1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
__delete_from_page_cache(struct page * page)115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
delete_from_page_cache(struct page * page)160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
sleep_on_page(void * word)179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
sleep_on_page_killable(void * word)185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
filemap_check_errors(struct address_space * mapping)191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200 }
201
202 /**
203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
206 * @end: offset in bytes where the range ends (inclusive)
207 * @sync_mode: enable synchronous operation
208 *
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213 * opposed to a regular memory cleansing writeback. The difference between
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
219 {
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
223 .nr_to_write = LONG_MAX,
224 .range_start = start,
225 .range_end = end,
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233 }
234
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237 {
238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
filemap_fdatawrite(struct address_space * mapping)241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 loff_t end)
249 {
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
filemap_flush(struct address_space * mapping)261 int filemap_flush(struct address_space *mapping)
262 {
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
272 *
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
275 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
278 {
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 struct pagevec pvec;
282 int nr_pages;
283 int ret2, ret = 0;
284
285 if (end_byte < start_byte)
286 goto out;
287
288 pagevec_init(&pvec, 0);
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
303 if (TestClearPageError(page))
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
309 out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
313
314 return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
filemap_fdatawait(struct address_space * mapping)325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
filemap_write_and_wait(struct address_space * mapping)336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 int err = 0;
339
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
353 } else {
354 err = filemap_check_errors(mapping);
355 }
356 return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
383 if (!err)
384 err = err2;
385 }
386 } else {
387 err = filemap_check_errors(mapping);
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 int error;
411
412 VM_BUG_ON(!PageLocked(old));
413 VM_BUG_ON(!PageLocked(new));
414 VM_BUG_ON(new->mapping);
415
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
429 __delete_from_page_cache(old);
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 }
444
445 return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450 * add_to_page_cache_locked - add a locked page to the pagecache
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
458 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
461 {
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
465 VM_BUG_ON(PageSwapBacked(page));
466
467 error = mem_cgroup_cache_charge(page, current->mm,
468 gfp_mask & GFP_RECLAIM_MASK);
469 if (error)
470 goto out;
471
472 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473 if (error == 0) {
474 page_cache_get(page);
475 page->mapping = mapping;
476 page->index = offset;
477
478 spin_lock_irq(&mapping->tree_lock);
479 error = radix_tree_insert(&mapping->page_tree, offset, page);
480 if (likely(!error)) {
481 mapping->nrpages++;
482 __inc_zone_page_state(page, NR_FILE_PAGES);
483 spin_unlock_irq(&mapping->tree_lock);
484 trace_mm_filemap_add_to_page_cache(page);
485 } else {
486 page->mapping = NULL;
487 /* Leave page->index set: truncation relies upon it */
488 spin_unlock_irq(&mapping->tree_lock);
489 mem_cgroup_uncharge_cache_page(page);
490 page_cache_release(page);
491 }
492 radix_tree_preload_end();
493 } else
494 mem_cgroup_uncharge_cache_page(page);
495 out:
496 return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501 pgoff_t offset, gfp_t gfp_mask)
502 {
503 int ret;
504
505 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506 if (ret == 0)
507 lru_cache_add_file(page);
508 return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515 int n;
516 struct page *page;
517
518 if (cpuset_do_page_mem_spread()) {
519 unsigned int cpuset_mems_cookie;
520 do {
521 cpuset_mems_cookie = get_mems_allowed();
522 n = cpuset_mem_spread_node();
523 page = alloc_pages_exact_node(n, gfp, 0);
524 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526 return page;
527 }
528 return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
542 */
page_waitqueue(struct page * page)543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 const struct zone *zone = page_zone(page);
546
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
wake_up_page(struct page * page,int bit)550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
wait_on_page_bit(struct page * page,int bit_nr)555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559 if (test_bit(bit_nr, &page->flags))
560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
wait_on_page_bit_killable(struct page * page,int bit_nr)565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
571
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
580 *
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
582 */
add_page_wait_queue(struct page * page,wait_queue_t * waiter)583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
587
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595 * unlock_page - unlock a locked page
596 * @page: the page
597 *
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602 *
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605 */
unlock_page(struct page * page)606 void unlock_page(struct page *page)
607 {
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616 * end_page_writeback - end writeback against a page
617 * @page: the page
618 */
end_page_writeback(struct page * page)619 void end_page_writeback(struct page *page)
620 {
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
623
624 if (!test_clear_page_writeback(page))
625 BUG();
626
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
635 */
__lock_page(struct page * page)636 void __lock_page(struct page *page)
637 {
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
__lock_page_killable(struct page * page)645 int __lock_page_killable(struct page *page)
646 {
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
656 {
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 /*
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
661 */
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
664
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
669 wait_on_page_locked(page);
670 return 0;
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
674
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
679 }
680 } else
681 __lock_page(page);
682 return 1;
683 }
684 }
685
686 /**
687 * page_cache_next_hole - find the next hole (not-present entry)
688 * @mapping: mapping
689 * @index: index
690 * @max_scan: maximum range to search
691 *
692 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
693 * lowest indexed hole.
694 *
695 * Returns: the index of the hole if found, otherwise returns an index
696 * outside of the set specified (in which case 'return - index >=
697 * max_scan' will be true). In rare cases of index wrap-around, 0 will
698 * be returned.
699 *
700 * page_cache_next_hole may be called under rcu_read_lock. However,
701 * like radix_tree_gang_lookup, this will not atomically search a
702 * snapshot of the tree at a single point in time. For example, if a
703 * hole is created at index 5, then subsequently a hole is created at
704 * index 10, page_cache_next_hole covering both indexes may return 10
705 * if called under rcu_read_lock.
706 */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)707 pgoff_t page_cache_next_hole(struct address_space *mapping,
708 pgoff_t index, unsigned long max_scan)
709 {
710 unsigned long i;
711
712 for (i = 0; i < max_scan; i++) {
713 struct page *page;
714
715 page = radix_tree_lookup(&mapping->page_tree, index);
716 if (!page || radix_tree_exceptional_entry(page))
717 break;
718 index++;
719 if (index == 0)
720 break;
721 }
722
723 return index;
724 }
725 EXPORT_SYMBOL(page_cache_next_hole);
726
727 /**
728 * find_get_page - find and get a page reference
729 * @mapping: the address_space to search
730 * @offset: the page index
731 *
732 * Is there a pagecache struct page at the given (mapping, offset) tuple?
733 * If yes, increment its refcount and return it; if no, return NULL.
734 */
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)735 struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset,
736 int fgp_flags)
737 {
738 void **pagep;
739 struct page *page;
740
741 rcu_read_lock();
742 repeat:
743 page = NULL;
744 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
745 if (pagep) {
746 page = radix_tree_deref_slot(pagep);
747 if (unlikely(!page))
748 goto out;
749 if (radix_tree_exception(page)) {
750 if (radix_tree_deref_retry(page))
751 goto repeat;
752 /*
753 * Otherwise, shmem/tmpfs must be storing a swap entry
754 * here as an exceptional entry: so return it without
755 * attempting to raise page count.
756 */
757 goto out;
758 }
759 if (!page_cache_get_speculative(page))
760 goto repeat;
761
762 /*
763 * Has the page moved?
764 * This is part of the lockless pagecache protocol. See
765 * include/linux/pagemap.h for details.
766 */
767 if (unlikely(page != *pagep)) {
768 page_cache_release(page);
769 goto repeat;
770 }
771 }
772 out:
773 if (page && (fgp_flags & FGP_ACCESSED))
774 mark_page_accessed(page);
775 rcu_read_unlock();
776
777 return page;
778 }
779 EXPORT_SYMBOL(find_get_page);
780
781 /**
782 * find_lock_page - locate, pin and lock a pagecache page
783 * @mapping: the address_space to search
784 * @offset: the page index
785 *
786 * Locates the desired pagecache page, locks it, increments its reference
787 * count and returns its address.
788 *
789 * Returns zero if the page was not present. find_lock_page() may sleep.
