• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define OFFSET(val,align) ((unsigned long)	\
42 	                   ( (val) & ( (align) - 1)))
43 
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 
46 /*
47  * Minimum IO TLB size to bother booting with.  Systems with mainly
48  * 64bit capable cards will only lightly use the swiotlb.  If we can't
49  * allocate a contiguous 1MB, we're probably in trouble anyway.
50  */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 
53 int swiotlb_force;
54 
55 /*
56  * Used to do a quick range check in swiotlb_tbl_unmap_single and
57  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58  * API.
59  */
60 static phys_addr_t io_tlb_start, io_tlb_end;
61 
62 /*
63  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
65  */
66 static unsigned long io_tlb_nslabs;
67 
68 /*
69  * When the IOMMU overflows we return a fallback buffer. This sets the size.
70  */
71 static unsigned long io_tlb_overflow = 32*1024;
72 
73 static phys_addr_t io_tlb_overflow_buffer;
74 
75 /*
76  * This is a free list describing the number of free entries available from
77  * each index
78  */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81 
82 /*
83  * We need to save away the original address corresponding to a mapped entry
84  * for the sync operations.
85  */
86 static phys_addr_t *io_tlb_orig_addr;
87 
88 /*
89  * Protect the above data structures in the map and unmap calls
90  */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92 
93 static int late_alloc;
94 
95 static int __init
setup_io_tlb_npages(char * str)96 setup_io_tlb_npages(char *str)
97 {
98 	if (isdigit(*str)) {
99 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 	}
103 	if (*str == ',')
104 		++str;
105 	if (!strcmp(str, "force"))
106 		swiotlb_force = 1;
107 
108 	return 0;
109 }
110 early_param("swiotlb", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112 
swiotlb_nr_tbl(void)113 unsigned long swiotlb_nr_tbl(void)
114 {
115 	return io_tlb_nslabs;
116 }
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
118 
119 /* default to 64MB */
120 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
swiotlb_size_or_default(void)121 unsigned long swiotlb_size_or_default(void)
122 {
123 	unsigned long size;
124 
125 	size = io_tlb_nslabs << IO_TLB_SHIFT;
126 
127 	return size ? size : (IO_TLB_DEFAULT_SIZE);
128 }
129 
130 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)131 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
132 				      volatile void *address)
133 {
134 	return phys_to_dma(hwdev, virt_to_phys(address));
135 }
136 
137 static bool no_iotlb_memory;
138 
swiotlb_print_info(void)139 void swiotlb_print_info(void)
140 {
141 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
142 	unsigned char *vstart, *vend;
143 
144 	if (no_iotlb_memory) {
145 		pr_warn("software IO TLB: No low mem\n");
146 		return;
147 	}
148 
149 	vstart = phys_to_virt(io_tlb_start);
150 	vend = phys_to_virt(io_tlb_end);
151 
152 	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
153 	       (unsigned long long)io_tlb_start,
154 	       (unsigned long long)io_tlb_end,
155 	       bytes >> 20, vstart, vend - 1);
156 }
157 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)158 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
159 {
160 	void *v_overflow_buffer;
161 	unsigned long i, bytes;
162 
163 	bytes = nslabs << IO_TLB_SHIFT;
164 
165 	io_tlb_nslabs = nslabs;
166 	io_tlb_start = __pa(tlb);
167 	io_tlb_end = io_tlb_start + bytes;
168 
169 	/*
170 	 * Get the overflow emergency buffer
171 	 */
172 	v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
173 						PAGE_ALIGN(io_tlb_overflow));
174 	if (!v_overflow_buffer)
175 		return -ENOMEM;
176 
177 	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
178 
179 	/*
180 	 * Allocate and initialize the free list array.  This array is used
181 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
182 	 * between io_tlb_start and io_tlb_end.
