• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_address.h>
38 #include <linux/of_device.h>
39 
set_bits_ll(unsigned long * addr,unsigned long mask_to_set)40 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
41 {
42 	unsigned long val, nval;
43 
44 	nval = *addr;
45 	do {
46 		val = nval;
47 		if (val & mask_to_set)
48 			return -EBUSY;
49 		cpu_relax();
50 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
51 
52 	return 0;
53 }
54 
clear_bits_ll(unsigned long * addr,unsigned long mask_to_clear)55 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
56 {
57 	unsigned long val, nval;
58 
59 	nval = *addr;
60 	do {
61 		val = nval;
62 		if ((val & mask_to_clear) != mask_to_clear)
63 			return -EBUSY;
64 		cpu_relax();
65 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
66 
67 	return 0;
68 }
69 
70 /*
71  * bitmap_set_ll - set the specified number of bits at the specified position
72  * @map: pointer to a bitmap
73  * @start: a bit position in @map
74  * @nr: number of bits to set
75  *
76  * Set @nr bits start from @start in @map lock-lessly. Several users
77  * can set/clear the same bitmap simultaneously without lock. If two
78  * users set the same bit, one user will return remain bits, otherwise
79  * return 0.
80  */
bitmap_set_ll(unsigned long * map,int start,int nr)81 static int bitmap_set_ll(unsigned long *map, int start, int nr)
82 {
83 	unsigned long *p = map + BIT_WORD(start);
84 	const int size = start + nr;
85 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
86 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
87 
88 	while (nr - bits_to_set >= 0) {
89 		if (set_bits_ll(p, mask_to_set))
90 			return nr;
91 		nr -= bits_to_set;
92 		bits_to_set = BITS_PER_LONG;
93 		mask_to_set = ~0UL;
94 		p++;
95 	}
96 	if (nr) {
97 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
98 		if (set_bits_ll(p, mask_to_set))
99 			return nr;
100 	}
101 
102 	return 0;
103 }
104 
105 /*
106  * bitmap_clear_ll - clear the specified number of bits at the specified position
107  * @map: pointer to a bitmap
108  * @start: a bit position in @map
109  * @nr: number of bits to set
110  *
111  * Clear @nr bits start from @start in @map lock-lessly. Several users
112  * can set/clear the same bitmap simultaneously without lock. If two
113  * users clear the same bit, one user will return remain bits,
114  * otherwise return 0.
115  */
bitmap_clear_ll(unsigned long * map,int start,int nr)116 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
117 {
118 	unsigned long *p = map + BIT_WORD(start);
119 	const int size = start + nr;
120 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
121 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
122 
123 	while (nr - bits_to_clear >= 0) {
124 		if (clear_bits_ll(p, mask_to_clear))
125 			return nr;
126 		nr -= bits_to_clear;
127 		bits_to_clear = BITS_PER_LONG;
128 		mask_to_clear = ~0UL;
129 		p++;
130 	}
131 	if (nr) {
132 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
133 		if (clear_bits_ll(p, mask_to_clear))
134 			return nr;
135 	}
136 
137 	return 0;
138 }
139 
140 /**
141  * gen_pool_create - create a new special memory pool
142  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
143  * @nid: node id of the node the pool structure should be allocated on, or -1
144  *
145  * Create a new special memory pool that can be used to manage special purpose
146  * memory not managed by the regular kmalloc/kfree interface.
147  */
gen_pool_create(int min_alloc_order,int nid)148 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
149 {
150 	struct gen_pool *pool;
151 
152 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
153 	if (pool != NULL) {
154 		spin_lock_init(&pool->lock);
155 		INIT_LIST_HEAD(&pool->chunks);
156 		pool->min_alloc_order = min_alloc_order;
157 		pool->algo = gen_pool_first_fit;
158 		pool->data = NULL;
159 	}
160 	return pool;
161 }
162 EXPORT_SYMBOL(gen_pool_create);
163 
164 /**
165  * gen_pool_add_virt - add a new chunk of special memory to the pool
166  * @pool: pool to add new memory chunk to
167  * @virt: virtual starting address of memory chunk to add to pool
168  * @phys: physical starting address of memory chunk to add to pool
169  * @size: size in bytes of the memory chunk to add to pool
170  * @nid: node id of the node the chunk structure and bitmap should be
171  *       allocated on, or -1
172  *
173  * Add a new chunk of special memory to the specified pool.
