1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25
26
27 /**
28 * do_invalidatepage - invalidate part or all of a page
29 * @page: the page which is affected
30 * @offset: start of the range to invalidate
31 * @length: length of the range to invalidate
32 *
33 * do_invalidatepage() is called when all or part of the page has become
34 * invalidated by a truncate operation.
35 *
36 * do_invalidatepage() does not have to release all buffers, but it must
37 * ensure that no dirty buffer is left outside @offset and that no I/O
38 * is underway against any of the blocks which are outside the truncation
39 * point. Because the caller is about to free (and possibly reuse) those
40 * blocks on-disk.
41 */
do_invalidatepage(struct page * page,unsigned int offset,unsigned int length)42 void do_invalidatepage(struct page *page, unsigned int offset,
43 unsigned int length)
44 {
45 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
46
47 invalidatepage = page->mapping->a_ops->invalidatepage;
48 #ifdef CONFIG_BLOCK
49 if (!invalidatepage)
50 invalidatepage = block_invalidatepage;
51 #endif
52 if (invalidatepage)
53 (*invalidatepage)(page, offset, length);
54 }
55
truncate_partial_page(struct page * page,unsigned partial)56 static inline void truncate_partial_page(struct page *page, unsigned partial)
57 {
58 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
59 cleancache_invalidate_page(page->mapping, page);
60 if (page_has_private(page))
61 do_invalidatepage(page, partial, PAGE_CACHE_SIZE - partial);
62 }
63
64 /*
65 * This cancels just the dirty bit on the kernel page itself, it
66 * does NOT actually remove dirty bits on any mmap's that may be
67 * around. It also leaves the page tagged dirty, so any sync
68 * activity will still find it on the dirty lists, and in particular,
69 * clear_page_dirty_for_io() will still look at the dirty bits in
70 * the VM.
71 *
72 * Doing this should *normally* only ever be done when a page
73 * is truncated, and is not actually mapped anywhere at all. However,
74 * fs/buffer.c does this when it notices that somebody has cleaned
75 * out all the buffers on a page without actually doing it through
76 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
77 */
cancel_dirty_page(struct page * page,unsigned int account_size)78 void cancel_dirty_page(struct page *page, unsigned int account_size)
79 {
80 if (TestClearPageDirty(page)) {
81 struct address_space *mapping = page->mapping;
82 if (mapping && mapping_cap_account_dirty(mapping)) {
83 dec_zone_page_state(page, NR_FILE_DIRTY);
84 dec_bdi_stat(mapping->backing_dev_info,
85 BDI_RECLAIMABLE);
86 if (account_size)
87 task_io_account_cancelled_write(account_size);
88 }
89 }
90 }
91 EXPORT_SYMBOL(cancel_dirty_page);
92
93 /*
94 * If truncate cannot remove the fs-private metadata from the page, the page
95 * becomes orphaned. It will be left on the LRU and may even be mapped into
96 * user pagetables if we're racing with filemap_fault().
97 *
98 * We need to bale out if page->mapping is no longer equal to the original
99 * mapping. This happens a) when the VM reclaimed the page while we waited on
100 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
101 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
102 */
103 static int
truncate_complete_page(struct address_space * mapping,struct page * page)104 truncate_complete_page(struct address_space *mapping, struct page *page)
105 {
106 if (page->mapping != mapping)
107 return -EIO;
108
109 if (page_has_private(page))
110 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
111
112 cancel_dirty_page(page, PAGE_CACHE_SIZE);
113
114 ClearPageMappedToDisk(page);
115 delete_from_page_cache(page);
116 return 0;
117 }
118
119 /*
120 * This is for invalidate_mapping_pages(). That function can be called at
121 * any time, and is not supposed to throw away dirty pages. But pages can
122 * be marked dirty at any time too, so use remove_mapping which safely
123 * discards clean, unused pages.
124 *
125 * Returns non-zero if the page was successfully invalidated.
126 */
127 static int
invalidate_complete_page(struct address_space * mapping,struct page * page)128 invalidate_complete_page(struct address_space *mapping, struct page *page)
129 {
130 int ret;
131
132 if (page->mapping != mapping)
133 return 0;
134
135 if (page_has_private(page) && !try_to_release_page(page, 0))
136 return 0;
137
138 ret = remove_mapping(mapping, page);
139
140 return ret;
141 }
142
truncate_inode_page(struct address_space * mapping,struct page * page)143 int truncate_inode_page(struct address_space *mapping, struct page *page)
144 {
145 if (page_mapped(page)) {
146 unmap_mapping_range(mapping,
147 (loff_t)page->index << PAGE_CACHE_SHIFT,
148 PAGE_CACHE_SIZE, 0);
149 }
150 return truncate_complete_page(mapping, page);
151 }
152
153 /*
154 * Used to get rid of pages on hardware memory corruption.