790 */
find_lock_page(struct address_space * mapping,pgoff_t offset)791 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
792 {
793 struct page *page;
794
795 repeat:
796 page = find_get_page(mapping, offset);
797 if (page && !radix_tree_exception(page)) {
798 lock_page(page);
799 /* Has the page been truncated? */
800 if (unlikely(page->mapping != mapping)) {
801 unlock_page(page);
802 page_cache_release(page);
803 goto repeat;
804 }
805 VM_BUG_ON(page->index != offset);
806 }
807 return page;
808 }
809 EXPORT_SYMBOL(find_lock_page);
810
811 /**
812 * find_or_create_page - locate or add a pagecache page
813 * @mapping: the page's address_space
814 * @index: the page's index into the mapping
815 * @gfp_mask: page allocation mode
816 *
817 * Locates a page in the pagecache. If the page is not present, a new page
818 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
819 * LRU list. The returned page is locked and has its reference count
820 * incremented.
821 *
822 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
823 * allocation!
824 *
825 * find_or_create_page() returns the desired page's address, or zero on
826 * memory exhaustion.
827 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)828 struct page *find_or_create_page(struct address_space *mapping,
829 pgoff_t index, gfp_t gfp_mask)
830 {
831 struct page *page;
832 int err;
833 repeat:
834 page = find_lock_page(mapping, index);
835 if (!page) {
836 page = __page_cache_alloc(gfp_mask);
837 if (!page)
838 return NULL;
839 /*
840 * We want a regular kernel memory (not highmem or DMA etc)
841 * allocation for the radix tree nodes, but we need to honour
842 * the context-specific requirements the caller has asked for.
843 * GFP_RECLAIM_MASK collects those requirements.
844 */
845 err = add_to_page_cache_lru(page, mapping, index,
846 (gfp_mask & GFP_RECLAIM_MASK));
847 if (unlikely(err)) {
848 page_cache_release(page);
849 page = NULL;
850 if (err == -EEXIST)
851 goto repeat;
852 }
853 }
854 return page;
855 }
856 EXPORT_SYMBOL(find_or_create_page);
857
858 /**
859 * find_get_pages - gang pagecache lookup
860 * @mapping: The address_space to search
861 * @start: The starting page index
862 * @nr_pages: The maximum number of pages
863 * @pages: Where the resulting pages are placed
864 *
865 * find_get_pages() will search for and return a group of up to
866 * @nr_pages pages in the mapping. The pages are placed at @pages.
867 * find_get_pages() takes a reference against the returned pages.
868 *
869 * The search returns a group of mapping-contiguous pages with ascending
870 * indexes. There may be holes in the indices due to not-present pages.
871 *
872 * find_get_pages() returns the number of pages which were found.
873 */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)874 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
875 unsigned int nr_pages, struct page **pages)
876 {
877 struct radix_tree_iter iter;
878 void **slot;
879 unsigned ret = 0;
880
881 if (unlikely(!nr_pages))
882 return 0;
883
884 rcu_read_lock();
885 restart:
886 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
887 struct page *page;
888 repeat:
889 page = radix_tree_deref_slot(slot);
890 if (unlikely(!page))
891 continue;
892
893 if (radix_tree_exception(page)) {
894 if (radix_tree_deref_retry(page)) {
895 /*
896 * Transient condition which can only trigger
897 * when entry at index 0 moves out of or back
898 * to root: none yet gotten, safe to restart.
899 */
900 WARN_ON(iter.index);
901 goto restart;
902 }
903 /*
904 * Otherwise, shmem/tmpfs must be storing a swap entry
905 * here as an exceptional entry: so skip over it -
906 * we only reach this from invalidate_mapping_pages().
907 */
908 continue;
909 }
910
911 if (!page_cache_get_speculative(page))
912 goto repeat;
913
914 /* Has the page moved? */
915 if (unlikely(page != *slot)) {
916 page_cache_release(page);
917 goto repeat;
918 }
919
920 pages[ret] = page;
921 if (++ret == nr_pages)
922 break;
923 }
924
925 rcu_read_unlock();
926 return ret;
927 }
928
929 /**
930 * find_get_pages_contig - gang contiguous pagecache lookup
931 * @mapping: The address_space to search
932 * @index: The starting page index
933 * @nr_pages: The maximum number of pages
934 * @pages: Where the resulting pages are placed
935 *
936 * find_get_pages_contig() works exactly like find_get_pages(), except
937 * that the returned number of pages are guaranteed to be contiguous.
938 *
939 * find_get_pages_contig() returns the number of pages which were found.
940 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)941 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
942 unsigned int nr_pages, struct page **pages)
943 {
944 struct radix_tree_iter iter;
945 void **slot;
946 unsigned int ret = 0;
947
948 if (unlikely(!nr_pages))
949 return 0;
950
951 rcu_read_lock();
952 restart:
953 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
954 struct page *page;
955 repeat:
956 page = radix_tree_deref_slot(slot);
957 /* The hole, there no reason to continue */
958 if (unlikely(!page))
959 break;
960
961 if (radix_tree_exception(page)) {
962 if (radix_tree_deref_retry(page)) {
963 /*
964 * Transient condition which can only trigger
965 * when entry at index 0 moves out of or back
966 * to root: none yet gotten, safe to restart.
967 */
968 goto restart;
969 }
970 /*
971 * Otherwise, shmem/tmpfs must be storing a swap entry
972 * here as an exceptional entry: so stop looking for
973 * contiguous pages.
974 */
975 break;
976 }
977
978 if (!page_cache_get_speculative(page))
979 goto repeat;
980
981 /* Has the page moved? */
982 if (unlikely(page != *slot)) {
983 page_cache_release(page);
984 goto repeat;
985 }
986
987 /*
988 * must check mapping and index after taking the ref.
989 * otherwise we can get both false positives and false
990 * negatives, which is just confusing to the caller.
991 */
992 if (page->mapping == NULL || page->index != iter.index) {
993 page_cache_release(page);
994 break;
995 }
996
997 pages[ret] = page;
998 if (++ret == nr_pages)
999 break;
1000 }
1001 rcu_read_unlock();
1002 return ret;
1003 }
1004 EXPORT_SYMBOL(find_get_pages_contig);
1005
1006 /**
1007 * find_get_pages_tag - find and return pages that match @tag
1008 * @mapping: the address_space to search
1009 * @index: the starting page index
1010 * @tag: the tag index
1011 * @nr_pages: the maximum number of pages
1012 * @pages: where the resulting pages are placed
1013 *
1014 * Like find_get_pages, except we only return pages which are tagged with
1015 * @tag. We update @index to index the next page for the traversal.
1016 */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)1017 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1018 int tag, unsigned int nr_pages, struct page **pages)
1019 {
1020 struct radix_tree_iter iter;
1021 void **slot;
1022 unsigned ret = 0;
1023
1024 if (unlikely(!nr_pages))
1025 return 0;
1026
1027 rcu_read_lock();
1028 restart:
1029 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1030 &iter, *index, tag) {
1031 struct page *page;
1032 repeat:
1033 page = radix_tree_deref_slot(slot);
1034 if (unlikely(!page))
1035 continue;
1036
1037 if (radix_tree_exception(page)) {
1038 if (radix_tree_deref_retry(page)) {
1039 /*
1040 * Transient condition which can only trigger
1041 * when entry at index 0 moves out of or back
1042 * to root: none yet gotten, safe to restart.
1043 */
1044 goto restart;
1045 }
1046 /*
1047 * This function is never used on a shmem/tmpfs
1048 * mapping, so a swap entry won't be found here.
1049 */
1050 BUG();
1051 }
1052
1053 if (!page_cache_get_speculative(page))
1054 goto repeat;
1055
1056 /* Has the page moved? */
1057 if (unlikely(page != *slot)) {
1058 page_cache_release(page);
1059 goto repeat;
1060 }
1061
1062 pages[ret] = page;
1063 if (++ret == nr_pages)
1064 break;
1065 }
1066
1067 rcu_read_unlock();
1068
1069 if (ret)
1070 *index = pages[ret - 1]->index + 1;
1071
1072 return ret;
1073 }
1074 EXPORT_SYMBOL(find_get_pages_tag);
1075
1076 /**
1077 * grab_cache_page_nowait - returns locked page at given index in given cache
1078 * @mapping: target address_space
1079 * @index: the page index
1080 *
1081 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1082 * This is intended for speculative data generators, where the data can
1083 * be regenerated if the page couldn't be grabbed. This routine should
1084 * be safe to call while holding the lock for another page.
