• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Frontswap frontend
3  *
4  * This code provides the generic "frontend" layer to call a matching
5  * "backend" driver implementation of frontswap.  See
6  * Documentation/vm/frontswap.txt for more information.
7  *
8  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
9  * Author: Dan Magenheimer
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2.
12  */
13 
14 #include <linux/mman.h>
15 #include <linux/swap.h>
16 #include <linux/swapops.h>
17 #include <linux/security.h>
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/frontswap.h>
21 #include <linux/swapfile.h>
22 
23 /*
24  * frontswap_ops is set by frontswap_register_ops to contain the pointers
25  * to the frontswap "backend" implementation functions.
26  */
27 static struct frontswap_ops *frontswap_ops __read_mostly;
28 
29 /*
30  * If enabled, frontswap_store will return failure even on success.  As
31  * a result, the swap subsystem will always write the page to swap, in
32  * effect converting frontswap into a writethrough cache.  In this mode,
33  * there is no direct reduction in swap writes, but a frontswap backend
34  * can unilaterally "reclaim" any pages in use with no data loss, thus
35  * providing increases control over maximum memory usage due to frontswap.
36  */
37 static bool frontswap_writethrough_enabled __read_mostly;
38 
39 /*
40  * If enabled, the underlying tmem implementation is capable of doing
41  * exclusive gets, so frontswap_load, on a successful tmem_get must
42  * mark the page as no longer in frontswap AND mark it dirty.
43  */
44 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
45 
46 #ifdef CONFIG_DEBUG_FS
47 /*
48  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
49  * properly configured).  These are for information only so are not protected
50  * against increment races.
51  */
52 static u64 frontswap_loads;
53 static u64 frontswap_succ_stores;
54 static u64 frontswap_failed_stores;
55 static u64 frontswap_invalidates;
56 
inc_frontswap_loads(void)57 static inline void inc_frontswap_loads(void) {
58 	frontswap_loads++;
59 }
inc_frontswap_succ_stores(void)60 static inline void inc_frontswap_succ_stores(void) {
61 	frontswap_succ_stores++;
62 }
inc_frontswap_failed_stores(void)63 static inline void inc_frontswap_failed_stores(void) {
64 	frontswap_failed_stores++;
65 }
inc_frontswap_invalidates(void)66 static inline void inc_frontswap_invalidates(void) {
67 	frontswap_invalidates++;
68 }
69 #else
inc_frontswap_loads(void)70 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)71 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)72 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)73 static inline void inc_frontswap_invalidates(void) { }
74 #endif
75 
76 /*
77  * Due to the asynchronous nature of the backends loading potentially
78  * _after_ the swap system has been activated, we have chokepoints
79  * on all frontswap functions to not call the backend until the backend
80  * has registered.
81  *
82  * Specifically when no backend is registered (nobody called
83  * frontswap_register_ops) all calls to frontswap_init (which is done via
84  * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
85  * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
86  * backend registers with frontswap at some later point the previous
87  * calls to frontswap_init are executed (by iterating over the need_init
88  * bitmap) to create tmem_pools and set the respective poolids. All of that is
89  * guarded by us using atomic bit operations on the 'need_init' bitmap.
90  *
91  * This would not guards us against the user deciding to call swapoff right as
92  * we are calling the backend to initialize (so swapon is in action).
93  * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
94  * OK. The other scenario where calls to frontswap_store (called via
95  * swap_writepage) is racing with frontswap_invalidate_area (called via
96  * swapoff) is again guarded by the swap subsystem.
97  *
98  * While no backend is registered all calls to frontswap_[store|load|
99  * invalidate_area|invalidate_page] are ignored or fail.
100  *
101  * The time between the backend being registered and the swap file system
102  * calling the backend (via the frontswap_* functions) is indeterminate as
103  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104  * That is OK as we are comfortable missing some of these calls to the newly
105  * registered backend.
106  *
107  * Obviously the opposite (unloading the backend) must be done after all
108  * the frontswap_[store|load|invalidate_area|invalidate_page] start
109  * ignorning or failing the requests - at which point frontswap_ops
110  * would have to be made in some fashion atomic.
111  */
112 static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
113 
114 /*
115  * Register operations for frontswap, returning previous thus allowing
116  * detection of multiple backends and possible nesting.
