• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  bootmem - A boot-time physical memory allocator and configurator
3  *
4  *  Copyright (C) 1999 Ingo Molnar
5  *                1999 Kanoj Sarcar, SGI
6  *                2008 Johannes Weiner
7  *
8  * Access to this subsystem has to be serialized externally (which is true
9  * for the boot process anyway).
10  */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/bug.h>
21 #include <asm/io.h>
22 #include <asm/processor.h>
23 
24 #include "internal.h"
25 
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 	.bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32 
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36 
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38 
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40 
41 static int bootmem_debug;
42 
bootmem_debug_setup(char * buf)43 static int __init bootmem_debug_setup(char *buf)
44 {
45 	bootmem_debug = 1;
46 	return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49 
50 #define bdebug(fmt, args...) ({				\
51 	if (unlikely(bootmem_debug))			\
52 		printk(KERN_INFO			\
53 			"bootmem::%s " fmt,		\
54 			__func__, ## args);		\
55 })
56 
bootmap_bytes(unsigned long pages)57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
60 
61 	return ALIGN(bytes, sizeof(long));
62 }
63 
64 /**
65  * bootmem_bootmap_pages - calculate bitmap size in pages
66  * @pages: number of pages the bitmap has to represent
67  */
bootmem_bootmap_pages(unsigned long pages)68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 	unsigned long bytes = bootmap_bytes(pages);
71 
72 	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74 
75 /*
76  * link bdata in order
77  */
link_bootmem(bootmem_data_t * bdata)78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 	bootmem_data_t *ent;
81 
82 	list_for_each_entry(ent, &bdata_list, list) {
83 		if (bdata->node_min_pfn < ent->node_min_pfn) {
84 			list_add_tail(&bdata->list, &ent->list);
85 			return;
86 		}
87 	}
88 
89 	list_add_tail(&bdata->list, &bdata_list);
90 }
91 
92 /*
93  * Called once to set up the allocator itself.
94  */
init_bootmem_core(bootmem_data_t * bdata,unsigned long mapstart,unsigned long start,unsigned long end)95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 	unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 	unsigned long mapsize;
99 
100 	mminit_validate_memmodel_limits(&start, &end);
101 	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 	bdata->node_min_pfn = start;
103 	bdata->node_low_pfn = end;
104 	link_bootmem(bdata);
105 
106 	/*
107 	 * Initially all pages are reserved - setup_arch() has to
108 	 * register free RAM areas explicitly.
109 	 */
110 	mapsize = bootmap_bytes(end - start);
111 	memset(bdata->node_bootmem_map, 0xff, mapsize);
112 
113 	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115 
116 	return mapsize;
117 }
118 
119 /**
120  * init_bootmem_node - register a node as boot memory
121  * @pgdat: node to register
122  * @freepfn: pfn where the bitmap for this node is to be placed
123  * @startpfn: first pfn on the node
124  * @endpfn: first pfn after the node
125  *
126  * Returns the number of bytes needed to hold the bitmap for this node.
127  */
init_bootmem_node(pg_data_t * pgdat,unsigned long freepfn,unsigned long startpfn,unsigned long endpfn)128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 				unsigned long startpfn, unsigned long endpfn)
130 {
131 	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133 
134 /**
135  * init_bootmem - register boot memory
136  * @start: pfn where the bitmap is to be placed
137  * @pages: number of available physical pages
138  *
139  * Returns the number of bytes needed to hold the bitmap.
140  */
init_bootmem(unsigned long start,unsigned long pages)141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 	max_low_pfn = pages;
144 	min_low_pfn = start;
145 	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147 
148 /*
149  * free_bootmem_late - free bootmem pages directly to page allocator
150  * @addr: starting physical address of the range
151  * @size: size of the range in bytes
152  *
153  * This is only useful when the bootmem allocator has already been torn
154  * down, but we are still initializing the system.  Pages are given directly
155  * to the page allocator, no bootmem metadata is updated because it is gone.