183 	 */
184 	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
185 	for (i = 0; i < io_tlb_nslabs; i++)
186  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
187 	io_tlb_index = 0;
188 	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
189 
190 	if (verbose)
191 		swiotlb_print_info();
192 
193 	return 0;
194 }
195 
196 /*
197  * Statically reserve bounce buffer space and initialize bounce buffer data
198  * structures for the software IO TLB used to implement the DMA API.
199  */
200 void  __init
swiotlb_init(int verbose)201 swiotlb_init(int verbose)
202 {
203 	size_t default_size = IO_TLB_DEFAULT_SIZE;
204 	unsigned char *vstart;
205 	unsigned long bytes;
206 
207 	if (!io_tlb_nslabs) {
208 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
209 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
210 	}
211 
212 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
213 
214 	/* Get IO TLB memory from the low pages */
215 	vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
216 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
217 		return;
218 
219 	if (io_tlb_start)
220 		free_bootmem(io_tlb_start,
221 				 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
222 	pr_warn("Cannot allocate SWIOTLB buffer");
223 	no_iotlb_memory = true;
224 }
225 
226 /*
227  * Systems with larger DMA zones (those that don't support ISA) can
228  * initialize the swiotlb later using the slab allocator if needed.
229  * This should be just like above, but with some error catching.
230  */
231 int
swiotlb_late_init_with_default_size(size_t default_size)232 swiotlb_late_init_with_default_size(size_t default_size)
233 {
234 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
235 	unsigned char *vstart = NULL;
236 	unsigned int order;
237 	int rc = 0;
238 
239 	if (!io_tlb_nslabs) {
240 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
241 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
242 	}
243 
244 	/*
245 	 * Get IO TLB memory from the low pages
246 	 */
247 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
248 	io_tlb_nslabs = SLABS_PER_PAGE << order;
249 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
250 
251 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
252 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
253 						  order);
254 		if (vstart)
255 			break;
256 		order--;
257 	}
258 
259 	if (!vstart) {
260 		io_tlb_nslabs = req_nslabs;
261 		return -ENOMEM;
262 	}
263 	if (order != get_order(bytes)) {
264 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
265 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
266 		io_tlb_nslabs = SLABS_PER_PAGE << order;
267 	}
268 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
269 	if (rc)
270 		free_pages((unsigned long)vstart, order);
271 	return rc;
272 }
273 
274 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)275 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
276 {
277 	unsigned long i, bytes;
278 	unsigned char *v_overflow_buffer;
279 
280 	bytes = nslabs << IO_TLB_SHIFT;
281 
282 	io_tlb_nslabs = nslabs;
283 	io_tlb_start = virt_to_phys(tlb);
284 	io_tlb_end = io_tlb_start + bytes;
285 
286 	memset(tlb, 0, bytes);
287 
288 	/*
289 	 * Get the overflow emergency buffer
290 	 */
291 	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
292 						     get_order(io_tlb_overflow));
293 	if (!v_overflow_buffer)
294 		goto cleanup2;
295 
296 	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
297 
298 	/*
299 	 * Allocate and initialize the free list array.  This array is used
300 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
301 	 * between io_tlb_start and io_tlb_end.