155 */
generic_error_remove_page(struct address_space * mapping,struct page * page)156 int generic_error_remove_page(struct address_space *mapping, struct page *page)
157 {
158 if (!mapping)
159 return -EINVAL;
160 /*
161 * Only punch for normal data pages for now.
162 * Handling other types like directories would need more auditing.
163 */
164 if (!S_ISREG(mapping->host->i_mode))
165 return -EIO;
166 return truncate_inode_page(mapping, page);
167 }
168 EXPORT_SYMBOL(generic_error_remove_page);
169
170 /*
171 * Safely invalidate one page from its pagecache mapping.
172 * It only drops clean, unused pages. The page must be locked.
173 *
174 * Returns 1 if the page is successfully invalidated, otherwise 0.
175 */
invalidate_inode_page(struct page * page)176 int invalidate_inode_page(struct page *page)
177 {
178 struct address_space *mapping = page_mapping(page);
179 if (!mapping)
180 return 0;
181 if (PageDirty(page) || PageWriteback(page))
182 return 0;
183 if (page_mapped(page))
184 return 0;
185 return invalidate_complete_page(mapping, page);
186 }
187
188 /**
189 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
190 * @mapping: mapping to truncate
191 * @lstart: offset from which to truncate
192 * @lend: offset to which to truncate
193 *
194 * Truncate the page cache, removing the pages that are between
195 * specified offsets (and zeroing out partial page
196 * (if lstart is not page aligned)).
197 *
198 * Truncate takes two passes - the first pass is nonblocking. It will not
199 * block on page locks and it will not block on writeback. The second pass
200 * will wait. This is to prevent as much IO as possible in the affected region.
201 * The first pass will remove most pages, so the search cost of the second pass
202 * is low.
203 *
204 * We pass down the cache-hot hint to the page freeing code. Even if the
205 * mapping is large, it is probably the case that the final pages are the most
206 * recently touched, and freeing happens in ascending file offset order.
207 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)208 void truncate_inode_pages_range(struct address_space *mapping,
209 loff_t lstart, loff_t lend)
210 {
211 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
212 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
213 struct pagevec pvec;
214 pgoff_t index;
215 pgoff_t end;
216 int i;
217
218 cleancache_invalidate_inode(mapping);
219 if (mapping->nrpages == 0)
220 return;
221
222 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
223 end = (lend >> PAGE_CACHE_SHIFT);
224
225 pagevec_init(&pvec, 0);
226 index = start;
227 while (index <= end && pagevec_lookup(&pvec, mapping, index,
228 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
229 mem_cgroup_uncharge_start();
230 for (i = 0; i < pagevec_count(&pvec); i++) {
231 struct page *page = pvec.pages[i];
232
233 /* We rely upon deletion not changing page->index */
234 index = page->index;
235 if (index > end)
236 break;
237
238 if (!trylock_page(page))
239 continue;
240 WARN_ON(page->index != index);
241 if (PageWriteback(page)) {
242 unlock_page(page);
243 continue;
244 }
245 truncate_inode_page(mapping, page);
246 unlock_page(page);
247 }
248 pagevec_release(&pvec);
249 mem_cgroup_uncharge_end();
250 cond_resched();
251 index++;
252 }
253
254 if (partial) {
255 struct page *page = find_lock_page(mapping, start - 1);
256 if (page) {
257 wait_on_page_writeback(page);
258 truncate_partial_page(page, partial);
259 unlock_page(page);
260 page_cache_release(page);
261 }
262 }
263
264 index = start;
265 for ( ; ; ) {
266 cond_resched();
267 if (!pagevec_lookup(&pvec, mapping, index,
268 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
269 if (index == start)
270 break;
271 index = start;
272 continue;
273 }
274 if (index == start && pvec.pages[0]->index > end) {
275 pagevec_release(&pvec);
276 break;
277 }
278 mem_cgroup_uncharge_start();
279 for (i = 0; i < pagevec_count(&pvec); i++) {
280 struct page *page = pvec.pages[i];
281
282 /* We rely upon deletion not changing page->index */
283 index = page->index;
284 if (index > end)
285 break;
286
287 lock_page(page);
288 WARN_ON(page->index != index);
289 wait_on_page_writeback(page);
290 truncate_inode_page(mapping, page);
291 unlock_page(page);
292 }
293 pagevec_release(&pvec);
294 mem_cgroup_uncharge_end();
295 index++;
296 }
297 cleancache_invalidate_inode(mapping);
298 }
299 EXPORT_SYMBOL(truncate_inode_pages_range);
300
301 /**
302 * truncate_inode_pages - truncate *all* the pages from an offset
303 * @mapping: mapping to truncate
304 * @lstart: offset from which to truncate
305 *
306 * Called under (and serialised by) inode->i_mutex.