156  */
free_bootmem_late(unsigned long physaddr,unsigned long size)157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159 	unsigned long cursor, end;
160 
161 	kmemleak_free_part(__va(physaddr), size);
162 
163 	cursor = PFN_UP(physaddr);
164 	end = PFN_DOWN(physaddr + size);
165 
166 	for (; cursor < end; cursor++) {
167 		__free_pages_bootmem(pfn_to_page(cursor), 0);
168 		totalram_pages++;
169 	}
170 }
171 
free_all_bootmem_core(bootmem_data_t * bdata)172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 	struct page *page;
175 	unsigned long start, end, pages, count = 0;
176 
177 	if (!bdata->node_bootmem_map)
178 		return 0;
179 
180 	start = bdata->node_min_pfn;
181 	end = bdata->node_low_pfn;
182 
183 	bdebug("nid=%td start=%lx end=%lx\n",
184 		bdata - bootmem_node_data, start, end);
185 
186 	while (start < end) {
187 		unsigned long *map, idx, vec;
188 		unsigned shift;
189 
190 		map = bdata->node_bootmem_map;
191 		idx = start - bdata->node_min_pfn;
192 		shift = idx & (BITS_PER_LONG - 1);
193 		/*
194 		 * vec holds at most BITS_PER_LONG map bits,
195 		 * bit 0 corresponds to start.
196 		 */
197 		vec = ~map[idx / BITS_PER_LONG];
198 
199 		if (shift) {
200 			vec >>= shift;
201 			if (end - start >= BITS_PER_LONG)
202 				vec |= ~map[idx / BITS_PER_LONG + 1] <<
203 					(BITS_PER_LONG - shift);
204 		}
205 		/*
206 		 * If we have a properly aligned and fully unreserved
207 		 * BITS_PER_LONG block of pages in front of us, free
208 		 * it in one go.
209 		 */
210 		if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211 			int order = ilog2(BITS_PER_LONG);
212 
213 			__free_pages_bootmem(pfn_to_page(start), order);
214 			count += BITS_PER_LONG;
215 			start += BITS_PER_LONG;
216 		} else {
217 			unsigned long cur = start;
218 
219 			start = ALIGN(start + 1, BITS_PER_LONG);
220 			while (vec && cur != start) {
221 				if (vec & 1) {
222 					page = pfn_to_page(cur);
223 					__free_pages_bootmem(page, 0);
224 					count++;
225 				}
226 				vec >>= 1;
227 				++cur;
228 			}
229 		}
230 	}
231 
232 	page = virt_to_page(bdata->node_bootmem_map);
233 	pages = bdata->node_low_pfn - bdata->node_min_pfn;
234 	pages = bootmem_bootmap_pages(pages);
235 	count += pages;
236 	while (pages--)
237 		__free_pages_bootmem(page++, 0);
238 
239 	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
240 
241 	return count;
242 }
243 
reset_node_lowmem_managed_pages(pg_data_t * pgdat)244 static void reset_node_lowmem_managed_pages(pg_data_t *pgdat)
245 {
246 	struct zone *z;
247 
248 	/*
249 	 * In free_area_init_core(), highmem zone's managed_pages is set to
250 	 * present_pages, and bootmem allocator doesn't allocate from highmem
251 	 * zones. So there's no need to recalculate managed_pages because all
252 	 * highmem pages will be managed by the buddy system. Here highmem
253 	 * zone also includes highmem movable zone.
254 	 */
255 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
256 		if (!is_highmem(z))
257 			z->managed_pages = 0;
258 }
259 
260 /**
261  * free_all_bootmem_node - release a node's free pages to the buddy allocator
262  * @pgdat: node to be released
263  *
264  * Returns the number of pages actually released.
265  */
free_all_bootmem_node(pg_data_t * pgdat)266 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
267 {
268 	register_page_bootmem_info_node(pgdat);
269 	reset_node_lowmem_managed_pages(pgdat);
270 	return free_all_bootmem_core(pgdat->bdata);
271 }
272 
273 /**
274  * free_all_bootmem - release free pages to the buddy allocator
275  *
276  * Returns the number of pages actually released.