302 	 */
303 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
304 	                              get_order(io_tlb_nslabs * sizeof(int)));
305 	if (!io_tlb_list)
306 		goto cleanup3;
307 
308 	for (i = 0; i < io_tlb_nslabs; i++)
309  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
310 	io_tlb_index = 0;
311 
312 	io_tlb_orig_addr = (phys_addr_t *)
313 		__get_free_pages(GFP_KERNEL,
314 				 get_order(io_tlb_nslabs *
315 					   sizeof(phys_addr_t)));
316 	if (!io_tlb_orig_addr)
317 		goto cleanup4;
318 
319 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
320 
321 	swiotlb_print_info();
322 
323 	late_alloc = 1;
324 
325 	return 0;
326 
327 cleanup4:
328 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
329 	                                                 sizeof(int)));
330 	io_tlb_list = NULL;
331 cleanup3:
332 	free_pages((unsigned long)v_overflow_buffer,
333 		   get_order(io_tlb_overflow));
334 	io_tlb_overflow_buffer = 0;
335 cleanup2:
336 	io_tlb_end = 0;
337 	io_tlb_start = 0;
338 	io_tlb_nslabs = 0;
339 	return -ENOMEM;
340 }
341 
swiotlb_free(void)342 void __init swiotlb_free(void)
343 {
344 	if (!io_tlb_orig_addr)
345 		return;
346 
347 	if (late_alloc) {
348 		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
349 			   get_order(io_tlb_overflow));
350 		free_pages((unsigned long)io_tlb_orig_addr,
351 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
352 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
353 								 sizeof(int)));
354 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
355 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
356 	} else {
357 		free_bootmem_late(io_tlb_overflow_buffer,
358 				  PAGE_ALIGN(io_tlb_overflow));
359 		free_bootmem_late(__pa(io_tlb_orig_addr),
360 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
361 		free_bootmem_late(__pa(io_tlb_list),
362 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
363 		free_bootmem_late(io_tlb_start,
364 				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
365 	}
366 	io_tlb_nslabs = 0;
367 }
368 
is_swiotlb_buffer(phys_addr_t paddr)369 int is_swiotlb_buffer(phys_addr_t paddr)
370 {
371 	return paddr >= io_tlb_start && paddr < io_tlb_end;
372 }
373 
374 /*
375  * Bounce: copy the swiotlb buffer back to the original dma location
376  */
swiotlb_bounce(phys_addr_t orig_addr,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)377 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
378 			   size_t size, enum dma_data_direction dir)
379 {
380 	unsigned long pfn = PFN_DOWN(orig_addr);
381 	unsigned char *vaddr = phys_to_virt(tlb_addr);
382 
383 	if (PageHighMem(pfn_to_page(pfn))) {
384 		/* The buffer does not have a mapping.  Map it in and copy */
385 		unsigned int offset = orig_addr & ~PAGE_MASK;
386 		char *buffer;
387 		unsigned int sz = 0;
388 		unsigned long flags;
389 
390 		while (size) {
391 			sz = min_t(size_t, PAGE_SIZE - offset, size);
392 
393 			local_irq_save(flags);
394 			buffer = kmap_atomic(pfn_to_page(pfn));
395 			if (dir == DMA_TO_DEVICE)
396 				memcpy(vaddr, buffer + offset, sz);
397 			else
398 				memcpy(buffer + offset, vaddr, sz);
399 			kunmap_atomic(buffer);
400 			local_irq_restore(flags);
401 
402 			size -= sz;
403 			pfn++;
404 			vaddr += sz;
405 			offset = 0;
406 		}
407 	} else if (dir == DMA_TO_DEVICE) {
408 		memcpy(vaddr, phys_to_virt(orig_addr), size);
409 	} else {
410 		memcpy(phys_to_virt(orig_addr), vaddr, size);
411 	}
412 }
413 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t orig_addr,size_t size,enum dma_data_direction dir)414 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
415 				   dma_addr_t tbl_dma_addr,
416 				   phys_addr_t orig_addr, size_t size,
417 				   enum dma_data_direction dir)
418 {
419 	unsigned long flags;
420 	phys_addr_t tlb_addr;
421 	unsigned int nslots, stride, index, wrap;
422 	int i;
423 	unsigned long mask;
424 	unsigned long offset_slots;
425 	unsigned long max_slots;
426 
427 	if (no_iotlb_memory)
428 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
429 
430 	mask = dma_get_seg_boundary(hwdev);
431 
432 	tbl_dma_addr &= mask;
433 
434 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
435 
436 	/*
437  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
438  	 */
439 	max_slots = mask + 1
440 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
441 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
442 
443 	/*
444 	 * For mappings greater than a page, we limit the stride (and
445 	 * hence alignment) to a page size.