174  *
175  * Returns 0 on success or a -ve errno on failure.
176  */
gen_pool_add_virt(struct gen_pool * pool,unsigned long virt,phys_addr_t phys,size_t size,int nid)177 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
178 		 size_t size, int nid)
179 {
180 	struct gen_pool_chunk *chunk;
181 	int nbits = size >> pool->min_alloc_order;
182 	int nbytes = sizeof(struct gen_pool_chunk) +
183 				BITS_TO_LONGS(nbits) * sizeof(long);
184 
185 	chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid);
186 	if (unlikely(chunk == NULL))
187 		return -ENOMEM;
188 
189 	chunk->phys_addr = phys;
190 	chunk->start_addr = virt;
191 	chunk->end_addr = virt + size;
192 	atomic_set(&chunk->avail, size);
193 
194 	spin_lock(&pool->lock);
195 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
196 	spin_unlock(&pool->lock);
197 
198 	return 0;
199 }
200 EXPORT_SYMBOL(gen_pool_add_virt);
201 
202 /**
203  * gen_pool_virt_to_phys - return the physical address of memory
204  * @pool: pool to allocate from
205  * @addr: starting address of memory
206  *
207  * Returns the physical address on success, or -1 on error.
208  */
gen_pool_virt_to_phys(struct gen_pool * pool,unsigned long addr)209 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
210 {
211 	struct gen_pool_chunk *chunk;
212 	phys_addr_t paddr = -1;
213 
214 	rcu_read_lock();
215 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
216 		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
217 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
218 			break;
219 		}
220 	}
221 	rcu_read_unlock();
222 
223 	return paddr;
224 }
225 EXPORT_SYMBOL(gen_pool_virt_to_phys);
226 
227 /**
228  * gen_pool_destroy - destroy a special memory pool
229  * @pool: pool to destroy
230  *
231  * Destroy the specified special memory pool. Verifies that there are no
232  * outstanding allocations.
233  */
gen_pool_destroy(struct gen_pool * pool)234 void gen_pool_destroy(struct gen_pool *pool)
235 {
236 	struct list_head *_chunk, *_next_chunk;
237 	struct gen_pool_chunk *chunk;
238 	int order = pool->min_alloc_order;
239 	int bit, end_bit;
240 
241 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
242 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
243 		list_del(&chunk->next_chunk);
244 
245 		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
246 		bit = find_next_bit(chunk->bits, end_bit, 0);
247 		BUG_ON(bit < end_bit);
248 
249 		kfree(chunk);
250 	}
251 	kfree(pool);
252 	return;
253 }
254 EXPORT_SYMBOL(gen_pool_destroy);
255 
256 /**
257  * gen_pool_alloc - allocate special memory from the pool
258  * @pool: pool to allocate from
259  * @size: number of bytes to allocate from the pool
260  *
261  * Allocate the requested number of bytes from the specified pool.
262  * Uses the pool allocation function (with first-fit algorithm by default).
263  * Can not be used in NMI handler on architectures without
264  * NMI-safe cmpxchg implementation.
265  */
gen_pool_alloc(struct gen_pool * pool,size_t size)266 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
267 {
268 	struct gen_pool_chunk *chunk;
269 	unsigned long addr = 0;
270 	int order = pool->min_alloc_order;
271 	int nbits, start_bit = 0, end_bit, remain;
272 
273 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
274 	BUG_ON(in_nmi());
275 #endif
276 
277 	if (size == 0)
278 		return 0;
279 
280 	nbits = (size + (1UL << order) - 1) >> order;
281 	rcu_read_lock();
282 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
283 		if (size > atomic_read(&chunk->avail))
284 			continue;
285 
286 		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
287 retry:
288 		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
289 				pool->data);
290 		if (start_bit >= end_bit)
291 			continue;
292 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
293 		if (remain) {
294 			remain = bitmap_clear_ll(chunk->bits, start_bit,
295 						 nbits - remain);
296 			BUG_ON(remain);
297 			goto retry;
298 		}
299 
300 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
301 		size = nbits << order;
302 		atomic_sub(size, &chunk->avail);
303 		break;
304 	}
305 	rcu_read_unlock();
306 	return addr;
307 }
308 EXPORT_SYMBOL(gen_pool_alloc);
309 
310 /**
311  * gen_pool_free - free allocated special memory back to the pool
312  * @pool: pool to free to
313  * @addr: starting address of memory to free back to pool
314  * @size: size in bytes of memory to free
315  *
316  * Free previously allocated special memory back to the specified
317  * pool.  Can not be used in NMI handler on architectures without
318  * NMI-safe cmpxchg implementation.