277  */
free_all_bootmem(void)278 unsigned long __init free_all_bootmem(void)
279 {
280 	unsigned long total_pages = 0;
281 	bootmem_data_t *bdata;
282 	struct pglist_data *pgdat;
283 
284 	for_each_online_pgdat(pgdat)
285 		reset_node_lowmem_managed_pages(pgdat);
286 
287 	list_for_each_entry(bdata, &bdata_list, list)
288 		total_pages += free_all_bootmem_core(bdata);
289 
290 	return total_pages;
291 }
292 
__free(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx)293 static void __init __free(bootmem_data_t *bdata,
294 			unsigned long sidx, unsigned long eidx)
295 {
296 	unsigned long idx;
297 
298 	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
299 		sidx + bdata->node_min_pfn,
300 		eidx + bdata->node_min_pfn);
301 
302 	if (bdata->hint_idx > sidx)
303 		bdata->hint_idx = sidx;
304 
305 	for (idx = sidx; idx < eidx; idx++)
306 		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
307 			BUG();
308 }
309 
__reserve(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx,int flags)310 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
311 			unsigned long eidx, int flags)
312 {
313 	unsigned long idx;
314 	int exclusive = flags & BOOTMEM_EXCLUSIVE;
315 
316 	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
317 		bdata - bootmem_node_data,
318 		sidx + bdata->node_min_pfn,
319 		eidx + bdata->node_min_pfn,
320 		flags);
321 
322 	for (idx = sidx; idx < eidx; idx++)
323 		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
324 			if (exclusive) {
325 				__free(bdata, sidx, idx);
326 				return -EBUSY;
327 			}
328 			bdebug("silent double reserve of PFN %lx\n",
329 				idx + bdata->node_min_pfn);
330 		}
331 	return 0;
332 }
333 
mark_bootmem_node(bootmem_data_t * bdata,unsigned long start,unsigned long end,int reserve,int flags)334 static int __init mark_bootmem_node(bootmem_data_t *bdata,
335 				unsigned long start, unsigned long end,
336 				int reserve, int flags)
337 {
338 	unsigned long sidx, eidx;
339 
340 	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
341 		bdata - bootmem_node_data, start, end, reserve, flags);
342 
343 	BUG_ON(start < bdata->node_min_pfn);
344 	BUG_ON(end > bdata->node_low_pfn);
345 
346 	sidx = start - bdata->node_min_pfn;
347 	eidx = end - bdata->node_min_pfn;
348 
349 	if (reserve)
350 		return __reserve(bdata, sidx, eidx, flags);
351 	else
352 		__free(bdata, sidx, eidx);
353 	return 0;
354 }
355 
mark_bootmem(unsigned long start,unsigned long end,int reserve,int flags)356 static int __init mark_bootmem(unsigned long start, unsigned long end,
357 				int reserve, int flags)
358 {
359 	unsigned long pos;
360 	bootmem_data_t *bdata;
361 
362 	pos = start;
363 	list_for_each_entry(bdata, &bdata_list, list) {
364 		int err;
365 		unsigned long max;
366 
367 		if (pos < bdata->node_min_pfn ||
368 		    pos >= bdata->node_low_pfn) {
369 			BUG_ON(pos != start);
370 			continue;
371 		}
372 
373 		max = min(bdata->node_low_pfn, end);
374 
375 		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
376 		if (reserve && err) {
377 			mark_bootmem(start, pos, 0, 0);
378 			return err;
379 		}
380 
381 		if (max == end)
382 			return 0;
383 		pos = bdata->node_low_pfn;
384 	}
385 	BUG();
386 }
387 
388 /**
389  * free_bootmem_node - mark a page range as usable
390  * @pgdat: node the range resides on
391  * @physaddr: starting address of the range
392  * @size: size of the range in bytes
393  *
394  * Partial pages will be considered reserved and left as they are.
395  *
396  * The range must reside completely on the specified node.
397  */
free_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size)398 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
399 			      unsigned long size)
400 {
401 	unsigned long start, end;
402 
403 	kmemleak_free_part(__va(physaddr), size);
404 
405 	start = PFN_UP(physaddr);
406 	end = PFN_DOWN(physaddr + size);
407 
408 	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
409 }
410 
411 /**
412  * free_bootmem - mark a page range as usable
413  * @addr: starting physical address of the range
414  * @size: size of the range in bytes
415  *
416  * Partial pages will be considered reserved and left as they are.
417  *
418  * The range must be contiguous but may span node boundaries.