446 	 */
447 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
448 	if (size > PAGE_SIZE)
449 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
450 	else
451 		stride = 1;
452 
453 	BUG_ON(!nslots);
454 
455 	/*
456 	 * Find suitable number of IO TLB entries size that will fit this
457 	 * request and allocate a buffer from that IO TLB pool.
458 	 */
459 	spin_lock_irqsave(&io_tlb_lock, flags);
460 	index = ALIGN(io_tlb_index, stride);
461 	if (index >= io_tlb_nslabs)
462 		index = 0;
463 	wrap = index;
464 
465 	do {
466 		while (iommu_is_span_boundary(index, nslots, offset_slots,
467 					      max_slots)) {
468 			index += stride;
469 			if (index >= io_tlb_nslabs)
470 				index = 0;
471 			if (index == wrap)
472 				goto not_found;
473 		}
474 
475 		/*
476 		 * If we find a slot that indicates we have 'nslots' number of
477 		 * contiguous buffers, we allocate the buffers from that slot
478 		 * and mark the entries as '0' indicating unavailable.
479 		 */
480 		if (io_tlb_list[index] >= nslots) {
481 			int count = 0;
482 
483 			for (i = index; i < (int) (index + nslots); i++)
484 				io_tlb_list[i] = 0;
485 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
486 				io_tlb_list[i] = ++count;
487 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
488 
489 			/*
490 			 * Update the indices to avoid searching in the next
491 			 * round.
492 			 */
493 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
494 					? (index + nslots) : 0);
495 
496 			goto found;
497 		}
498 		index += stride;
499 		if (index >= io_tlb_nslabs)
500 			index = 0;
501 	} while (index != wrap);
502 
503 not_found:
504 	spin_unlock_irqrestore(&io_tlb_lock, flags);
505 	return SWIOTLB_MAP_ERROR;
506 found:
507 	spin_unlock_irqrestore(&io_tlb_lock, flags);
508 
509 	/*
510 	 * Save away the mapping from the original address to the DMA address.
511 	 * This is needed when we sync the memory.  Then we sync the buffer if
512 	 * needed.
513 	 */
514 	for (i = 0; i < nslots; i++)
515 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
516 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
517 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
518 
519 	return tlb_addr;
520 }
521 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
522 
523 /*
524  * Allocates bounce buffer and returns its kernel virtual address.
525  */
526 
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)527 phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
528 		       enum dma_data_direction dir)
529 {
530 	dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
531 
532 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
533 }
534 
535 /*
536  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
537  */
swiotlb_tbl_unmap_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)538 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
539 			      size_t size, enum dma_data_direction dir)
540 {
541 	unsigned long flags;
542 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
543 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
544 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
545 
546 	/*
547 	 * First, sync the memory before unmapping the entry
548 	 */
549 	if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
550 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
551 
552 	/*
553 	 * Return the buffer to the free list by setting the corresponding
554 	 * entries to indicate the number of contiguous entries available.
555 	 * While returning the entries to the free list, we merge the entries
556 	 * with slots below and above the pool being returned.