1085 *
1086 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1087 * and deadlock against the caller's locked page.
1088 */
1089 struct page *
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)1090 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1091 {
1092 struct page *page = find_get_page(mapping, index);
1093
1094 if (page) {
1095 if (trylock_page(page))
1096 return page;
1097 page_cache_release(page);
1098 return NULL;
1099 }
1100 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1101 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1102 page_cache_release(page);
1103 page = NULL;
1104 }
1105 return page;
1106 }
1107 EXPORT_SYMBOL(grab_cache_page_nowait);
1108
1109 /*
1110 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1111 * a _large_ part of the i/o request. Imagine the worst scenario:
1112 *
1113 * ---R__________________________________________B__________
1114 * ^ reading here ^ bad block(assume 4k)
1115 *
1116 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1117 * => failing the whole request => read(R) => read(R+1) =>
1118 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1119 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1120 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1121 *
1122 * It is going insane. Fix it by quickly scaling down the readahead size.
1123 */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1124 static void shrink_readahead_size_eio(struct file *filp,
1125 struct file_ra_state *ra)
1126 {
1127 ra->ra_pages /= 4;
1128 }
1129
1130 /**
1131 * do_generic_file_read - generic file read routine
1132 * @filp: the file to read
1133 * @ppos: current file position
1134 * @desc: read_descriptor
1135 * @actor: read method
1136 *
1137 * This is a generic file read routine, and uses the
1138 * mapping->a_ops->readpage() function for the actual low-level stuff.
1139 *
1140 * This is really ugly. But the goto's actually try to clarify some
1141 * of the logic when it comes to error handling etc.
1142 */
do_generic_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1143 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1144 read_descriptor_t *desc, read_actor_t actor)
1145 {
1146 struct address_space *mapping = filp->f_mapping;
1147 struct inode *inode = mapping->host;
1148 struct file_ra_state *ra = &filp->f_ra;
1149 pgoff_t index;
1150 pgoff_t last_index;
1151 pgoff_t prev_index;
1152 unsigned long offset; /* offset into pagecache page */
1153 unsigned int prev_offset;
1154 int error;
1155
1156 trace_mm_filemap_do_generic_file_read(filp, *ppos, desc->count, 1);
1157
1158 index = *ppos >> PAGE_CACHE_SHIFT;
1159 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1160 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1161 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1162 offset = *ppos & ~PAGE_CACHE_MASK;
1163
1164 for (;;) {
1165 struct page *page;
1166 pgoff_t end_index;
1167 loff_t isize;
1168 unsigned long nr, ret;
1169
1170 cond_resched();
1171 find_page:
1172 page = find_get_page(mapping, index);
1173 if (!page) {
1174 page_cache_sync_readahead(mapping,
1175 ra, filp,
1176 index, last_index - index);
1177 page = find_get_page(mapping, index);
1178 if (unlikely(page == NULL))
1179 goto no_cached_page;
1180 }
1181 if (PageReadahead(page)) {
1182 page_cache_async_readahead(mapping,
1183 ra, filp, page,
1184 index, last_index - index);
1185 }
1186 if (!PageUptodate(page)) {
1187 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1188 !mapping->a_ops->is_partially_uptodate)
1189 goto page_not_up_to_date;
1190 if (!trylock_page(page))
1191 goto page_not_up_to_date;
1192 /* Did it get truncated before we got the lock? */
1193 if (!page->mapping)
1194 goto page_not_up_to_date_locked;
1195 if (!mapping->a_ops->is_partially_uptodate(page,
1196 desc, offset))
1197 goto page_not_up_to_date_locked;
1198 unlock_page(page);
1199 }
1200 page_ok:
1201 /*
1202 * i_size must be checked after we know the page is Uptodate.
1203 *
1204 * Checking i_size after the check allows us to calculate
1205 * the correct value for "nr", which means the zero-filled
1206 * part of the page is not copied back to userspace (unless
1207 * another truncate extends the file - this is desired though).
1208 */
1209
1210 isize = i_size_read(inode);
1211 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1212 if (unlikely(!isize || index > end_index)) {
1213 page_cache_release(page);
1214 goto out;
1215 }
1216
1217 /* nr is the maximum number of bytes to copy from this page */
1218 nr = PAGE_CACHE_SIZE;
1219 if (index == end_index) {
1220 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1221 if (nr <= offset) {
1222 page_cache_release(page);
1223 goto out;
1224 }
1225 }
1226 nr = nr - offset;
1227
1228 /* If users can be writing to this page using arbitrary
1229 * virtual addresses, take care about potential aliasing
1230 * before reading the page on the kernel side.
1231 */
1232 if (mapping_writably_mapped(mapping))
1233 flush_dcache_page(page);
1234
1235 /*
1236 * When a sequential read accesses a page several times,
1237 * only mark it as accessed the first time.
1238 */
1239 if (prev_index != index || offset != prev_offset)
1240 mark_page_accessed(page);
1241 prev_index = index;
1242
1243 /*
1244 * Ok, we have the page, and it's up-to-date, so
1245 * now we can copy it to user space...
1246 *
1247 * The actor routine returns how many bytes were actually used..
1248 * NOTE! This may not be the same as how much of a user buffer
1249 * we filled up (we may be padding etc), so we can only update
1250 * "pos" here (the actor routine has to update the user buffer
1251 * pointers and the remaining count).
1252 */
1253 ret = actor(desc, page, offset, nr);
1254 offset += ret;
1255 index += offset >> PAGE_CACHE_SHIFT;
1256 offset &= ~PAGE_CACHE_MASK;
1257 prev_offset = offset;
1258
1259 page_cache_release(page);
1260 if (ret == nr && desc->count)
1261 continue;
1262 goto out;
1263
1264 page_not_up_to_date:
1265 /* Get exclusive access to the page ... */
1266 error = lock_page_killable(page);
1267 if (unlikely(error))
1268 goto readpage_error;
1269
1270 page_not_up_to_date_locked:
1271 /* Did it get truncated before we got the lock? */
1272 if (!page->mapping) {
1273 unlock_page(page);
1274 page_cache_release(page);
1275 continue;
1276 }
1277
1278 /* Did somebody else fill it already? */
1279 if (PageUptodate(page)) {
1280 unlock_page(page);
1281 goto page_ok;
1282 }
1283
1284 readpage:
1285 /*
1286 * A previous I/O error may have been due to temporary
1287 * failures, eg. multipath errors.
1288 * PG_error will be set again if readpage fails.
1289 */
1290 ClearPageError(page);
1291 /* Start the actual read. The read will unlock the page. */
1292 error = mapping->a_ops->readpage(filp, page);
1293
1294 if (unlikely(error)) {
1295 if (error == AOP_TRUNCATED_PAGE) {
1296 page_cache_release(page);
1297 goto find_page;
1298 }
1299 goto readpage_error;
1300 }
1301
1302 if (!PageUptodate(page)) {
1303 error = lock_page_killable(page);
1304 if (unlikely(error))
1305 goto readpage_error;
1306 if (!PageUptodate(page)) {
1307 if (page->mapping == NULL) {
1308 /*
1309 * invalidate_mapping_pages got it
1310 */
1311 unlock_page(page);
1312 page_cache_release(page);
1313 goto find_page;
1314 }
1315 unlock_page(page);
1316 shrink_readahead_size_eio(filp, ra);
1317 error = -EIO;
1318 goto readpage_error;
1319 }
1320 unlock_page(page);
1321 }
1322
1323 goto page_ok;
1324
1325 readpage_error:
1326 /* UHHUH! A synchronous read error occurred. Report it */
1327 desc->error = error;
1328 page_cache_release(page);
1329 goto out;
1330
1331 no_cached_page:
1332 /*
1333 * Ok, it wasn't cached, so we need to create a new
1334 * page..