307 *
308 * Note: When this function returns, there can be a page in the process of
309 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
310 * mapping->nrpages can be non-zero when this function returns even after
311 * truncation of the whole mapping.
312 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)313 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
314 {
315 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
316 }
317 EXPORT_SYMBOL(truncate_inode_pages);
318
319 /**
320 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
321 * @mapping: the address_space which holds the pages to invalidate
322 * @start: the offset 'from' which to invalidate
323 * @end: the offset 'to' which to invalidate (inclusive)
324 *
325 * This function only removes the unlocked pages, if you want to
326 * remove all the pages of one inode, you must call truncate_inode_pages.
327 *
328 * invalidate_mapping_pages() will not block on IO activity. It will not
329 * invalidate pages which are dirty, locked, under writeback or mapped into
330 * pagetables.
331 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)332 unsigned long invalidate_mapping_pages(struct address_space *mapping,
333 pgoff_t start, pgoff_t end)
334 {
335 struct pagevec pvec;
336 pgoff_t index = start;
337 unsigned long ret;
338 unsigned long count = 0;
339 int i;
340
341 /*
342 * Note: this function may get called on a shmem/tmpfs mapping:
343 * pagevec_lookup() might then return 0 prematurely (because it
344 * got a gangful of swap entries); but it's hardly worth worrying
345 * about - it can rarely have anything to free from such a mapping
346 * (most pages are dirty), and already skips over any difficulties.
347 */
348
349 pagevec_init(&pvec, 0);
350 while (index <= end && pagevec_lookup(&pvec, mapping, index,
351 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
352 mem_cgroup_uncharge_start();
353 for (i = 0; i < pagevec_count(&pvec); i++) {
354 struct page *page = pvec.pages[i];
355
356 /* We rely upon deletion not changing page->index */
357 index = page->index;
358 if (index > end)
359 break;
360
361 if (!trylock_page(page))
362 continue;
363 WARN_ON(page->index != index);
364 ret = invalidate_inode_page(page);
365 unlock_page(page);
366 /*
367 * Invalidation is a hint that the page is no longer
368 * of interest and try to speed up its reclaim.
369 */
370 if (!ret)
371 deactivate_page(page);
372 count += ret;
373 }
374 pagevec_release(&pvec);
375 mem_cgroup_uncharge_end();
376 cond_resched();
377 index++;
378 }
379 return count;
380 }
381 EXPORT_SYMBOL(invalidate_mapping_pages);
382
383 /*
384 * This is like invalidate_complete_page(), except it ignores the page's
385 * refcount. We do this because invalidate_inode_pages2() needs stronger
386 * invalidation guarantees, and cannot afford to leave pages behind because
387 * shrink_page_list() has a temp ref on them, or because they're transiently
388 * sitting in the lru_cache_add() pagevecs.
389 */
390 static int
invalidate_complete_page2(struct address_space * mapping,struct page * page)391 invalidate_complete_page2(struct address_space *mapping, struct page *page)
392 {
393 if (page->mapping != mapping)
394 return 0;
395
396 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
397 return 0;
398
399 spin_lock_irq(&mapping->tree_lock);
400 if (PageDirty(page))
401 goto failed;
402
403 BUG_ON(page_has_private(page));
404 __delete_from_page_cache(page);
405 spin_unlock_irq(&mapping->tree_lock);
406 mem_cgroup_uncharge_cache_page(page);
407
408 if (mapping->a_ops->freepage)
409 mapping->a_ops->freepage(page);
410
411 page_cache_release(page); /* pagecache ref */
412 return 1;
413 failed:
414 spin_unlock_irq(&mapping->tree_lock);
415 return 0;
416 }
417
do_launder_page(struct address_space * mapping,struct page * page)418 static int do_launder_page(struct address_space *mapping, struct page *page)
419 {
420 if (!PageDirty(page))
421 return 0;
422 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
423 return 0;
424 return mapping->a_ops->launder_page(page);
425 }
426
427 /**
428 * invalidate_inode_pages2_range - remove range of pages from an address_space
429 * @mapping: the address_space
430 * @start: the page offset 'from' which to invalidate
431 * @end: the page offset 'to' which to invalidate (inclusive)
432 *
433 * Any pages which are found to be mapped into pagetables are unmapped prior to
434 * invalidation.