117  */
frontswap_register_ops(struct frontswap_ops * ops)118 struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119 {
120 	struct frontswap_ops *old = frontswap_ops;
121 	int i;
122 
123 	for (i = 0; i < MAX_SWAPFILES; i++) {
124 		if (test_and_clear_bit(i, need_init)) {
125 			struct swap_info_struct *sis = swap_info[i];
126 			/* __frontswap_init _should_ have set it! */
127 			if (!sis->frontswap_map)
128 				return ERR_PTR(-EINVAL);
129 			ops->init(i);
130 		}
131 	}
132 	/*
133 	 * We MUST have frontswap_ops set _after_ the frontswap_init's
134 	 * have been called. Otherwise __frontswap_store might fail. Hence
135 	 * the barrier to make sure compiler does not re-order us.
136 	 */
137 	barrier();
138 	frontswap_ops = ops;
139 	return old;
140 }
141 EXPORT_SYMBOL(frontswap_register_ops);
142 
143 /*
144  * Enable/disable frontswap writethrough (see above).
145  */
frontswap_writethrough(bool enable)146 void frontswap_writethrough(bool enable)
147 {
148 	frontswap_writethrough_enabled = enable;
149 }
150 EXPORT_SYMBOL(frontswap_writethrough);
151 
152 /*
153  * Enable/disable frontswap exclusive gets (see above).
154  */
frontswap_tmem_exclusive_gets(bool enable)155 void frontswap_tmem_exclusive_gets(bool enable)
156 {
157 	frontswap_tmem_exclusive_gets_enabled = enable;
158 }
159 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
160 
161 /*
162  * Called when a swap device is swapon'd.
163  */
__frontswap_init(unsigned type,unsigned long * map)164 void __frontswap_init(unsigned type, unsigned long *map)
165 {
166 	struct swap_info_struct *sis = swap_info[type];
167 
168 	BUG_ON(sis == NULL);
169 
170 	/*
171 	 * p->frontswap is a bitmap that we MUST have to figure out which page
172 	 * has gone in frontswap. Without it there is no point of continuing.
173 	 */
174 	if (WARN_ON(!map))
175 		return;
176 	/*
177 	 * Irregardless of whether the frontswap backend has been loaded
178 	 * before this function or it will be later, we _MUST_ have the
179 	 * p->frontswap set to something valid to work properly.
180 	 */
181 	frontswap_map_set(sis, map);
182 	if (frontswap_ops)
183 		frontswap_ops->init(type);
184 	else {
185 		BUG_ON(type > MAX_SWAPFILES);
186 		set_bit(type, need_init);
187 	}
188 }
189 EXPORT_SYMBOL(__frontswap_init);
190 
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)191 bool __frontswap_test(struct swap_info_struct *sis,
192 				pgoff_t offset)
193 {
194 	bool ret = false;
195 
196 	if (frontswap_ops && sis->frontswap_map)
197 		ret = test_bit(offset, sis->frontswap_map);
198 	return ret;
199 }
200 EXPORT_SYMBOL(__frontswap_test);
201 
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)202 static inline void __frontswap_clear(struct swap_info_struct *sis,
203 				pgoff_t offset)
204 {
205 	clear_bit(offset, sis->frontswap_map);
206 	atomic_dec(&sis->frontswap_pages);
207 }
208 
209 /*
210  * "Store" data from a page to frontswap and associate it with the page's
211  * swaptype and offset.  Page must be locked and in the swap cache.
212  * If frontswap already contains a page with matching swaptype and
213  * offset, the frontswap implementation may either overwrite the data and
214  * return success or invalidate the page from frontswap and return failure.
215  */
__frontswap_store(struct page * page)216 int __frontswap_store(struct page *page)
217 {
218 	int ret = -1, dup = 0;
219 	swp_entry_t entry = { .val = page_private(page), };
220 	int type = swp_type(entry);
221 	struct swap_info_struct *sis = swap_info[type];
222 	pgoff_t offset = swp_offset(entry);
223 
224 	/*
225 	 * Return if no backend registed.
226 	 * Don't need to inc frontswap_failed_stores here.