1335 */
1336 page = page_cache_alloc_cold(mapping);
1337 if (!page) {
1338 desc->error = -ENOMEM;
1339 goto out;
1340 }
1341 error = add_to_page_cache_lru(page, mapping,
1342 index, GFP_KERNEL);
1343 if (error) {
1344 page_cache_release(page);
1345 if (error == -EEXIST)
1346 goto find_page;
1347 desc->error = error;
1348 goto out;
1349 }
1350 goto readpage;
1351 }
1352
1353 out:
1354 ra->prev_pos = prev_index;
1355 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1356 ra->prev_pos |= prev_offset;
1357
1358 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1359 file_accessed(filp);
1360 }
1361
file_read_actor(read_descriptor_t * desc,struct page * page,unsigned long offset,unsigned long size)1362 int file_read_actor(read_descriptor_t *desc, struct page *page,
1363 unsigned long offset, unsigned long size)
1364 {
1365 char *kaddr;
1366 unsigned long left, count = desc->count;
1367
1368 if (size > count)
1369 size = count;
1370
1371 /*
1372 * Faults on the destination of a read are common, so do it before
1373 * taking the kmap.
1374 */
1375 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1376 kaddr = kmap_atomic(page);
1377 left = __copy_to_user_inatomic(desc->arg.buf,
1378 kaddr + offset, size);
1379 kunmap_atomic(kaddr);
1380 if (left == 0)
1381 goto success;
1382 }
1383
1384 /* Do it the slow way */
1385 kaddr = kmap(page);
1386 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1387 kunmap(page);
1388
1389 if (left) {
1390 size -= left;
1391 desc->error = -EFAULT;
1392 }
1393 success:
1394 desc->count = count - size;
1395 desc->written += size;
1396 desc->arg.buf += size;
1397 return size;
1398 }
1399
1400 /*
1401 * Performs necessary checks before doing a write
1402 * @iov: io vector request
1403 * @nr_segs: number of segments in the iovec
1404 * @count: number of bytes to write
1405 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1406 *
1407 * Adjust number of segments and amount of bytes to write (nr_segs should be
1408 * properly initialized first). Returns appropriate error code that caller
1409 * should return or zero in case that write should be allowed.
1410 */
generic_segment_checks(const struct iovec * iov,unsigned long * nr_segs,size_t * count,int access_flags)1411 int generic_segment_checks(const struct iovec *iov,
1412 unsigned long *nr_segs, size_t *count, int access_flags)
1413 {
1414 unsigned long seg;
1415 size_t cnt = 0;
1416 for (seg = 0; seg < *nr_segs; seg++) {
1417 const struct iovec *iv = &iov[seg];
1418
1419 /*
1420 * If any segment has a negative length, or the cumulative
1421 * length ever wraps negative then return -EINVAL.
1422 */
1423 cnt += iv->iov_len;
1424 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1425 return -EINVAL;
1426 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1427 continue;
1428 if (seg == 0)
1429 return -EFAULT;
1430 *nr_segs = seg;
1431 cnt -= iv->iov_len; /* This segment is no good */
1432 break;
1433 }
1434 *count = cnt;
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(generic_segment_checks);
1438
1439 /**
1440 * generic_file_aio_read - generic filesystem read routine
1441 * @iocb: kernel I/O control block
1442 * @iov: io vector request
1443 * @nr_segs: number of segments in the iovec
1444 * @pos: current file position
1445 *
1446 * This is the "read()" routine for all filesystems
1447 * that can use the page cache directly.
1448 */
1449 ssize_t
generic_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1450 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1451 unsigned long nr_segs, loff_t pos)
1452 {
1453 struct file *filp = iocb->ki_filp;
1454 ssize_t retval;
1455 unsigned long seg = 0;
1456 size_t count;
1457 loff_t *ppos = &iocb->ki_pos;
1458
1459 count = 0;
1460 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1461 if (retval)
1462 return retval;
1463
1464 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1465 if (filp->f_flags & O_DIRECT) {
1466 loff_t size;
1467 struct address_space *mapping;
1468 struct inode *inode;
1469
1470 mapping = filp->f_mapping;
1471 inode = mapping->host;
1472 if (!count)
1473 goto out; /* skip atime */
1474 size = i_size_read(inode);
1475 if (pos < size) {
1476 retval = filemap_write_and_wait_range(mapping, pos,
1477 pos + iov_length(iov, nr_segs) - 1);
1478 if (!retval) {
1479 retval = mapping->a_ops->direct_IO(READ, iocb,
1480 iov, pos, nr_segs);
1481 }
1482 if (retval > 0) {
1483 *ppos = pos + retval;
1484 count -= retval;
1485 }
1486
1487 /*
1488 * Btrfs can have a short DIO read if we encounter
1489 * compressed extents, so if there was an error, or if
1490 * we've already read everything we wanted to, or if
1491 * there was a short read because we hit EOF, go ahead
1492 * and return. Otherwise fallthrough to buffered io for
1493 * the rest of the read.
1494 */
1495 if (retval < 0 || !count || *ppos >= size) {
1496 file_accessed(filp);
1497 goto out;
1498 }
1499 }
1500 }
1501
1502 count = retval;
1503 for (seg = 0; seg < nr_segs; seg++) {
1504 read_descriptor_t desc;
1505 loff_t offset = 0;
1506
1507 /*
1508 * If we did a short DIO read we need to skip the section of the
1509 * iov that we've already read data into.
1510 */
1511 if (count) {
1512 if (count > iov[seg].iov_len) {
1513 count -= iov[seg].iov_len;
1514 continue;
1515 }
1516 offset = count;
1517 count = 0;
1518 }
1519
1520 desc.written = 0;
1521 desc.arg.buf = iov[seg].iov_base + offset;
1522 desc.count = iov[seg].iov_len - offset;
1523 if (desc.count == 0)
1524 continue;
1525 desc.error = 0;
1526 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1527 retval += desc.written;
1528 if (desc.error) {
1529 retval = retval ?: desc.error;
1530 break;
1531 }
1532 if (desc.count > 0)
1533 break;
1534 }
1535 out:
1536 return retval;
1537 }
1538 EXPORT_SYMBOL(generic_file_aio_read);
1539
1540 #ifdef CONFIG_MMU
1541 /**
1542 * page_cache_read - adds requested page to the page cache if not already there
1543 * @file: file to read
1544 * @offset: page index
1545 *
1546 * This adds the requested page to the page cache if it isn't already there,
1547 * and schedules an I/O to read in its contents from disk.
1548 */
page_cache_read(struct file * file,pgoff_t offset)1549 static int page_cache_read(struct file *file, pgoff_t offset)
1550 {
1551 struct address_space *mapping = file->f_mapping;
1552 struct page *page;
1553 int ret;
1554
1555 do {
1556 page = page_cache_alloc_cold(mapping);
1557 if (!page)
1558 return -ENOMEM;
1559
1560 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1561 if (ret == 0)
1562 ret = mapping->a_ops->readpage(file, page);
1563 else if (ret == -EEXIST)
1564 ret = 0; /* losing race to add is OK */
1565
1566 page_cache_release(page);
1567
1568 } while (ret == AOP_TRUNCATED_PAGE);
1569
1570 return ret;
1571 }
1572
1573 #define MMAP_LOTSAMISS (100)
1574
1575 /*
1576 * Synchronous readahead happens when we don't even find
1577 * a page in the page cache at all.
1578 */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)1579 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1580 struct file_ra_state *ra,
1581 struct file *file,
1582 pgoff_t offset)
1583 {
1584 unsigned long ra_pages;
1585 struct address_space *mapping = file->f_mapping;
1586
1587 /* If we don't want any read-ahead, don't bother */
1588 if (VM_RandomReadHint(vma))
1589 return;
1590 if (!ra->ra_pages)
1591 return;
1592
1593 if (VM_SequentialReadHint(vma)) {
1594 page_cache_sync_readahead(mapping, ra, file, offset,
1595 ra->ra_pages);
1596 return;
1597 }
1598
1599 /* Avoid banging the cache line if not needed */
1600 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1601 ra->mmap_miss++;
1602
1603 /*
1604 * Do we miss much more than hit in this file? If so,
1605 * stop bothering with read-ahead. It will only hurt.
1606 */
1607 if (ra->mmap_miss > MMAP_LOTSAMISS)
1608 return;
1609
1610 /*
1611 * mmap read-around
1612 */
1613 ra_pages = max_sane_readahead(ra->ra_pages);
1614 ra->start = max_t(long, 0, offset - ra_pages / 2);
1615 ra->size = ra_pages;
1616 ra->async_size = ra_pages / 4;
1617 ra_submit(ra, mapping, file);
1618 }
1619
1620 /*
1621 * Asynchronous readahead happens when we find the page and PG_readahead,
1622 * so we want to possibly extend the readahead further..