435 *
436 * Returns -EBUSY if any pages could not be invalidated.
437 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)438 int invalidate_inode_pages2_range(struct address_space *mapping,
439 pgoff_t start, pgoff_t end)
440 {
441 struct pagevec pvec;
442 pgoff_t index;
443 int i;
444 int ret = 0;
445 int ret2 = 0;
446 int did_range_unmap = 0;
447
448 cleancache_invalidate_inode(mapping);
449 pagevec_init(&pvec, 0);
450 index = start;
451 while (index <= end && pagevec_lookup(&pvec, mapping, index,
452 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
453 mem_cgroup_uncharge_start();
454 for (i = 0; i < pagevec_count(&pvec); i++) {
455 struct page *page = pvec.pages[i];
456
457 /* We rely upon deletion not changing page->index */
458 index = page->index;
459 if (index > end)
460 break;
461
462 lock_page(page);
463 WARN_ON(page->index != index);
464 if (page->mapping != mapping) {
465 unlock_page(page);
466 continue;
467 }
468 wait_on_page_writeback(page);
469 if (page_mapped(page)) {
470 if (!did_range_unmap) {
471 /*
472 * Zap the rest of the file in one hit.
473 */
474 unmap_mapping_range(mapping,
475 (loff_t)index << PAGE_CACHE_SHIFT,
476 (loff_t)(1 + end - index)
477 << PAGE_CACHE_SHIFT,
478 0);
479 did_range_unmap = 1;
480 } else {
481 /*
482 * Just zap this page
483 */
484 unmap_mapping_range(mapping,
485 (loff_t)index << PAGE_CACHE_SHIFT,
486 PAGE_CACHE_SIZE, 0);
487 }
488 }
489 BUG_ON(page_mapped(page));
490 ret2 = do_launder_page(mapping, page);
491 if (ret2 == 0) {
492 if (!invalidate_complete_page2(mapping, page))
493 ret2 = -EBUSY;
494 }
495 if (ret2 < 0)
496 ret = ret2;
497 unlock_page(page);
498 }
499 pagevec_release(&pvec);
500 mem_cgroup_uncharge_end();
501 cond_resched();
502 index++;
503 }
504 cleancache_invalidate_inode(mapping);
505 return ret;
506 }
507 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
508
509 /**
510 * invalidate_inode_pages2 - remove all pages from an address_space
511 * @mapping: the address_space
512 *
513 * Any pages which are found to be mapped into pagetables are unmapped prior to
514 * invalidation.
515 *
516 * Returns -EBUSY if any pages could not be invalidated.
517 */
invalidate_inode_pages2(struct address_space * mapping)518 int invalidate_inode_pages2(struct address_space *mapping)
519 {
520 return invalidate_inode_pages2_range(mapping, 0, -1);
521 }
522 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
523
524 /**
525 * truncate_pagecache - unmap and remove pagecache that has been truncated
526 * @inode: inode
527 * @oldsize: old file size
528 * @newsize: new file size
529 *
530 * inode's new i_size must already be written before truncate_pagecache
531 * is called.
532 *
533 * This function should typically be called before the filesystem
534 * releases resources associated with the freed range (eg. deallocates
535 * blocks). This way, pagecache will always stay logically coherent
536 * with on-disk format, and the filesystem would not have to deal with
537 * situations such as writepage being called for a page that has already
538 * had its underlying blocks deallocated.
539 */
truncate_pagecache(struct inode * inode,loff_t oldsize,loff_t newsize)540 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
541 {
542 struct address_space *mapping = inode->i_mapping;
543 loff_t holebegin = round_up(newsize, PAGE_SIZE);
544
545 /*
546 * unmap_mapping_range is called twice, first simply for
547 * efficiency so that truncate_inode_pages does fewer
548 * single-page unmaps. However after this first call, and
549 * before truncate_inode_pages finishes, it is possible for
550 * private pages to be COWed, which remain after
551 * truncate_inode_pages finishes, hence the second
552 * unmap_mapping_range call must be made for correctness.