227 	 */
228 	if (!frontswap_ops)
229 		return ret;
230 
231 	BUG_ON(!PageLocked(page));
232 	BUG_ON(sis == NULL);
233 	if (__frontswap_test(sis, offset))
234 		dup = 1;
235 	ret = frontswap_ops->store(type, offset, page);
236 	if (ret == 0) {
237 		set_bit(offset, sis->frontswap_map);
238 		inc_frontswap_succ_stores();
239 		if (!dup)
240 			atomic_inc(&sis->frontswap_pages);
241 	} else {
242 		/*
243 		  failed dup always results in automatic invalidate of
244 		  the (older) page from frontswap
245 		 */
246 		inc_frontswap_failed_stores();
247 		if (dup)
248 			__frontswap_clear(sis, offset);
249 	}
250 	if (frontswap_writethrough_enabled)
251 		/* report failure so swap also writes to swap device */
252 		ret = -1;
253 	return ret;
254 }
255 EXPORT_SYMBOL(__frontswap_store);
256 
257 /*
258  * "Get" data from frontswap associated with swaptype and offset that were
259  * specified when the data was put to frontswap and use it to fill the
260  * specified page with data. Page must be locked and in the swap cache.
261  */
__frontswap_load(struct page * page)262 int __frontswap_load(struct page *page)
263 {
264 	int ret = -1;
265 	swp_entry_t entry = { .val = page_private(page), };
266 	int type = swp_type(entry);
267 	struct swap_info_struct *sis = swap_info[type];
268 	pgoff_t offset = swp_offset(entry);
269 
270 	BUG_ON(!PageLocked(page));
271 	BUG_ON(sis == NULL);
272 	/*
273 	 * __frontswap_test() will check whether there is backend registered
274 	 */
275 	if (__frontswap_test(sis, offset))
276 		ret = frontswap_ops->load(type, offset, page);
277 	if (ret == 0) {
278 		inc_frontswap_loads();
279 		if (frontswap_tmem_exclusive_gets_enabled) {
280 			SetPageDirty(page);
281 			__frontswap_clear(sis, offset);
282 		}
283 	}
284 	return ret;
285 }
286 EXPORT_SYMBOL(__frontswap_load);
287 
288 /*
289  * Invalidate any data from frontswap associated with the specified swaptype
290  * and offset so that a subsequent "get" will fail.
291  */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)292 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
293 {
294 	struct swap_info_struct *sis = swap_info[type];
295 
296 	BUG_ON(sis == NULL);
297 	/*
298 	 * __frontswap_test() will check whether there is backend registered
299 	 */
300 	if (__frontswap_test(sis, offset)) {
301 		frontswap_ops->invalidate_page(type, offset);
302 		__frontswap_clear(sis, offset);
303 		inc_frontswap_invalidates();
304 	}
305 }
306 EXPORT_SYMBOL(__frontswap_invalidate_page);
307 
308 /*
309  * Invalidate all data from frontswap associated with all offsets for the
310  * specified swaptype.
311  */
__frontswap_invalidate_area(unsigned type)312 void __frontswap_invalidate_area(unsigned type)
313 {
314 	struct swap_info_struct *sis = swap_info[type];
315 
316 	if (frontswap_ops) {
317 		BUG_ON(sis == NULL);
318 		if (sis->frontswap_map == NULL)
319 			return;
320 		frontswap_ops->invalidate_area(type);
321 		atomic_set(&sis->frontswap_pages, 0);
322 		bitmap_zero(sis->frontswap_map, sis->max);
323 	}
324 	clear_bit(type, need_init);
325 }
326 EXPORT_SYMBOL(__frontswap_invalidate_area);
327 
__frontswap_curr_pages(void)328 static unsigned long __frontswap_curr_pages(void)
329 {
330 	int type;
331 	unsigned long totalpages = 0;
332 	struct swap_info_struct *si = NULL;
333 
334 	assert_spin_locked(&swap_lock);
335 	for (type = swap_list.head; type >= 0; type = si->next) {
336 		si = swap_info[type];
337 		totalpages += atomic_read(&si->frontswap_pages);
338 	}
339 	return totalpages;
340 }
341 
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)342 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
343 					int *swapid)
344 {
345 	int ret = -EINVAL;
346 	struct swap_info_struct *si = NULL;
347 	int si_frontswap_pages;
348 	unsigned long total_pages_to_unuse = total;
349 	unsigned long pages = 0, pages_to_unuse = 0;
350 	int type;
351 
352 	assert_spin_locked(&swap_lock);
353 	for (type = swap_list.head; type >= 0; type = si->next) {
354 		si = swap_info[type];
355 		si_frontswap_pages = atomic_read(&si->frontswap_pages);
356 		if (total_pages_to_unuse < si_frontswap_pages) {
357 			pages = pages_to_unuse = total_pages_to_unuse;
358 		} else {
359 			pages = si_frontswap_pages;
360 			pages_to_unuse = 0; /* unuse all */
361 		}
362 		/* ensure there is enough RAM to fetch pages from frontswap */
363 		if (security_vm_enough_memory_mm(current->mm, pages)) {
364 			ret = -ENOMEM;
365 			continue;
366 		}
367 		vm_unacct_memory(pages);
368 		*unused = pages_to_unuse;
369 		*swapid = type;
370 		ret = 0;
371 		break;
372 	}
373 
374 	return ret;
375 }
376 
377 /*
378  * Used to check if it's necessory and feasible to unuse pages.