557 	 */
558 	spin_lock_irqsave(&io_tlb_lock, flags);
559 	{
560 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
561 			 io_tlb_list[index + nslots] : 0);
562 		/*
563 		 * Step 1: return the slots to the free list, merging the
564 		 * slots with superceeding slots
565 		 */
566 		for (i = index + nslots - 1; i >= index; i--)
567 			io_tlb_list[i] = ++count;
568 		/*
569 		 * Step 2: merge the returned slots with the preceding slots,
570 		 * if available (non zero)
571 		 */
572 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
573 			io_tlb_list[i] = ++count;
574 	}
575 	spin_unlock_irqrestore(&io_tlb_lock, flags);
576 }
577 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
578 
swiotlb_tbl_sync_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)579 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
580 			     size_t size, enum dma_data_direction dir,
581 			     enum dma_sync_target target)
582 {
583 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
584 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
585 
586 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
587 
588 	switch (target) {
589 	case SYNC_FOR_CPU:
590 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
591 			swiotlb_bounce(orig_addr, tlb_addr,
592 				       size, DMA_FROM_DEVICE);
593 		else
594 			BUG_ON(dir != DMA_TO_DEVICE);
595 		break;
596 	case SYNC_FOR_DEVICE:
597 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
598 			swiotlb_bounce(orig_addr, tlb_addr,
599 				       size, DMA_TO_DEVICE);
600 		else
601 			BUG_ON(dir != DMA_FROM_DEVICE);
602 		break;
603 	default:
604 		BUG();
605 	}
606 }
607 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
608 
609 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)610 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
611 		       dma_addr_t *dma_handle, gfp_t flags)
612 {
613 	dma_addr_t dev_addr;
614 	void *ret;
615 	int order = get_order(size);
616 	u64 dma_mask = DMA_BIT_MASK(32);
617 
618 	if (hwdev && hwdev->coherent_dma_mask)
619 		dma_mask = hwdev->coherent_dma_mask;
620 
621 	ret = (void *)__get_free_pages(flags, order);
622 	if (ret) {
623 		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
624 		if (dev_addr + size - 1 > dma_mask) {
625 			/*
626 			 * The allocated memory isn't reachable by the device.
627 			 */
628 			free_pages((unsigned long) ret, order);
629 			ret = NULL;
630 		}
631 	}
632 	if (!ret) {
633 		/*
634 		 * We are either out of memory or the device can't DMA to
635 		 * GFP_DMA memory; fall back on map_single(), which
636 		 * will grab memory from the lowest available address range.
637 		 */
638 		phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
639 		if (paddr == SWIOTLB_MAP_ERROR)
640 			return NULL;
641 
642 		ret = phys_to_virt(paddr);
643 		dev_addr = phys_to_dma(hwdev, paddr);
644 
645 		/* Confirm address can be DMA'd by device */
646 		if (dev_addr + size - 1 > dma_mask) {
647 			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
648 			       (unsigned long long)dma_mask,
649 			       (unsigned long long)dev_addr);
650 
651 			/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
652 			swiotlb_tbl_unmap_single(hwdev, paddr,
653 						 size, DMA_TO_DEVICE);
654 			return NULL;
655 		}
656 	}
657 
658 	*dma_handle = dev_addr;
659 	memset(ret, 0, size);
660 
661 	return ret;
662 }
663 EXPORT_SYMBOL(swiotlb_alloc_coherent);
664 
665 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)666 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
667 		      dma_addr_t dev_addr)
668 {
669 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
670 
671 	WARN_ON(irqs_disabled());
672 	if (!is_swiotlb_buffer(paddr))
673 		free_pages((unsigned long)vaddr, get_order(size));
674 	else
675 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
676 		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
677 }
678 EXPORT_SYMBOL(swiotlb_free_coherent);
679 
680 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)681 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
682 	     int do_panic)
683 {
684 	/*
685 	 * Ran out of IOMMU space for this operation. This is very bad.
686 	 * Unfortunately the drivers cannot handle this operation properly.
687 	 * unless they check for dma_mapping_error (most don't)
688 	 * When the mapping is small enough return a static buffer to limit
689 	 * the damage, or panic when the transfer is too big.
690 	 */
691 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
692 	       "device %s\n", size, dev ? dev_name(dev) : "?");
693 
694 	if (size <= io_tlb_overflow || !do_panic)
695 		return;
696 
697 	if (dir == DMA_BIDIRECTIONAL)
698 		panic("DMA: Random memory could be DMA accessed\n");
699 	if (dir == DMA_FROM_DEVICE)
700 		panic("DMA: Random memory could be DMA written\n");
701 	if (dir == DMA_TO_DEVICE)
702 		panic("DMA: Random memory could be DMA read\n");
703 }
704 
705 /*
706  * Map a single buffer of the indicated size for DMA in streaming mode.  The
707  * physical address to use is returned.