319  */
gen_pool_free(struct gen_pool * pool,unsigned long addr,size_t size)320 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
321 {
322 	struct gen_pool_chunk *chunk;
323 	int order = pool->min_alloc_order;
324 	int start_bit, nbits, remain;
325 
326 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
327 	BUG_ON(in_nmi());
328 #endif
329 
330 	nbits = (size + (1UL << order) - 1) >> order;
331 	rcu_read_lock();
332 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
333 		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
334 			BUG_ON(addr + size > chunk->end_addr);
335 			start_bit = (addr - chunk->start_addr) >> order;
336 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
337 			BUG_ON(remain);
338 			size = nbits << order;
339 			atomic_add(size, &chunk->avail);
340 			rcu_read_unlock();
341 			return;
342 		}
343 	}
344 	rcu_read_unlock();
345 	BUG();
346 }
347 EXPORT_SYMBOL(gen_pool_free);
348 
349 /**
350  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
351  * @pool:	the generic memory pool
352  * @func:	func to call
353  * @data:	additional data used by @func
354  *
355  * Call @func for every chunk of generic memory pool.  The @func is
356  * called with rcu_read_lock held.
357  */
gen_pool_for_each_chunk(struct gen_pool * pool,void (* func)(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data),void * data)358 void gen_pool_for_each_chunk(struct gen_pool *pool,
359 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
360 	void *data)
361 {
362 	struct gen_pool_chunk *chunk;
363 
364 	rcu_read_lock();
365 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
366 		func(pool, chunk, data);
367 	rcu_read_unlock();
368 }
369 EXPORT_SYMBOL(gen_pool_for_each_chunk);
370 
371 /**
372  * gen_pool_avail - get available free space of the pool
373  * @pool: pool to get available free space
374  *
375  * Return available free space of the specified pool.
376  */
gen_pool_avail(struct gen_pool * pool)377 size_t gen_pool_avail(struct gen_pool *pool)
378 {
379 	struct gen_pool_chunk *chunk;
380 	size_t avail = 0;
381 
382 	rcu_read_lock();
383 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
384 		avail += atomic_read(&chunk->avail);
385 	rcu_read_unlock();
386 	return avail;
387 }
388 EXPORT_SYMBOL_GPL(gen_pool_avail);
389 
390 /**
391  * gen_pool_size - get size in bytes of memory managed by the pool
392  * @pool: pool to get size
393  *
394  * Return size in bytes of memory managed by the pool.
395  */
gen_pool_size(struct gen_pool * pool)396 size_t gen_pool_size(struct gen_pool *pool)
397 {
398 	struct gen_pool_chunk *chunk;
399 	size_t size = 0;
400 
401 	rcu_read_lock();
402 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
403 		size += chunk->end_addr - chunk->start_addr;
404 	rcu_read_unlock();
405 	return size;
406 }
407 EXPORT_SYMBOL_GPL(gen_pool_size);
408 
409 /**
410  * gen_pool_set_algo - set the allocation algorithm
411  * @pool: pool to change allocation algorithm
412  * @algo: custom algorithm function
413  * @data: additional data used by @algo
414  *
415  * Call @algo for each memory allocation in the pool.
416  * If @algo is NULL use gen_pool_first_fit as default
417  * memory allocation function.