419  */
free_bootmem(unsigned long physaddr,unsigned long size)420 void __init free_bootmem(unsigned long physaddr, unsigned long size)
421 {
422 	unsigned long start, end;
423 
424 	kmemleak_free_part(__va(physaddr), size);
425 
426 	start = PFN_UP(physaddr);
427 	end = PFN_DOWN(physaddr + size);
428 
429 	mark_bootmem(start, end, 0, 0);
430 }
431 
432 /**
433  * reserve_bootmem_node - mark a page range as reserved
434  * @pgdat: node the range resides on
435  * @physaddr: starting address of the range
436  * @size: size of the range in bytes
437  * @flags: reservation flags (see linux/bootmem.h)
438  *
439  * Partial pages will be reserved.
440  *
441  * The range must reside completely on the specified node.
442  */
reserve_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size,int flags)443 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
444 				 unsigned long size, int flags)
445 {
446 	unsigned long start, end;
447 
448 	start = PFN_DOWN(physaddr);
449 	end = PFN_UP(physaddr + size);
450 
451 	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
452 }
453 
454 /**
455  * reserve_bootmem - mark a page range as reserved
456  * @addr: starting address of the range
457  * @size: size of the range in bytes
458  * @flags: reservation flags (see linux/bootmem.h)
459  *
460  * Partial pages will be reserved.
461  *
462  * The range must be contiguous but may span node boundaries.
463  */
reserve_bootmem(unsigned long addr,unsigned long size,int flags)464 int __init reserve_bootmem(unsigned long addr, unsigned long size,
465 			    int flags)
466 {
467 	unsigned long start, end;
468 
469 	start = PFN_DOWN(addr);
470 	end = PFN_UP(addr + size);
471 
472 	return mark_bootmem(start, end, 1, flags);
473 }
474 
align_idx(struct bootmem_data * bdata,unsigned long idx,unsigned long step)475 static unsigned long __init align_idx(struct bootmem_data *bdata,
476 				      unsigned long idx, unsigned long step)
477 {
478 	unsigned long base = bdata->node_min_pfn;
479 
480 	/*
481 	 * Align the index with respect to the node start so that the
482 	 * combination of both satisfies the requested alignment.
483 	 */
484 
485 	return ALIGN(base + idx, step) - base;
486 }
487 
align_off(struct bootmem_data * bdata,unsigned long off,unsigned long align)488 static unsigned long __init align_off(struct bootmem_data *bdata,
489 				      unsigned long off, unsigned long align)
490 {
491 	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
492 
493 	/* Same as align_idx for byte offsets */
494 
495 	return ALIGN(base + off, align) - base;
496 }
497 
alloc_bootmem_bdata(struct bootmem_data * bdata,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)498 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
499 					unsigned long size, unsigned long align,
500 					unsigned long goal, unsigned long limit)
501 {
502 	unsigned long fallback = 0;
503 	unsigned long min, max, start, sidx, midx, step;
504 
505 	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
506 		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
507 		align, goal, limit);
508 
509 	BUG_ON(!size);
510 	BUG_ON(align & (align - 1));
511 	BUG_ON(limit && goal + size > limit);
512 
513 	if (!bdata->node_bootmem_map)
514 		return NULL;
515 
516 	min = bdata->node_min_pfn;
517 	max = bdata->node_low_pfn;
518 
519 	goal >>= PAGE_SHIFT;
520 	limit >>= PAGE_SHIFT;
521 
522 	if (limit && max > limit)
523 		max = limit;
524 	if (max <= min)
525 		return NULL;
526 
527 	step = max(align >> PAGE_SHIFT, 1UL);
528 
529 	if (goal && min < goal && goal < max)
530 		start = ALIGN(goal, step);
531 	else
532 		start = ALIGN(min, step);
533 
534 	sidx = start - bdata->node_min_pfn;
535 	midx = max - bdata->node_min_pfn;
536 
537 	if (bdata->hint_idx > sidx) {
538 		/*
539 		 * Handle the valid case of sidx being zero and still
540 		 * catch the fallback below.