379  * Return 1 when nothing to do, 0 when need to shink pages,
380  * error code when there is an error.
381  */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)382 static int __frontswap_shrink(unsigned long target_pages,
383 				unsigned long *pages_to_unuse,
384 				int *type)
385 {
386 	unsigned long total_pages = 0, total_pages_to_unuse;
387 
388 	assert_spin_locked(&swap_lock);
389 
390 	total_pages = __frontswap_curr_pages();
391 	if (total_pages <= target_pages) {
392 		/* Nothing to do */
393 		*pages_to_unuse = 0;
394 		return 1;
395 	}
396 	total_pages_to_unuse = total_pages - target_pages;
397 	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
398 }
399 
400 /*
401  * Frontswap, like a true swap device, may unnecessarily retain pages
402  * under certain circumstances; "shrink" frontswap is essentially a
403  * "partial swapoff" and works by calling try_to_unuse to attempt to
404  * unuse enough frontswap pages to attempt to -- subject to memory
405  * constraints -- reduce the number of pages in frontswap to the
406  * number given in the parameter target_pages.
407  */
frontswap_shrink(unsigned long target_pages)408 void frontswap_shrink(unsigned long target_pages)
409 {
410 	unsigned long pages_to_unuse = 0;
411 	int uninitialized_var(type), ret;
412 
413 	/*
414 	 * we don't want to hold swap_lock while doing a very
415 	 * lengthy try_to_unuse, but swap_list may change
416 	 * so restart scan from swap_list.head each time
417 	 */
418 	spin_lock(&swap_lock);
419 	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
420 	spin_unlock(&swap_lock);
421 	if (ret == 0)
422 		try_to_unuse(type, true, pages_to_unuse);
423 	return;
424 }
425 EXPORT_SYMBOL(frontswap_shrink);
426 
427 /*
428  * Count and return the number of frontswap pages across all
429  * swap devices.  This is exported so that backend drivers can
430  * determine current usage without reading debugfs.
431  */
frontswap_curr_pages(void)432 unsigned long frontswap_curr_pages(void)
433 {
434 	unsigned long totalpages = 0;
435 
436 	spin_lock(&swap_lock);
437 	totalpages = __frontswap_curr_pages();
438 	spin_unlock(&swap_lock);
439 
440 	return totalpages;
441 }
442 EXPORT_SYMBOL(frontswap_curr_pages);
443 
init_frontswap(void)444 static int __init init_frontswap(void)
445 {
446 #ifdef CONFIG_DEBUG_FS
447 	struct dentry *root = debugfs_create_dir("frontswap", NULL);
448 	if (root == NULL)
449 		return -ENXIO;
450 	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
451 	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
452 	debugfs_create_u64("failed_stores", S_IRUGO, root,
453 				&frontswap_failed_stores);
454 	debugfs_create_u64("invalidates", S_IRUGO,
455 				root, &frontswap_invalidates);
456 #endif
457 	return 0;
458 }
459 
460 module_init(init_frontswap);
461