1623 */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)1624 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1625 struct file_ra_state *ra,
1626 struct file *file,
1627 struct page *page,
1628 pgoff_t offset)
1629 {
1630 struct address_space *mapping = file->f_mapping;
1631
1632 /* If we don't want any read-ahead, don't bother */
1633 if (VM_RandomReadHint(vma))
1634 return;
1635 if (ra->mmap_miss > 0)
1636 ra->mmap_miss--;
1637 if (PageReadahead(page))
1638 page_cache_async_readahead(mapping, ra, file,
1639 page, offset, ra->ra_pages);
1640 }
1641
1642 /**
1643 * filemap_fault - read in file data for page fault handling
1644 * @vma: vma in which the fault was taken
1645 * @vmf: struct vm_fault containing details of the fault
1646 *
1647 * filemap_fault() is invoked via the vma operations vector for a
1648 * mapped memory region to read in file data during a page fault.
1649 *
1650 * The goto's are kind of ugly, but this streamlines the normal case of having
1651 * it in the page cache, and handles the special cases reasonably without
1652 * having a lot of duplicated code.
1653 */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1654 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1655 {
1656 int error;
1657 struct file *file = vma->vm_file;
1658 struct address_space *mapping = file->f_mapping;
1659 struct file_ra_state *ra = &file->f_ra;
1660 struct inode *inode = mapping->host;
1661 pgoff_t offset = vmf->pgoff;
1662 struct page *page;
1663 pgoff_t size;
1664 int ret = 0;
1665
1666 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1667 if (offset >= size)
1668 return VM_FAULT_SIGBUS;
1669
1670 /*
1671 * Do we have something in the page cache already?
1672 */
1673 page = find_get_page(mapping, offset);
1674 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1675 /*
1676 * We found the page, so try async readahead before
1677 * waiting for the lock.
1678 */
1679 do_async_mmap_readahead(vma, ra, file, page, offset);
1680 } else if (!page) {
1681 /* No page in the page cache at all */
1682 do_sync_mmap_readahead(vma, ra, file, offset);
1683 count_vm_event(PGMAJFAULT);
1684 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1685 ret = VM_FAULT_MAJOR;
1686 retry_find:
1687 page = find_get_page(mapping, offset);
1688 if (!page)
1689 goto no_cached_page;
1690 }
1691
1692 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1693 page_cache_release(page);
1694 return ret | VM_FAULT_RETRY;
1695 }
1696
1697 /* Did it get truncated? */
1698 if (unlikely(page->mapping != mapping)) {
1699 unlock_page(page);
1700 put_page(page);
1701 goto retry_find;
1702 }
1703 VM_BUG_ON(page->index != offset);
1704
1705 /*
1706 * We have a locked page in the page cache, now we need to check
1707 * that it's up-to-date. If not, it is going to be due to an error.
1708 */
1709 if (unlikely(!PageUptodate(page)))
1710 goto page_not_uptodate;
1711
1712 /*
1713 * Found the page and have a reference on it.
1714 * We must recheck i_size under page lock.
1715 */
1716 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1717 if (unlikely(offset >= size)) {
1718 unlock_page(page);
1719 page_cache_release(page);
1720 return VM_FAULT_SIGBUS;
1721 }
1722
1723 vmf->page = page;
1724 return ret | VM_FAULT_LOCKED;
1725
1726 no_cached_page:
1727 /*
1728 * We're only likely to ever get here if MADV_RANDOM is in
1729 * effect.
1730 */
1731 error = page_cache_read(file, offset);
1732
1733 /*
1734 * The page we want has now been added to the page cache.
1735 * In the unlikely event that someone removed it in the
1736 * meantime, we'll just come back here and read it again.
1737 */
1738 if (error >= 0)
1739 goto retry_find;
1740
1741 /*
1742 * An error return from page_cache_read can result if the
1743 * system is low on memory, or a problem occurs while trying
1744 * to schedule I/O.
1745 */
1746 if (error == -ENOMEM)
1747 return VM_FAULT_OOM;
1748 return VM_FAULT_SIGBUS;
1749
1750 page_not_uptodate:
1751 /*
1752 * Umm, take care of errors if the page isn't up-to-date.
1753 * Try to re-read it _once_. We do this synchronously,
1754 * because there really aren't any performance issues here
1755 * and we need to check for errors.
1756 */
1757 ClearPageError(page);
1758 error = mapping->a_ops->readpage(file, page);
1759 if (!error) {
1760 wait_on_page_locked(page);
1761 if (!PageUptodate(page))
1762 error = -EIO;
1763 }
1764 page_cache_release(page);
1765
1766 if (!error || error == AOP_TRUNCATED_PAGE)
1767 goto retry_find;
1768
1769 /* Things didn't work out. Return zero to tell the mm layer so. */
1770 shrink_readahead_size_eio(file, ra);
1771 return VM_FAULT_SIGBUS;
1772 }
1773 EXPORT_SYMBOL(filemap_fault);
1774
filemap_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1775 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1776 {
1777 struct page *page = vmf->page;
1778 struct inode *inode = file_inode(vma->vm_file);
1779 int ret = VM_FAULT_LOCKED;
1780
1781 sb_start_pagefault(inode->i_sb);
1782 file_update_time(vma->vm_file);
1783 lock_page(page);
1784 if (page->mapping != inode->i_mapping) {
1785 unlock_page(page);
1786 ret = VM_FAULT_NOPAGE;
1787 goto out;
1788 }
1789 /*
1790 * We mark the page dirty already here so that when freeze is in
1791 * progress, we are guaranteed that writeback during freezing will
1792 * see the dirty page and writeprotect it again.
1793 */
1794 set_page_dirty(page);
1795 wait_for_stable_page(page);
1796 out:
1797 sb_end_pagefault(inode->i_sb);
1798 return ret;
1799 }
1800 EXPORT_SYMBOL(filemap_page_mkwrite);
1801
1802 const struct vm_operations_struct generic_file_vm_ops = {
1803 .fault = filemap_fault,
1804 .page_mkwrite = filemap_page_mkwrite,
1805 .remap_pages = generic_file_remap_pages,
1806 };
1807
1808 /* This is used for a general mmap of a disk file */
1809
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1810 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1811 {
1812 struct address_space *mapping = file->f_mapping;
1813
1814 if (!mapping->a_ops->readpage)
1815 return -ENOEXEC;
1816 file_accessed(file);
1817 vma->vm_ops = &generic_file_vm_ops;
1818 return 0;
1819 }
1820
1821 /*
1822 * This is for filesystems which do not implement ->writepage.
1823 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1824 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1825 {
1826 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1827 return -EINVAL;
1828 return generic_file_mmap(file, vma);
1829 }
1830 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1831 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1832 {
1833 return -ENOSYS;
1834 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1835 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1836 {
1837 return -ENOSYS;
1838 }
1839 #endif /* CONFIG_MMU */
1840
1841 EXPORT_SYMBOL(generic_file_mmap);
1842 EXPORT_SYMBOL(generic_file_readonly_mmap);
1843
__read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1844 static struct page *__read_cache_page(struct address_space *mapping,
1845 pgoff_t index,
1846 int (*filler)(void *, struct page *),
1847 void *data,
1848 gfp_t gfp)
1849 {
1850 struct page *page;
1851 int err;
1852 repeat:
1853 page = find_get_page(mapping, index);
1854 if (!page) {
1855 page = __page_cache_alloc(gfp | __GFP_COLD);
1856 if (!page)
1857 return ERR_PTR(-ENOMEM);
1858 err = add_to_page_cache_lru(page, mapping, index, gfp);
1859 if (unlikely(err)) {
1860 page_cache_release(page);
1861 if (err == -EEXIST)
1862 goto repeat;
1863 /* Presumably ENOMEM for radix tree node */
1864 return ERR_PTR(err);
1865 }
1866 err = filler(data, page);
1867 if (err < 0) {
1868 page_cache_release(page);
1869 page = ERR_PTR(err);
1870 }
1871 }
1872 return page;
1873 }
1874
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1875 static struct page *do_read_cache_page(struct address_space *mapping,
1876 pgoff_t index,
1877 int (*filler)(void *, struct page *),
1878 void *data,
1879 gfp_t gfp)
1880
1881 {
1882 struct page *page;
1883 int err;
1884
1885 retry:
1886 page = __read_cache_page(mapping, index, filler, data, gfp);
1887 if (IS_ERR(page))
1888 return page;
1889 if (PageUptodate(page))
1890 goto out;
1891
1892 lock_page(page);
1893 if (!page->mapping) {
1894 unlock_page(page);
1895 page_cache_release(page);
1896 goto retry;
1897 }
1898 if (PageUptodate(page)) {
1899 unlock_page(page);
1900 goto out;
1901 }
1902 err = filler(data, page);
1903 if (err < 0) {
1904 page_cache_release(page);
1905 return ERR_PTR(err);
1906 }
1907 out:
1908 mark_page_accessed(page);
1909 return page;
1910 }
1911
1912 /**
1913 * read_cache_page_async - read into page cache, fill it if needed
1914 * @mapping: the page's address_space
1915 * @index: the page index
1916 * @filler: function to perform the read
1917 * @data: first arg to filler(data, page) function, often left as NULL
1918 *
1919 * Same as read_cache_page, but don't wait for page to become unlocked
1920 * after submitting it to the filler.
