_active_idx(), summing up to CPU 1, and then that
216 	 * task C starts reading on CPU 0, so that its increment is not
217 	 * summed, but finishes reading on CPU 2, so that its decrement
218 	 * -is- summed.  Then when task B completes its sum, it will
219 	 * incorrectly get zero, despite the fact that task A has been
220 	 * in its SRCU read-side critical section the whole time.
221 	 *
222 	 * We therefore do a validation step should srcu_readers_active_idx()
223 	 * return zero.
224 	 */
225 	if (srcu_readers_active_idx(sp, idx) != 0)
226 		return false;
227 
228 	/*
229 	 * The remainder of this function is the validation step.
230 	 * The following smp_mb() D pairs with the smp_mb() C in
231 	 * __srcu_read_unlock().  If the __srcu_read_unlock() was seen
232 	 * by srcu_readers_active_idx() above, then any destructive
233 	 * operation performed after the grace period will happen after
234 	 * the corresponding SRCU read-side critical section.
235 	 *
236 	 * Note that there can be at most NR_CPUS worth of readers using
237 	 * the old index, which is not enough to overflow even a 32-bit
238 	 * integer.  (Yes, this does mean that systems having more than
239 	 * a billion or so CPUs need to be 64-bit systems.)  Therefore,
240 	 * the sum of the ->seq[] counters cannot possibly overflow.
241 	 * Therefore, the only way that the return values of the two
242 	 * calls to srcu_readers_seq_idx() can be equal is if there were
243 	 * no increments of the corresponding rank of ->seq[] counts
244 	 * in the interim.  But the missed-increment scenario laid out
245 	 * above includes an increment of the ->seq[] counter by
246 	 * the corresponding __srcu_read_lock().  Therefore, if this
247 	 * scenario occurs, the return values from the two calls to
248 	 * srcu_readers_seq_idx() will differ, and thus the validation
249 	 * step below suffices.
250 	 */
251 	smp_mb(); /* D */
252 
253 	return srcu_readers_seq_idx(sp, idx) == seq;
254 }
255 
256 /**
257  * srcu_readers_active - returns approximate number of readers.
258  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
259  *
260  * Note that this is not an atomic primitive, and can therefore suffer
261  * severe errors when invoked on an active srcu_struct.  That said, it
262  * can be useful as an error check at cleanup time.
263  */
srcu_readers_active(struct srcu_struct * sp)264 static int srcu_readers_active(struct srcu_struct *sp)
265 {
266 	int cpu;
267 	unsigned long sum = 0;
268 
269 	for_each_possible_cpu(cpu) {
270 		sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
271 		sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
272 	}
273 	return sum;
274 }
275 
276 /**
277  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
278  * @sp: structure to clean up.
279  *
280  * Must invoke this after you are finished using a given srcu_struct that
281  * was initialized via init_srcu_struct(), else you leak memory.
282  */
cleanup_srcu_struct(struct srcu_struct * sp)283 void cleanup_srcu_struct(struct srcu_struct *sp)
284 {
285 	if (WARN_ON(srcu_readers_active(sp)))
286 		return; /* Leakage unless caller handles error. */
287 	free_percpu(sp->per_cpu_ref);
288 	sp->per_cpu_ref = NULL;
289 }
290 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
291 
292 /*
293  * Counts the new reader in the appropriate per-CPU element of the
294  * srcu_struct.  Must be called from process context.
295  * Returns an index that must be passed to the matching srcu_read_unlock().
296  */
__srcu_read_lock(struct srcu_struct * sp)297 int __srcu_read_lock(struct srcu_struct *sp)
298 {
299 	int idx;
300 
301 	idx = ACCESS_ONCE(sp->completed) & 0x1;
302 	preempt_disable();
303 	ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) += 1;
304 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
305 	ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->seq[idx]) += 1;
306 	preempt_enable();
307 	return idx;
308 }
309 EXPORT_SYMBOL_GPL(__srcu_read_lock);
310 
311 /*
312  * Removes the count for the old reader from the appropriate per-CPU
313  * element of the srcu_struct.  Note that this may well be a different
314  * CPU than that which was incremented by the corresponding srcu_read_lock().
315  * Must be called from process context.