541 		 */
542 		fallback = sidx + 1;
543 		sidx = align_idx(bdata, bdata->hint_idx, step);
544 	}
545 
546 	while (1) {
547 		int merge;
548 		void *region;
549 		unsigned long eidx, i, start_off, end_off;
550 find_block:
551 		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
552 		sidx = align_idx(bdata, sidx, step);
553 		eidx = sidx + PFN_UP(size);
554 
555 		if (sidx >= midx || eidx > midx)
556 			break;
557 
558 		for (i = sidx; i < eidx; i++)
559 			if (test_bit(i, bdata->node_bootmem_map)) {
560 				sidx = align_idx(bdata, i, step);
561 				if (sidx == i)
562 					sidx += step;
563 				goto find_block;
564 			}
565 
566 		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
567 				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
568 			start_off = align_off(bdata, bdata->last_end_off, align);
569 		else
570 			start_off = PFN_PHYS(sidx);
571 
572 		merge = PFN_DOWN(start_off) < sidx;
573 		end_off = start_off + size;
574 
575 		bdata->last_end_off = end_off;
576 		bdata->hint_idx = PFN_UP(end_off);
577 
578 		/*
579 		 * Reserve the area now:
580 		 */
581 		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
582 				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
583 			BUG();
584 
585 		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
586 				start_off);
587 		memset(region, 0, size);
588 		/*
589 		 * The min_count is set to 0 so that bootmem allocated blocks
590 		 * are never reported as leaks.
591 		 */
592 		kmemleak_alloc(region, size, 0, 0);
593 		return region;
594 	}
595 
596 	if (fallback) {
597 		sidx = align_idx(bdata, fallback - 1, step);
598 		fallback = 0;
599 		goto find_block;
600 	}
601 
602 	return NULL;
603 }
604 
alloc_bootmem_core(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)605 static void * __init alloc_bootmem_core(unsigned long size,
606 					unsigned long align,
607 					unsigned long goal,
608 					unsigned long limit)
609 {
610 	bootmem_data_t *bdata;
611 	void *region;
612 
613 	if (WARN_ON_ONCE(slab_is_available()))
614 		return kzalloc(size, GFP_NOWAIT);
615 
616 	list_for_each_entry(bdata, &bdata_list, list) {
617 		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
618 			continue;
619 		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
620 			break;
621 
622 		region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
623 		if (region)
624 			return region;
625 	}
626 
627 	return NULL;
628 }
629 
___alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)630 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
631 					      unsigned long align,
632 					      unsigned long goal,
633 					      unsigned long limit)
634 {
635 	void *ptr;
636 
637 restart:
638 	ptr = alloc_bootmem_core(size, align, goal, limit);
639 	if (ptr)
640 		return ptr;
641 	if (goal) {
642 		goal = 0;
643 		goto restart;
644 	}
645 
646 	return NULL;
647 }
648 
649 /**
650  * __alloc_bootmem_nopanic - allocate boot memory without panicking
651  * @size: size of the request in bytes
652  * @align: alignment of the region
653  * @goal: preferred starting address of the region
654  *
655  * The goal is dropped if it can not be satisfied and the allocation will
656  * fall back to memory below @goal.
657  *
658  * Allocation may happen on any node in the system.
659  *
660  * Returns NULL on failure.
661  */
__alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal)662 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
663 					unsigned long goal)
664 {
665 	unsigned long limit = 0;
666 
667 	return ___alloc_bootmem_nopanic(size, align, goal, limit);
668 }
669 
___alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)670 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
671 					unsigned long goal, unsigned long limit)
672 {
673 	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
674 
675 	if (mem)
676 		return mem;
677 	/*
678 	 * Whoops, we cannot satisfy the allocation request.
679 	 */
680 	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
681 	panic("Out of memory");
682 	return NULL;
683 }
684 
685 /**
686  * __alloc_bootmem - allocate boot memory
687  * @size: size of the request in bytes
688  * @align: alignment of the region
689  * @goal: preferred starting address of the region
690  *
691  * The goal is dropped if it can not be satisfied and the allocation will
692  * fall back to memory below @goal.
693  *
694  * Allocation may happen on any node in the system.
695  *
696  * The function panics if the request can not be satisfied.