418  */
gen_pool_set_algo(struct gen_pool * pool,genpool_algo_t algo,void * data)419 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
420 {
421 	rcu_read_lock();
422 
423 	pool->algo = algo;
424 	if (!pool->algo)
425 		pool->algo = gen_pool_first_fit;
426 
427 	pool->data = data;
428 
429 	rcu_read_unlock();
430 }
431 EXPORT_SYMBOL(gen_pool_set_algo);
432 
433 /**
434  * gen_pool_first_fit - find the first available region
435  * of memory matching the size requirement (no alignment constraint)
436  * @map: The address to base the search on
437  * @size: The bitmap size in bits
438  * @start: The bitnumber to start searching at
439  * @nr: The number of zeroed bits we're looking for
440  * @data: additional data - unused
441  */
gen_pool_first_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data)442 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
443 		unsigned long start, unsigned int nr, void *data)
444 {
445 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
446 }
447 EXPORT_SYMBOL(gen_pool_first_fit);
448 
449 /**
450  * gen_pool_best_fit - find the best fitting region of memory
451  * macthing the size requirement (no alignment constraint)
452  * @map: The address to base the search on
453  * @size: The bitmap size in bits
454  * @start: The bitnumber to start searching at
455  * @nr: The number of zeroed bits we're looking for
456  * @data: additional data - unused
457  *
458  * Iterate over the bitmap to find the smallest free region
459  * which we can allocate the memory.
460  */
gen_pool_best_fit(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,void * data)461 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
462 		unsigned long start, unsigned int nr, void *data)
463 {
464 	unsigned long start_bit = size;
465 	unsigned long len = size + 1;
466 	unsigned long index;
467 
468 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
469 
470 	while (index < size) {
471 		int next_bit = find_next_bit(map, size, index + nr);
472 		if ((next_bit - index) < len) {
473 			len = next_bit - index;
474 			start_bit = index;
475 			if (len == nr)
476 				return start_bit;
477 		}
478 		index = bitmap_find_next_zero_area(map, size,
479 						   next_bit + 1, nr, 0);
480 	}
481 
482 	return start_bit;
483 }
484 EXPORT_SYMBOL(gen_pool_best_fit);
485 
devm_gen_pool_release(struct device * dev,void * res)486 static void devm_gen_pool_release(struct device *dev, void *res)
487 {
488 	gen_pool_destroy(*(struct gen_pool **)res);
489 }
490 
491 /**
492  * devm_gen_pool_create - managed gen_pool_create
493  * @dev: device that provides the gen_pool
494  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
495  * @nid: node id of the node the pool structure should be allocated on, or -1
496  *
497  * Create a new special memory pool that can be used to manage special purpose
498  * memory not managed by the regular kmalloc/kfree interface. The pool will be
499  * automatically destroyed by the device management code.
500  */
devm_gen_pool_create(struct device * dev,int min_alloc_order,int nid)501 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
502 		int nid)
503 {
504 	struct gen_pool **ptr, *pool;
505 
506 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
507 
508 	pool = gen_pool_create(min_alloc_order, nid);
509 	if (pool) {
510 		*ptr = pool;
511 		devres_add(dev, ptr);
512 	} else {
513 		devres_free(ptr);
514 	}
515 
516 	return pool;
517 }
518 
519 /**
520  * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
521  * @dev: device to retrieve the gen_pool from
522  * @name: Optional name for the gen_pool, usually NULL
523  *
524  * Returns the gen_pool for the device if one is present, or NULL.
525  */
dev_get_gen_pool(struct device * dev)526 struct gen_pool *dev_get_gen_pool(struct device *dev)
527 {
528 	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
529 					NULL);
530 
531 	if (!p)
532 		return NULL;
533 	return *p;
534 }
535 EXPORT_SYMBOL_GPL(dev_get_gen_pool);
536 
537 #ifdef CONFIG_OF
538 /**
539  * of_get_named_gen_pool - find a pool by phandle property
540  * @np: device node
541  * @propname: property name containing phandle(s)
542  * @index: index into the phandle array
543  *
544  * Returns the pool that contains the chunk starting at the physical
545  * address of the device tree node pointed at by the phandle property,
546  * or NULL if not found.
547  */
of_get_named_gen_pool(struct device_node * np,const char * propname,int index)548 struct gen_pool *of_get_named_gen_pool(struct device_node *np,
549 	const char *propname, int index)
550 {
551 	struct platform_device *pdev;
552 	struct device_node *np_pool;
553 
554 	np_pool = of_parse_phandle(np, propname, index);
555 	if (!np_pool)
556 		return NULL;
557 	pdev = of_find_device_by_node(np_pool);
558 	if (!pdev)
559 		return NULL;
560 	return dev_get_gen_pool(&pdev->dev);
561 }
562 EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
563 #endif /* CONFIG_OF */
564