1921 *
1922 * Read into the page cache. If a page already exists, and PageUptodate() is
1923 * not set, try to fill the page but don't wait for it to become unlocked.
1924 *
1925 * If the page does not get brought uptodate, return -EIO.
1926 */
read_cache_page_async(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1927 struct page *read_cache_page_async(struct address_space *mapping,
1928 pgoff_t index,
1929 int (*filler)(void *, struct page *),
1930 void *data)
1931 {
1932 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1933 }
1934 EXPORT_SYMBOL(read_cache_page_async);
1935
wait_on_page_read(struct page * page)1936 static struct page *wait_on_page_read(struct page *page)
1937 {
1938 if (!IS_ERR(page)) {
1939 wait_on_page_locked(page);
1940 if (!PageUptodate(page)) {
1941 page_cache_release(page);
1942 page = ERR_PTR(-EIO);
1943 }
1944 }
1945 return page;
1946 }
1947
1948 /**
1949 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1950 * @mapping: the page's address_space
1951 * @index: the page index
1952 * @gfp: the page allocator flags to use if allocating
1953 *
1954 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1955 * any new page allocations done using the specified allocation flags.
1956 *
1957 * If the page does not get brought uptodate, return -EIO.
1958 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)1959 struct page *read_cache_page_gfp(struct address_space *mapping,
1960 pgoff_t index,
1961 gfp_t gfp)
1962 {
1963 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1964
1965 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1966 }
1967 EXPORT_SYMBOL(read_cache_page_gfp);
1968
1969 /**
1970 * read_cache_page - read into page cache, fill it if needed
1971 * @mapping: the page's address_space
1972 * @index: the page index
1973 * @filler: function to perform the read
1974 * @data: first arg to filler(data, page) function, often left as NULL
1975 *
1976 * Read into the page cache. If a page already exists, and PageUptodate() is
1977 * not set, try to fill the page then wait for it to become unlocked.
1978 *
1979 * If the page does not get brought uptodate, return -EIO.
1980 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1981 struct page *read_cache_page(struct address_space *mapping,
1982 pgoff_t index,
1983 int (*filler)(void *, struct page *),
1984 void *data)
1985 {
1986 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1987 }
1988 EXPORT_SYMBOL(read_cache_page);
1989
__iovec_copy_from_user_inatomic(char * vaddr,const struct iovec * iov,size_t base,size_t bytes)1990 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1991 const struct iovec *iov, size_t base, size_t bytes)
1992 {
1993 size_t copied = 0, left = 0;
1994
1995 while (bytes) {
1996 char __user *buf = iov->iov_base + base;
1997 int copy = min(bytes, iov->iov_len - base);
1998
1999 base = 0;
2000 left = __copy_from_user_inatomic(vaddr, buf, copy);
2001 copied += copy;
2002 bytes -= copy;
2003 vaddr += copy;
2004 iov++;
2005
2006 if (unlikely(left))
2007 break;
2008 }
2009 return copied - left;
2010 }
2011
2012 /*
2013 * Copy as much as we can into the page and return the number of bytes which
2014 * were successfully copied. If a fault is encountered then return the number of
2015 * bytes which were copied.
2016 */
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)2017 size_t iov_iter_copy_from_user_atomic(struct page *page,
2018 struct iov_iter *i, unsigned long offset, size_t bytes)
2019 {
2020 char *kaddr;
2021 size_t copied;
2022
2023 BUG_ON(!in_atomic());
2024 kaddr = kmap_atomic(page);
2025 if (likely(i->nr_segs == 1)) {
2026 int left;
2027 char __user *buf = i->iov->iov_base + i->iov_offset;
2028 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2029 copied = bytes - left;
2030 } else {
2031 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2032 i->iov, i->iov_offset, bytes);
2033 }
2034 kunmap_atomic(kaddr);
2035
2036 return copied;
2037 }
2038 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2039
2040 /*
2041 * This has the same sideeffects and return value as
2042 * iov_iter_copy_from_user_atomic().
2043 * The difference is that it attempts to resolve faults.
2044 * Page must not be locked.
2045 */
iov_iter_copy_from_user(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)2046 size_t iov_iter_copy_from_user(struct page *page,
2047 struct iov_iter *i, unsigned long offset, size_t bytes)
2048 {
2049 char *kaddr;
2050 size_t copied;
2051
2052 kaddr = kmap(page);
2053 if (likely(i->nr_segs == 1)) {
2054 int left;
2055 char __user *buf = i->iov->iov_base + i->iov_offset;
2056 left = __copy_from_user(kaddr + offset, buf, bytes);
2057 copied = bytes - left;
2058 } else {
2059 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2060 i->iov, i->iov_offset, bytes);
2061 }
2062 kunmap(page);
2063 return copied;
2064 }
2065 EXPORT_SYMBOL(iov_iter_copy_from_user);
2066
iov_iter_advance(struct iov_iter * i,size_t bytes)2067 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2068 {
2069 BUG_ON(i->count < bytes);
2070
2071 if (likely(i->nr_segs == 1)) {
2072 i->iov_offset += bytes;
2073 i->count -= bytes;
2074 } else {
2075 const struct iovec *iov = i->iov;
2076 size_t base = i->iov_offset;
2077 unsigned long nr_segs = i->nr_segs;
2078
2079 /*
2080 * The !iov->iov_len check ensures we skip over unlikely
2081 * zero-length segments (without overruning the iovec).
2082 */
2083 while (bytes || unlikely(i->count && !iov->iov_len)) {
2084 int copy;
2085
2086 copy = min(bytes, iov->iov_len - base);
2087 BUG_ON(!i->count || i->count < copy);
2088 i->count -= copy;
2089 bytes -= copy;
2090 base += copy;
2091 if (iov->iov_len == base) {
2092 iov++;
2093 nr_segs--;
2094 base = 0;
2095 }
2096 }
2097 i->iov = iov;
2098 i->iov_offset = base;
2099 i->nr_segs = nr_segs;
2100 }
2101 }
2102 EXPORT_SYMBOL(iov_iter_advance);
2103
2104 /*
2105 * Fault in the first iovec of the given iov_iter, to a maximum length
2106 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2107 * accessed (ie. because it is an invalid address).
2108 *
2109 * writev-intensive code may want this to prefault several iovecs -- that
2110 * would be possible (callers must not rely on the fact that _only_ the
2111 * first iovec will be faulted with the current implementation).
2112 */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)2113 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2114 {
2115 char __user *buf = i->iov->iov_base + i->iov_offset;
2116 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2117 return fault_in_pages_readable(buf, bytes);
2118 }
2119 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2120
2121 /*
2122 * Return the count of just the current iov_iter segment.
2123 */
iov_iter_single_seg_count(const struct iov_iter * i)2124 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2125 {
2126 const struct iovec *iov = i->iov;
2127 if (i->nr_segs == 1)
2128 return i->count;
2129 else
2130 return min(i->count, iov->iov_len - i->iov_offset);
2131 }
2132 EXPORT_SYMBOL(iov_iter_single_seg_count);
2133
2134 /*
2135 * Performs necessary checks before doing a write
2136 *
2137 * Can adjust writing position or amount of bytes to write.