316  */
__srcu_read_unlock(struct srcu_struct * sp,int idx)317 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
318 {
319 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
320 	this_cpu_dec(sp->per_cpu_ref->c[idx]);
321 }
322 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
323 
324 /*
325  * We use an adaptive strategy for synchronize_srcu() and especially for
326  * synchronize_srcu_expedited().  We spin for a fixed time period
327  * (defined below) to allow SRCU readers to exit their read-side critical
328  * sections.  If there are still some readers after 10 microseconds,
329  * we repeatedly block for 1-millisecond time periods.  This approach
330  * has done well in testing, so there is no need for a config parameter.
331  */
332 #define SRCU_RETRY_CHECK_DELAY		5
333 #define SYNCHRONIZE_SRCU_TRYCOUNT	2
334 #define SYNCHRONIZE_SRCU_EXP_TRYCOUNT	12
335 
336 /*
337  * @@@ Wait until all pre-existing readers complete.  Such readers
338  * will have used the index specified by "idx".
339  * the caller should ensures the ->completed is not changed while checking
340  * and idx = (->completed & 1) ^ 1
341  */
try_check_zero(struct srcu_struct * sp,int idx,int trycount)342 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
343 {
344 	for (;;) {
345 		if (srcu_readers_active_idx_check(sp, idx))
346 			return true;
347 		if (--trycount <= 0)
348 			return false;
349 		udelay(SRCU_RETRY_CHECK_DELAY);
350 	}
351 }
352 
353 /*
354  * Increment the ->completed counter so that future SRCU readers will
355  * use the other rank of the ->c[] and ->seq[] arrays.  This allows
356  * us to wait for pre-existing readers in a starvation-free manner.
357  */
srcu_flip(struct srcu_struct * sp)358 static void srcu_flip(struct srcu_struct *sp)
359 {
360 	sp->completed++;
361 }
362 
363 /*
364  * Enqueue an SRCU callback on the specified srcu_struct structure,
365  * initiating grace-period processing if it is not already running.
366  */
call_srcu(struct srcu_struct * sp,struct rcu_head * head,void (* func)(struct rcu_head * head))367 void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
368 		void (*func)(struct rcu_head *head))
369 {
370 	unsigned long flags;
371 
372 	head->next = NULL;
373 	head->func = func;
374 	spin_lock_irqsave(&sp->queue_lock, flags);
375 	rcu_batch_queue(&sp->batch_queue, head);
376 	if (!sp->running) {
377 		sp->running = true;
378 		schedule_delayed_work(&sp->work, 0);
379 	}
380 	spin_unlock_irqrestore(&sp->queue_lock, flags);
381 }
382 EXPORT_SYMBOL_GPL(call_srcu);
383 
384 struct rcu_synchronize {
385 	struct rcu_head head;
386 	struct completion completion;
387 };
388 
389 /*
390  * Awaken the corresponding synchronize_srcu() instance now that a
391  * grace period has elapsed.
392  */
wakeme_after_rcu(struct rcu_head * head)393 static void wakeme_after_rcu(struct rcu_head *head)
394 {
395 	struct rcu_synchronize *rcu;
396 
397 	rcu = container_of(head, struct rcu_synchronize, head);
398 	complete(&rcu->completion);
399 }
400 
401 static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
402 static void srcu_reschedule(struct srcu_struct *sp);
403 
404 /*
405  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
406  */
__synchronize_srcu(struct srcu_struct * sp,int trycount)407 static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
408 {
409 	struct rcu_synchronize rcu;
410 	struct rcu_head *head = &rcu.head;
411 	bool done = false;
412 
413 	rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
414 			   !lock_is_held(&rcu_bh_lock_map) &&
415 			   !lock_is_held(&rcu_lock_map) &&
416 			   !lock_is_held(&rcu_sched_lock_map),
417 			   "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
418 
419 	might_sleep();
420 	init_completion(&rcu.completion);
421 
422 	head->next = NULL;
423 	head->func = wakeme_after_rcu;
424 	spin_lock_irq(&sp->queue_lock);
425 	if (!sp->running) {
426 		/* steal the processing owner */
427 		sp->running = true;
428 		rcu_batch_queue(&sp->batch_check0, head);
429 		spin_unlock_irq(&sp->queue_lock);
430 
431 		srcu_advance_batches(sp, trycount);
432 		if (!rcu_batch_empty(&sp->batch_done)) {
433 			BUG_ON(sp->batch_done.head != head);
434 			rcu_batch_dequeue(&sp->batch_done);
435 			done = true;
436 		}
437 		/* give the processing owner to work_struct */
438 		srcu_reschedule(sp);
439 	} else {
440 		rcu_batch_queue(&sp->batch_queue, head);
441 		spin_unlock_irq(&sp->queue_lock);
442 	}
443 
444 	if (!done)
445 		wait_for_completion(&rcu.completion);
446 }
447 
448 /**
449  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
450  * @sp: srcu_struct with which to synchronize.