697  */
__alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal)698 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
699 			      unsigned long goal)
700 {
701 	unsigned long limit = 0;
702 
703 	return ___alloc_bootmem(size, align, goal, limit);
704 }
705 
___alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)706 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
707 				unsigned long size, unsigned long align,
708 				unsigned long goal, unsigned long limit)
709 {
710 	void *ptr;
711 
712 	if (WARN_ON_ONCE(slab_is_available()))
713 		return kzalloc(size, GFP_NOWAIT);
714 again:
715 
716 	/* do not panic in alloc_bootmem_bdata() */
717 	if (limit && goal + size > limit)
718 		limit = 0;
719 
720 	ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
721 	if (ptr)
722 		return ptr;
723 
724 	ptr = alloc_bootmem_core(size, align, goal, limit);
725 	if (ptr)
726 		return ptr;
727 
728 	if (goal) {
729 		goal = 0;
730 		goto again;
731 	}
732 
733 	return NULL;
734 }
735 
__alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)736 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
737 				   unsigned long align, unsigned long goal)
738 {
739 	if (WARN_ON_ONCE(slab_is_available()))
740 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
741 
742 	return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
743 }
744 
___alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)745 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
746 				    unsigned long align, unsigned long goal,
747 				    unsigned long limit)
748 {
749 	void *ptr;
750 
751 	ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
752 	if (ptr)
753 		return ptr;
754 
755 	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
756 	panic("Out of memory");
757 	return NULL;
758 }
759 
760 /**
761  * __alloc_bootmem_node - allocate boot memory from a specific node
762  * @pgdat: node to allocate from
763  * @size: size of the request in bytes
764  * @align: alignment of the region
765  * @goal: preferred starting address of the region
766  *
767  * The goal is dropped if it can not be satisfied and the allocation will
768  * fall back to memory below @goal.
769  *
770  * Allocation may fall back to any node in the system if the specified node
771  * can not hold the requested memory.
772  *
773  * The function panics if the request can not be satisfied.
774  */
__alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)775 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
776 				   unsigned long align, unsigned long goal)
777 {
778 	if (WARN_ON_ONCE(slab_is_available()))
779 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
780 
781 	return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
782 }
783 
__alloc_bootmem_node_high(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)784 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
785 				   unsigned long align, unsigned long goal)
786 {
787 #ifdef MAX_DMA32_PFN
788 	unsigned long end_pfn;
789 
790 	if (WARN_ON_ONCE(slab_is_available()))
791 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
792 
793 	/* update goal according ...MAX_DMA32_PFN */
794 	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
795 
796 	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
797 	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
798 		void *ptr;
799 		unsigned long new_goal;
800 
801 		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
802 		ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
803 						 new_goal, 0);
804 		if (ptr)
805 			return ptr;
806 	}
807 #endif
808 
809 	return __alloc_bootmem_node(pgdat, size, align, goal);
810 
811 }
812 
813 #ifndef ARCH_LOW_ADDRESS_LIMIT
814 #define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
815 #endif
816 
817 /**
818  * __alloc_bootmem_low - allocate low boot memory
819  * @size: size of the request in bytes
820  * @align: alignment of the region
821  * @goal: preferred starting address of the region
822  *
823  * The goal is dropped if it can not be satisfied and the allocation will
824  * fall back to memory below @goal.
825  *
826  * Allocation may happen on any node in the system.
827  *
828  * The function panics if the request can not be satisfied.
829  */
__alloc_bootmem_low(unsigned long size,unsigned long align,unsigned long goal)830 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
831 				  unsigned long goal)
832 {
833 	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
834 }
835 
__alloc_bootmem_low_nopanic(unsigned long size,unsigned long align,unsigned long goal)836 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
837 					  unsigned long align,
838 					  unsigned long goal)
839 {
840 	return ___alloc_bootmem_nopanic(size, align, goal,
841 					ARCH_LOW_ADDRESS_LIMIT);
842 }
843 
844 /**
845  * __alloc_bootmem_low_node - allocate low boot memory from a specific node
846  * @pgdat: node to allocate from
847  * @size: size of the request in bytes
848  * @align: alignment of the region
849  * @goal: preferred starting address of the region
850  *
851  * The goal is dropped if it can not be satisfied and the allocation will
852  * fall back to memory below @goal.
853  *
854  * Allocation may fall back to any node in the system if the specified node
855  * can not hold the requested memory.
856  *
857  * The function panics if the request can not be satisfied.
858  */
__alloc_bootmem_low_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)859 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
860 				       unsigned long align, unsigned long goal)
861 {
862 	if (WARN_ON_ONCE(slab_is_available()))
863 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
864 
865 	return ___alloc_bootmem_node(pgdat, size, align,
866 				     goal, ARCH_LOW_ADDRESS_LIMIT);
867 }
868