708  *
709  * Once the device is given the dma address, the device owns this memory until
710  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
711  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)712 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
713 			    unsigned long offset, size_t size,
714 			    enum dma_data_direction dir,
715 			    struct dma_attrs *attrs)
716 {
717 	phys_addr_t map, phys = page_to_phys(page) + offset;
718 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
719 
720 	BUG_ON(dir == DMA_NONE);
721 	/*
722 	 * If the address happens to be in the device's DMA window,
723 	 * we can safely return the device addr and not worry about bounce
724 	 * buffering it.
725 	 */
726 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
727 		return dev_addr;
728 
729 	/* Oh well, have to allocate and map a bounce buffer. */
730 	map = map_single(dev, phys, size, dir);
731 	if (map == SWIOTLB_MAP_ERROR) {
732 		swiotlb_full(dev, size, dir, 1);
733 		return phys_to_dma(dev, io_tlb_overflow_buffer);
734 	}
735 
736 	dev_addr = phys_to_dma(dev, map);
737 
738 	/* Ensure that the address returned is DMA'ble */
739 	if (!dma_capable(dev, dev_addr, size)) {
740 		swiotlb_tbl_unmap_single(dev, map, size, dir);
741 		return phys_to_dma(dev, io_tlb_overflow_buffer);
742 	}
743 
744 	return dev_addr;
745 }
746 EXPORT_SYMBOL_GPL(swiotlb_map_page);
747 
748 /*
749  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
750  * match what was provided for in a previous swiotlb_map_page call.  All
751  * other usages are undefined.
752  *
753  * After this call, reads by the cpu to the buffer are guaranteed to see
754  * whatever the device wrote there.
755  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)756 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
757 			 size_t size, enum dma_data_direction dir)
758 {
759 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
760 
761 	BUG_ON(dir == DMA_NONE);
762 
763 	if (is_swiotlb_buffer(paddr)) {
764 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
765 		return;
766 	}
767 
768 	if (dir != DMA_FROM_DEVICE)
769 		return;
770 
771 	/*
772 	 * phys_to_virt doesn't work with hihgmem page but we could
773 	 * call dma_mark_clean() with hihgmem page here. However, we
774 	 * are fine since dma_mark_clean() is null on POWERPC. We can
775 	 * make dma_mark_clean() take a physical address if necessary.
776 	 */
777 	dma_mark_clean(phys_to_virt(paddr), size);
778 }
779 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)780 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
781 			size_t size, enum dma_data_direction dir,
782 			struct dma_attrs *attrs)
783 {
784 	unmap_single(hwdev, dev_addr, size, dir);
785 }
786 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
787 
788 /*
789  * Make physical memory consistent for a single streaming mode DMA translation
790  * after a transfer.
791  *
792  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
793  * using the cpu, yet do not wish to teardown the dma mapping, you must
794  * call this function before doing so.  At the next point you give the dma
795  * address back to the card, you must first perform a
796  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
797  */
798 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)799 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
800 		    size_t size, enum dma_data_direction dir,
801 		    enum dma_sync_target target)
802 {
803 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
804 
805 	BUG_ON(dir == DMA_NONE);
806 
807 	if (is_swiotlb_buffer(paddr)) {
808 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
809 		return;
810 	}
811 
812 	if (dir != DMA_FROM_DEVICE)
813 		return;
814 
815 	dma_mark_clean(phys_to_virt(paddr), size);
816 }
817 
818 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)819 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
820 			    size_t size, enum dma_data_direction dir)
821 {
822 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
823 }
824 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
825 
826 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)827 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
828 			       size_t size, enum dma_data_direction dir)
829 {
830 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
831 }
832 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
833 
834 /*
835  * Map a set of buffers described by scatterlist in streaming mode for DMA.