451  *
452  * Wait for the count to drain to zero of both indexes. To avoid the
453  * possible starvation of synchronize_srcu(), it waits for the count of
454  * the index=((->completed & 1) ^ 1) to drain to zero at first,
455  * and then flip the completed and wait for the count of the other index.
456  *
457  * Can block; must be called from process context.
458  *
459  * Note that it is illegal to call synchronize_srcu() from the corresponding
460  * SRCU read-side critical section; doing so will result in deadlock.
461  * However, it is perfectly legal to call synchronize_srcu() on one
462  * srcu_struct from some other srcu_struct's read-side critical section.
463  */
synchronize_srcu(struct srcu_struct * sp)464 void synchronize_srcu(struct srcu_struct *sp)
465 {
466 	__synchronize_srcu(sp, rcu_expedited
467 			   ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
468 			   : SYNCHRONIZE_SRCU_TRYCOUNT);
469 }
470 EXPORT_SYMBOL_GPL(synchronize_srcu);
471 
472 /**
473  * synchronize_srcu_expedited - Brute-force SRCU grace period
474  * @sp: srcu_struct with which to synchronize.
475  *
476  * Wait for an SRCU grace period to elapse, but be more aggressive about
477  * spinning rather than blocking when waiting.
478  *
479  * Note that it is also illegal to call synchronize_srcu_expedited()
480  * from the corresponding SRCU read-side critical section;
481  * doing so will result in deadlock.  However, it is perfectly legal
482  * to call synchronize_srcu_expedited() on one srcu_struct from some
483  * other srcu_struct's read-side critical section, as long as
484  * the resulting graph of srcu_structs is acyclic.
485  */
synchronize_srcu_expedited(struct srcu_struct * sp)486 void synchronize_srcu_expedited(struct srcu_struct *sp)
487 {
488 	__synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
489 }
490 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
491 
492 /**
493  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
494  */
srcu_barrier(struct srcu_struct * sp)495 void srcu_barrier(struct srcu_struct *sp)
496 {
497 	synchronize_srcu(sp);
498 }
499 EXPORT_SYMBOL_GPL(srcu_barrier);
500 
501 /**
502  * srcu_batches_completed - return batches completed.
503  * @sp: srcu_struct on which to report batch completion.
504  *
505  * Report the number of batches, correlated with, but not necessarily
506  * precisely the same as, the number of grace periods that have elapsed.
507  */
srcu_batches_completed(struct srcu_struct * sp)508 long srcu_batches_completed(struct srcu_struct *sp)
509 {
510 	return sp->completed;
511 }
512 EXPORT_SYMBOL_GPL(srcu_batches_completed);
513 
514 #define SRCU_CALLBACK_BATCH	10
515 #define SRCU_INTERVAL		1
516 
517 /*
518  * Move any new SRCU callbacks to the first stage of the SRCU grace
519  * period pipeline.
520  */
srcu_collect_new(struct srcu_struct * sp)521 static void srcu_collect_new(struct srcu_struct *sp)
522 {
523 	if (!rcu_batch_empty(&sp->batch_queue)) {
524 		spin_lock_irq(&sp->queue_lock);
525 		rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
526 		spin_unlock_irq(&sp->queue_lock);
527 	}
528 }
529 
530 /*
531  * Core SRCU state machine.  Advance callbacks from ->batch_check0 to
532  * ->batch_check1 and then to ->batch_done as readers drain.
533  */
srcu_advance_batches(struct srcu_struct * sp,int trycount)534 static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
535 {
536 	int idx = 1 ^ (sp->completed & 1);
537 
538 	/*
539 	 * Because readers might be delayed for an extended period after
540 	 * fetching ->completed for their index, at any point in time there
541 	 * might well be readers using both idx=0 and idx=1.  We therefore
542 	 * need to wait for readers to clear from both index values before
543 	 * invoking a callback.