2138 * Returns appropriate error code that caller should return or
2139 * zero in case that write should be allowed.
2140 */
generic_write_checks(struct file * file,loff_t * pos,size_t * count,int isblk)2141 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2142 {
2143 struct inode *inode = file->f_mapping->host;
2144 unsigned long limit = rlimit(RLIMIT_FSIZE);
2145
2146 if (unlikely(*pos < 0))
2147 return -EINVAL;
2148
2149 if (!isblk) {
2150 /* FIXME: this is for backwards compatibility with 2.4 */
2151 if (file->f_flags & O_APPEND)
2152 *pos = i_size_read(inode);
2153
2154 if (limit != RLIM_INFINITY) {
2155 if (*pos >= limit) {
2156 send_sig(SIGXFSZ, current, 0);
2157 return -EFBIG;
2158 }
2159 if (*count > limit - (typeof(limit))*pos) {
2160 *count = limit - (typeof(limit))*pos;
2161 }
2162 }
2163 }
2164
2165 /*
2166 * LFS rule
2167 */
2168 if (unlikely(*pos + *count > MAX_NON_LFS &&
2169 !(file->f_flags & O_LARGEFILE))) {
2170 if (*pos >= MAX_NON_LFS) {
2171 return -EFBIG;
2172 }
2173 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2174 *count = MAX_NON_LFS - (unsigned long)*pos;
2175 }
2176 }
2177
2178 /*
2179 * Are we about to exceed the fs block limit ?
2180 *
2181 * If we have written data it becomes a short write. If we have
2182 * exceeded without writing data we send a signal and return EFBIG.
2183 * Linus frestrict idea will clean these up nicely..
2184 */
2185 if (likely(!isblk)) {
2186 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2187 if (*count || *pos > inode->i_sb->s_maxbytes) {
2188 return -EFBIG;
2189 }
2190 /* zero-length writes at ->s_maxbytes are OK */
2191 }
2192
2193 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2194 *count = inode->i_sb->s_maxbytes - *pos;
2195 } else {
2196 #ifdef CONFIG_BLOCK
2197 loff_t isize;
2198 if (bdev_read_only(I_BDEV(inode)))
2199 return -EPERM;
2200 isize = i_size_read(inode);
2201 if (*pos >= isize) {
2202 if (*count || *pos > isize)
2203 return -ENOSPC;
2204 }
2205
2206 if (*pos + *count > isize)
2207 *count = isize - *pos;
2208 #else
2209 return -EPERM;
2210 #endif
2211 }
2212 return 0;
2213 }
2214 EXPORT_SYMBOL(generic_write_checks);
2215
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2216 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned flags,
2218 struct page **pagep, void **fsdata)
2219 {
2220 const struct address_space_operations *aops = mapping->a_ops;
2221
2222 return aops->write_begin(file, mapping, pos, len, flags,
2223 pagep, fsdata);
2224 }
2225 EXPORT_SYMBOL(pagecache_write_begin);
2226
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2227 int pagecache_write_end(struct file *file, struct address_space *mapping,
2228 loff_t pos, unsigned len, unsigned copied,
2229 struct page *page, void *fsdata)
2230 {
2231 const struct address_space_operations *aops = mapping->a_ops;
2232
2233 mark_page_accessed(page);
2234 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2235 }
2236 EXPORT_SYMBOL(pagecache_write_end);
2237
2238 ssize_t
generic_file_direct_write(struct kiocb * iocb,const struct iovec * iov,unsigned long * nr_segs,loff_t pos,loff_t * ppos,size_t count,size_t ocount)2239 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2240 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2241 size_t count, size_t ocount)
2242 {
2243 struct file *file = iocb->ki_filp;
2244 struct address_space *mapping = file->f_mapping;
2245 struct inode *inode = mapping->host;
2246 ssize_t written;
2247 size_t write_len;
2248 pgoff_t end;
2249
2250 if (count != ocount)
2251 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2252
2253 write_len = iov_length(iov, *nr_segs);
2254 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2255
2256 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2257 if (written)
2258 goto out;
2259
2260 /*
2261 * After a write we want buffered reads to be sure to go to disk to get
2262 * the new data. We invalidate clean cached page from the region we're
2263 * about to write. We do this *before* the write so that we can return
2264 * without clobbering -EIOCBQUEUED from ->direct_IO().
2265 */
2266 if (mapping->nrpages) {
2267 written = invalidate_inode_pages2_range(mapping,
2268 pos >> PAGE_CACHE_SHIFT, end);
2269 /*
2270 * If a page can not be invalidated, return 0 to fall back
2271 * to buffered write.
2272 */
2273 if (written) {
2274 if (written == -EBUSY)
2275 return 0;
2276 goto out;
2277 }
2278 }
2279
2280 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2281
2282 /*
2283 * Finally, try again to invalidate clean pages which might have been
2284 * cached by non-direct readahead, or faulted in by get_user_pages()
2285 * if the source of the write was an mmap'ed region of the file
2286 * we're writing. Either one is a pretty crazy thing to do,
2287 * so we don't support it 100%. If this invalidation
2288 * fails, tough, the write still worked...
2289 */
2290 if (mapping->nrpages) {
2291 invalidate_inode_pages2_range(mapping,
2292 pos >> PAGE_CACHE_SHIFT, end);
2293 }
2294
2295 if (written > 0) {
2296 pos += written;
2297 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2298 i_size_write(inode, pos);
2299 mark_inode_dirty(inode);
2300 }
2301 *ppos = pos;
2302 }
2303 out:
2304 return written;
2305 }
2306 EXPORT_SYMBOL(generic_file_direct_write);
2307
2308 /*
2309 * Find or create a page at the given pagecache position. Return the locked
2310 * page. This function is specifically for buffered writes.
2311 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2312 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2313 pgoff_t index, unsigned flags)
2314 {
2315 int status;
2316 gfp_t gfp_mask;
2317 struct page *page;
2318 gfp_t gfp_notmask = 0;
2319
2320 gfp_mask = mapping_gfp_mask(mapping);
2321 if (mapping_cap_account_dirty(mapping))
2322 gfp_mask |= __GFP_WRITE;
2323 if (flags & AOP_FLAG_NOFS)
2324 gfp_notmask = __GFP_FS;
2325 repeat:
2326 page = find_lock_page(mapping, index);
2327 if (page)
2328 goto found;
2329
2330 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2331 if (!page)
2332 return NULL;
2333 status = add_to_page_cache_lru(page, mapping, index,
2334 GFP_KERNEL & ~gfp_notmask);
2335 if (unlikely(status)) {
2336 page_cache_release(page);
2337 if (status == -EEXIST)
2338 goto repeat;
2339 return NULL;
2340 }
2341 found:
2342 wait_for_stable_page(page);
2343 return page;
2344 }
2345 EXPORT_SYMBOL(grab_cache_page_write_begin);
2346
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2347 static ssize_t generic_perform_write(struct file *file,
2348 struct iov_iter *i, loff_t pos)
2349 {
2350 struct address_space *mapping = file->f_mapping;
2351 const struct address_space_operations *a_ops = mapping->a_ops;
2352 long status = 0;
2353 ssize_t written = 0;
2354 unsigned int flags = 0;
2355
2356 trace_mm_filemap_generic_perform_write(file, pos, iov_iter_count(i), 0);
2357
2358 /*
2359 * Copies from kernel address space cannot fail (NFSD is a big user).
2360 */
2361 if (segment_eq(get_fs(), KERNEL_DS))
2362 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2363
2364 do {
2365 struct page *page;
2366 unsigned long offset; /* Offset into pagecache page */
2367 unsigned long bytes; /* Bytes to write to page */
2368 size_t copied; /* Bytes copied from user */
2369 void *fsdata;
2370
2371 offset = (pos & (PAGE_CACHE_SIZE - 1));
2372 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2373 iov_iter_count(i));
2374
2375 again:
2376 /*
2377 * Bring in the user page that we will copy from _first_.
2378 * Otherwise there's a nasty deadlock on copying from the
2379 * same page as we're writing to, without it being marked
2380 * up-to-date.