553 */
554 unmap_mapping_range(mapping, holebegin, 0, 1);
555 truncate_inode_pages(mapping, newsize);
556 unmap_mapping_range(mapping, holebegin, 0, 1);
557 }
558 EXPORT_SYMBOL(truncate_pagecache);
559
560 /**
561 * truncate_setsize - update inode and pagecache for a new file size
562 * @inode: inode
563 * @newsize: new file size
564 *
565 * truncate_setsize updates i_size and performs pagecache truncation (if
566 * necessary) to @newsize. It will be typically be called from the filesystem's
567 * setattr function when ATTR_SIZE is passed in.
568 *
569 * Must be called with inode_mutex held and before all filesystem specific
570 * block truncation has been performed.
571 */
truncate_setsize(struct inode * inode,loff_t newsize)572 void truncate_setsize(struct inode *inode, loff_t newsize)
573 {
574 loff_t oldsize = inode->i_size;
575
576 i_size_write(inode, newsize);
577 if (newsize > oldsize)
578 pagecache_isize_extended(inode, oldsize, newsize);
579 truncate_pagecache(inode, oldsize, newsize);
580 }
581 EXPORT_SYMBOL(truncate_setsize);
582
583 /**
584 * pagecache_isize_extended - update pagecache after extension of i_size
585 * @inode: inode for which i_size was extended
586 * @from: original inode size
587 * @to: new inode size
588 *
589 * Handle extension of inode size either caused by extending truncate or by
590 * write starting after current i_size. We mark the page straddling current
591 * i_size RO so that page_mkwrite() is called on the nearest write access to
592 * the page. This way filesystem can be sure that page_mkwrite() is called on
593 * the page before user writes to the page via mmap after the i_size has been
594 * changed.
595 *
596 * The function must be called after i_size is updated so that page fault
597 * coming after we unlock the page will already see the new i_size.
598 * The function must be called while we still hold i_mutex - this not only
599 * makes sure i_size is stable but also that userspace cannot observe new
600 * i_size value before we are prepared to store mmap writes at new inode size.
601 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)602 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
603 {
604 int bsize = 1 << inode->i_blkbits;
605 loff_t rounded_from;
606 struct page *page;
607 pgoff_t index;
608
609 WARN_ON(!mutex_is_locked(&inode->i_mutex));
610 WARN_ON(to > inode->i_size);
611
612 if (from >= to || bsize == PAGE_CACHE_SIZE)
613 return;
614 /* Page straddling @from will not have any hole block created? */
615 rounded_from = round_up(from, bsize);
616 if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
617 return;
618
619 index = from >> PAGE_CACHE_SHIFT;
620 page = find_lock_page(inode->i_mapping, index);
621 /* Page not cached? Nothing to do */
622 if (!page)
623 return;
624 /*
625 * See clear_page_dirty_for_io() for details why set_page_dirty()
626 * is needed.
627 */
628 if (page_mkclean(page))
629 set_page_dirty(page);
630 unlock_page(page);
631 page_cache_release(page);
632 }
633 EXPORT_SYMBOL(pagecache_isize_extended);
634
635 /**
636 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
637 * @inode: inode
638 * @lstart: offset of beginning of hole
639 * @lend: offset of last byte of hole
640 *
641 * This function should typically be called before the filesystem
642 * releases resources associated with the freed range (eg. deallocates
643 * blocks). This way, pagecache will always stay logically coherent
644 * with on-disk format, and the filesystem would not have to deal with
645 * situations such as writepage being called for a page that has already
646 * had its underlying blocks deallocated.
647 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)648 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
649 {
650 struct address_space *mapping = inode->i_mapping;
651 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
652 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
653 /*
654 * This rounding is currently just for example: unmap_mapping_range
655 * expands its hole outwards, whereas we want it to contract the hole
656 * inwards. However, existing callers of truncate_pagecache_range are
657 * doing their own page rounding first; and truncate_inode_pages_range
658 * currently BUGs if lend is not pagealigned-1 (it handles partial
659 * page at start of hole, but not partial page at end of hole). Note
660 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
661 */
662
663 /*
664 * Unlike in truncate_pagecache, unmap_mapping_range is called only
665 * once (before truncating pagecache), and without "even_cows" flag:
666 * hole-punching should not remove private COWed pages from the hole.
667 */
668 if ((u64)unmap_end > (u64)unmap_start)
669 unmap_mapping_range(mapping, unmap_start,
670 1 + unmap_end - unmap_start, 0);
671 truncate_inode_pages_range(mapping, lstart, lend);
672 }
673 EXPORT_SYMBOL(truncate_pagecache_range);
674