544 	 */
545 
546 	if (rcu_batch_empty(&sp->batch_check0) &&
547 	    rcu_batch_empty(&sp->batch_check1))
548 		return; /* no callbacks need to be advanced */
549 
550 	if (!try_check_zero(sp, idx, trycount))
551 		return; /* failed to advance, will try after SRCU_INTERVAL */
552 
553 	/*
554 	 * The callbacks in ->batch_check1 have already done with their
555 	 * first zero check and flip back when they were enqueued on
556 	 * ->batch_check0 in a previous invocation of srcu_advance_batches().
557 	 * (Presumably try_check_zero() returned false during that
558 	 * invocation, leaving the callbacks stranded on ->batch_check1.)
559 	 * They are therefore ready to invoke, so move them to ->batch_done.
560 	 */
561 	rcu_batch_move(&sp->batch_done, &sp->batch_check1);
562 
563 	if (rcu_batch_empty(&sp->batch_check0))
564 		return; /* no callbacks need to be advanced */
565 	srcu_flip(sp);
566 
567 	/*
568 	 * The callbacks in ->batch_check0 just finished their
569 	 * first check zero and flip, so move them to ->batch_check1
570 	 * for future checking on the other idx.
571 	 */
572 	rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
573 
574 	/*
575 	 * SRCU read-side critical sections are normally short, so check
576 	 * at least twice in quick succession after a flip.
577 	 */
578 	trycount = trycount < 2 ? 2 : trycount;
579 	if (!try_check_zero(sp, idx^1, trycount))
580 		return; /* failed to advance, will try after SRCU_INTERVAL */
581 
582 	/*
583 	 * The callbacks in ->batch_check1 have now waited for all
584 	 * pre-existing readers using both idx values.  They are therefore
585 	 * ready to invoke, so move them to ->batch_done.
586 	 */
587 	rcu_batch_move(&sp->batch_done, &sp->batch_check1);
588 }
589 
590 /*
591  * Invoke a limited number of SRCU callbacks that have passed through
592  * their grace period.  If there are more to do, SRCU will reschedule
593  * the workqueue.
594  */
srcu_invoke_callbacks(struct srcu_struct * sp)595 static void srcu_invoke_callbacks(struct srcu_struct *sp)
596 {
597 	int i;
598 	struct rcu_head *head;
599 
600 	for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
601 		head = rcu_batch_dequeue(&sp->batch_done);
602 		if (!head)
603 			break;
604 		local_bh_disable();
605 		head->func(head);
606 		local_bh_enable();
607 	}
608 }
609 
610 /*
611  * Finished one round of SRCU grace period.  Start another if there are
612  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
613  */
srcu_reschedule(struct srcu_struct * sp)614 static void srcu_reschedule(struct srcu_struct *sp)
615 {
616 	bool pending = true;
617 
618 	if (rcu_batch_empty(&sp->batch_done) &&
619 	    rcu_batch_empty(&sp->batch_check1) &&
620 	    rcu_batch_empty(&sp->batch_check0) &&
621 	    rcu_batch_empty(&sp->batch_queue)) {
622 		spin_lock_irq(&sp->queue_lock);
623 		if (rcu_batch_empty(&sp->batch_done) &&
624 		    rcu_batch_empty(&sp->batch_check1) &&
625 		    rcu_batch_empty(&sp->batch_check0) &&
626 		    rcu_batch_empty(&sp->batch_queue)) {
627 			sp->running = false;
628 			pending = false;
629 		}
630 		spin_unlock_irq(&sp->queue_lock);
631 	}
632 
633 	if (pending)
634 		schedule_delayed_work(&sp->work, SRCU_INTERVAL);
635 }
636 
637 /*
638  * This is the work-queue function that handles SRCU grace periods.
639  */
process_srcu(struct work_struct * work)640 void process_srcu(struct work_struct *work)
641 {
642 	struct srcu_struct *sp;
643 
644 	sp = container_of(work, struct srcu_struct, work.work);
645 
646 	srcu_collect_new(sp);
647 	srcu_advance_batches(sp, 1);
648 	srcu_invoke_callbacks(sp);
649 	srcu_reschedule(sp);
650 }
651 EXPORT_SYMBOL_GPL(process_srcu);
652