836  * This is the scatter-gather version of the above swiotlb_map_page
837  * interface.  Here the scatter gather list elements are each tagged with the
838  * appropriate dma address and length.  They are obtained via
839  * sg_dma_{address,length}(SG).
840  *
841  * NOTE: An implementation may be able to use a smaller number of
842  *       DMA address/length pairs than there are SG table elements.
843  *       (for example via virtual mapping capabilities)
844  *       The routine returns the number of addr/length pairs actually
845  *       used, at most nents.
846  *
847  * Device ownership issues as mentioned above for swiotlb_map_page are the
848  * same here.
849  */
850 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)851 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
852 		     enum dma_data_direction dir, struct dma_attrs *attrs)
853 {
854 	struct scatterlist *sg;
855 	int i;
856 
857 	BUG_ON(dir == DMA_NONE);
858 
859 	for_each_sg(sgl, sg, nelems, i) {
860 		phys_addr_t paddr = sg_phys(sg);
861 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
862 
863 		if (swiotlb_force ||
864 		    !dma_capable(hwdev, dev_addr, sg->length)) {
865 			phys_addr_t map = map_single(hwdev, sg_phys(sg),
866 						     sg->length, dir);
867 			if (map == SWIOTLB_MAP_ERROR) {
868 				/* Don't panic here, we expect map_sg users
869 				   to do proper error handling. */
870 				swiotlb_full(hwdev, sg->length, dir, 0);
871 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
872 						       attrs);
873 				sgl[0].dma_length = 0;
874 				return 0;
875 			}
876 			sg->dma_address = phys_to_dma(hwdev, map);
877 		} else
878 			sg->dma_address = dev_addr;
879 		sg->dma_length = sg->length;
880 	}
881 	return nelems;
882 }
883 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
884 
885 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)886 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
887 	       enum dma_data_direction dir)
888 {
889 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
890 }
891 EXPORT_SYMBOL(swiotlb_map_sg);
892 
893 /*
894  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
895  * concerning calls here are the same as for swiotlb_unmap_page() above.
896  */
897 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)898 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
899 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
900 {
901 	struct scatterlist *sg;
902 	int i;
903 
904 	BUG_ON(dir == DMA_NONE);
905 
906 	for_each_sg(sgl, sg, nelems, i)
907 		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
908 
909 }
910 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
911 
912 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)913 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
914 		 enum dma_data_direction dir)
915 {
916 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
917 }
918 EXPORT_SYMBOL(swiotlb_unmap_sg);
919 
920 /*
921  * Make physical memory consistent for a set of streaming mode DMA translations
922  * after a transfer.
923  *
924  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
925  * and usage.
926  */
927 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)928 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
929 		int nelems, enum dma_data_direction dir,
930 		enum dma_sync_target target)
931 {
932 	struct scatterlist *sg;
933 	int i;
934 
935 	for_each_sg(sgl, sg, nelems, i)
936 		swiotlb_sync_single(hwdev, sg->dma_address,
937 				    sg->dma_length, dir, target);
938 }
939 
940 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)941 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
942 			int nelems, enum dma_data_direction dir)
943 {
944 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
945 }
946 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
947 
948 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)949 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
950 			   int nelems, enum dma_data_direction dir)
951 {
952 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
953 }
954 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
955 
956 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)957 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
958 {
959 	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
960 }
961 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
962 
963 /*
964  * Return whether the given device DMA address mask can be supported
965  * properly.  For example, if your device can only drive the low 24-bits
966  * during bus mastering, then you would pass 0x00ffffff as the mask to
967  * this function.
968  */
969 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)970 swiotlb_dma_supported(struct device *hwdev, u64 mask)
971 {
972 	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
973 }
974 EXPORT_SYMBOL(swiotlb_dma_supported);
975