2381 *
2382 * Not only is this an optimisation, but it is also required
2383 * to check that the address is actually valid, when atomic
2384 * usercopies are used, below.
2385 */
2386 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2387 status = -EFAULT;
2388 break;
2389 }
2390
2391 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2392 &page, &fsdata);
2393 if (unlikely(status))
2394 break;
2395
2396 if (mapping_writably_mapped(mapping))
2397 flush_dcache_page(page);
2398
2399 pagefault_disable();
2400 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2401 pagefault_enable();
2402 flush_dcache_page(page);
2403
2404 mark_page_accessed(page);
2405 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2406 page, fsdata);
2407 if (unlikely(status < 0))
2408 break;
2409 copied = status;
2410
2411 cond_resched();
2412
2413 iov_iter_advance(i, copied);
2414 if (unlikely(copied == 0)) {
2415 /*
2416 * If we were unable to copy any data at all, we must
2417 * fall back to a single segment length write.
2418 *
2419 * If we didn't fallback here, we could livelock
2420 * because not all segments in the iov can be copied at
2421 * once without a pagefault.
2422 */
2423 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2424 iov_iter_single_seg_count(i));
2425 goto again;
2426 }
2427 pos += copied;
2428 written += copied;
2429
2430 balance_dirty_pages_ratelimited(mapping);
2431 if (fatal_signal_pending(current)) {
2432 status = -EINTR;
2433 break;
2434 }
2435 } while (iov_iter_count(i));
2436
2437 return written ? written : status;
2438 }
2439
2440 ssize_t
generic_file_buffered_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos,loff_t * ppos,size_t count,ssize_t written)2441 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2442 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2443 size_t count, ssize_t written)
2444 {
2445 struct file *file = iocb->ki_filp;
2446 ssize_t status;
2447 struct iov_iter i;
2448
2449 iov_iter_init(&i, iov, nr_segs, count, written);
2450 status = generic_perform_write(file, &i, pos);
2451
2452 if (likely(status >= 0)) {
2453 written += status;
2454 *ppos = pos + status;
2455 }
2456
2457 return written ? written : status;
2458 }
2459 EXPORT_SYMBOL(generic_file_buffered_write);
2460
2461 /**
2462 * __generic_file_aio_write - write data to a file
2463 * @iocb: IO state structure (file, offset, etc.)
2464 * @iov: vector with data to write
2465 * @nr_segs: number of segments in the vector
2466 * @ppos: position where to write
2467 *
2468 * This function does all the work needed for actually writing data to a
2469 * file. It does all basic checks, removes SUID from the file, updates
2470 * modification times and calls proper subroutines depending on whether we
2471 * do direct IO or a standard buffered write.
2472 *
2473 * It expects i_mutex to be grabbed unless we work on a block device or similar
2474 * object which does not need locking at all.
2475 *
2476 * This function does *not* take care of syncing data in case of O_SYNC write.
2477 * A caller has to handle it. This is mainly due to the fact that we want to
2478 * avoid syncing under i_mutex.
2479 */
__generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t * ppos)2480 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2481 unsigned long nr_segs, loff_t *ppos)
2482 {
2483 struct file *file = iocb->ki_filp;
2484 struct address_space * mapping = file->f_mapping;
2485 size_t ocount; /* original count */
2486 size_t count; /* after file limit checks */
2487 struct inode *inode = mapping->host;
2488 loff_t pos;
2489 ssize_t written;
2490 ssize_t err;
2491
2492 ocount = 0;
2493 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2494 if (err)
2495 return err;
2496
2497 count = ocount;
2498 pos = *ppos;
2499
2500 /* We can write back this queue in page reclaim */
2501 current->backing_dev_info = mapping->backing_dev_info;
2502 written = 0;
2503
2504 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2505 if (err)
2506 goto out;
2507
2508 if (count == 0)
2509 goto out;
2510
2511 err = file_remove_suid(file);
2512 if (err)
2513 goto out;
2514
2515 err = file_update_time(file);
2516 if (err)
2517 goto out;
2518
2519 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2520 if (unlikely(file->f_flags & O_DIRECT)) {
2521 loff_t endbyte;
2522 ssize_t written_buffered;
2523
2524 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2525 ppos, count, ocount);
2526 if (written < 0 || written == count)
2527 goto out;
2528 /*
2529 * direct-io write to a hole: fall through to buffered I/O
2530 * for completing the rest of the request.
2531 */
2532 pos += written;
2533 count -= written;
2534 written_buffered = generic_file_buffered_write(iocb, iov,
2535 nr_segs, pos, ppos, count,
2536 written);
2537 /*
2538 * If generic_file_buffered_write() retuned a synchronous error
2539 * then we want to return the number of bytes which were
2540 * direct-written, or the error code if that was zero. Note
2541 * that this differs from normal direct-io semantics, which
2542 * will return -EFOO even if some bytes were written.
2543 */
2544 if (written_buffered < 0) {
2545 err = written_buffered;
2546 goto out;
2547 }
2548
2549 /*
2550 * We need to ensure that the page cache pages are written to
2551 * disk and invalidated to preserve the expected O_DIRECT
2552 * semantics.
2553 */
2554 endbyte = pos + written_buffered - written - 1;
2555 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2556 if (err == 0) {
2557 written = written_buffered;
2558 invalidate_mapping_pages(mapping,
2559 pos >> PAGE_CACHE_SHIFT,
2560 endbyte >> PAGE_CACHE_SHIFT);
2561 } else {
2562 /*
2563 * We don't know how much we wrote, so just return
2564 * the number of bytes which were direct-written
2565 */
2566 }
2567 } else {
2568 written = generic_file_buffered_write(iocb, iov, nr_segs,
2569 pos, ppos, count, written);
2570 }
2571 out:
2572 current->backing_dev_info = NULL;
2573 return written ? written : err;
2574 }
2575 EXPORT_SYMBOL(__generic_file_aio_write);
2576
2577 /**
2578 * generic_file_aio_write - write data to a file
2579 * @iocb: IO state structure
2580 * @iov: vector with data to write
2581 * @nr_segs: number of segments in the vector
2582 * @pos: position in file where to write
2583 *
2584 * This is a wrapper around __generic_file_aio_write() to be used by most
2585 * filesystems. It takes care of syncing the file in case of O_SYNC file
2586 * and acquires i_mutex as needed.
2587 */
generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2588 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2589 unsigned long nr_segs, loff_t pos)
2590 {
2591 struct file *file = iocb->ki_filp;
2592 struct inode *inode = file->f_mapping->host;
2593 ssize_t ret;
2594
2595 BUG_ON(iocb->ki_pos != pos);
2596
2597 mutex_lock(&inode->i_mutex);
2598 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2599 mutex_unlock(&inode->i_mutex);
2600
2601 if (ret > 0 || ret == -EIOCBQUEUED) {
2602 ssize_t err;
2603
2604 err = generic_write_sync(file, pos, ret);
2605 if (err < 0 && ret > 0)
2606 ret = err;
2607 }
2608 return ret;
2609 }
2610 EXPORT_SYMBOL(generic_file_aio_write);
2611
2612 /**
2613 * try_to_release_page() - release old fs-specific metadata on a page
2614 *
2615 * @page: the page which the kernel is trying to free
2616 * @gfp_mask: memory allocation flags (and I/O mode)
2617 *
2618 * The address_space is to try to release any data against the page
2619 * (presumably at page->private). If the release was successful, return `1'.
2620 * Otherwise return zero.
2621 *
2622 * This may also be called if PG_fscache is set on a page, indicating that the
2623 * page is known to the local caching routines.
2624 *
2625 * The @gfp_mask argument specifies whether I/O may be performed to release
2626 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2627 *
2628 */
try_to_release_page(struct page * page,gfp_t gfp_mask)2629 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2630 {
2631 struct address_space * const mapping = page->mapping;
2632
2633 BUG_ON(!PageLocked(page));
2634 if (PageWriteback(page))
2635 return 0;
2636
2637 if (mapping && mapping->a_ops->releasepage)
2638 return mapping->a_ops->releasepage(page, gfp_mask);
2639 return try_to_free_buffers(page);
2640 }
2641
2642 EXPORT_SYMBOL(try_to_release_page);
2643