1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48 #ifdef CONFIG_ZSMALLOC_DEBUG
49 #define DEBUG
50 #endif
51
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/init.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <asm/tlbflush.h>
62 #include <asm/pgtable.h>
63 #include <linux/cpumask.h>
64 #include <linux/cpu.h>
65 #include <linux/vmalloc.h>
66 #include <linux/hardirq.h>
67 #include <linux/spinlock.h>
68 #include <linux/types.h>
69 #include <linux/debugfs.h>
70 #include <linux/zsmalloc.h>
71 #include <linux/zpool.h>
72
73 /*
74 * This must be power of 2 and greater than of equal to sizeof(link_free).
75 * These two conditions ensure that any 'struct link_free' itself doesn't
76 * span more than 1 page which avoids complex case of mapping 2 pages simply
77 * to restore link_free pointer values.
78 */
79 #define ZS_ALIGN 8
80
81 /*
82 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
83 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
84 */
85 #define ZS_MAX_ZSPAGE_ORDER 2
86 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
87
88 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
89
90 /*
91 * Object location (<PFN>, <obj_idx>) is encoded as
92 * as single (unsigned long) handle value.
93 *
94 * Note that object index <obj_idx> is relative to system
95 * page <PFN> it is stored in, so for each sub-page belonging
96 * to a zspage, obj_idx starts with 0.
97 *
98 * This is made more complicated by various memory models and PAE.
99 */
100
101 #ifndef MAX_PHYSMEM_BITS
102 #ifdef CONFIG_HIGHMEM64G
103 #define MAX_PHYSMEM_BITS 36
104 #else /* !CONFIG_HIGHMEM64G */
105 /*
106 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
107 * be PAGE_SHIFT
108 */
109 #define MAX_PHYSMEM_BITS BITS_PER_LONG
110 #endif
111 #endif
112 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
113
114 /*
115 * Memory for allocating for handle keeps object position by
116 * encoding <page, obj_idx> and the encoded value has a room
117 * in least bit(ie, look at obj_to_location).
118 * We use the bit to synchronize between object access by
119 * user and migration.
120 */
121 #define HANDLE_PIN_BIT 0
122
123 /*
124 * Head in allocated object should have OBJ_ALLOCATED_TAG
125 * to identify the object was allocated or not.
126 * It's okay to add the status bit in the least bit because
127 * header keeps handle which is 4byte-aligned address so we
128 * have room for two bit at least.
129 */
130 #define OBJ_ALLOCATED_TAG 1
131 #define OBJ_TAG_BITS 1
132 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
133 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
134
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
137 #define ZS_MIN_ALLOC_SIZE \
138 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
139 /* each chunk includes extra space to keep handle */
140 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
141
142 /*
143 * On systems with 4K page size, this gives 255 size classes! There is a
144 * trader-off here:
145 * - Large number of size classes is potentially wasteful as free page are
146 * spread across these classes
147 * - Small number of size classes causes large internal fragmentation
148 * - Probably its better to use specific size classes (empirically
149 * determined). NOTE: all those class sizes must be set as multiple of
150 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
151 *
152 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
153 * (reason above)
154 */
155 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
156
157 /*
158 * We do not maintain any list for completely empty or full pages
159 */
160 enum fullness_group {
161 ZS_ALMOST_FULL,
162 ZS_ALMOST_EMPTY,
163 _ZS_NR_FULLNESS_GROUPS,
164
165 ZS_EMPTY,
166 ZS_FULL
167 };
168
169 enum zs_stat_type {
170 OBJ_ALLOCATED,
171 OBJ_USED,
172 CLASS_ALMOST_FULL,
173 CLASS_ALMOST_EMPTY,
174 NR_ZS_STAT_TYPE,
175 };
176
177 #ifdef CONFIG_ZSMALLOC_STAT
178
179 static struct dentry *zs_stat_root;
180
181 struct zs_size_stat {
182 unsigned long objs[NR_ZS_STAT_TYPE];
183 };
184
185 #endif
186
187 /*
188 * number of size_classes
189 */
190 static int zs_size_classes;
191
192 /*
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194 * n <= N / f, where
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
198 *
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
203 *
204 * (see: fix_fullness_group())
205 */
206 static const int fullness_threshold_frac = 4;
207
208 struct size_class {
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
216 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
217 int pages_per_zspage;
218 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
219 bool huge;
220
221 #ifdef CONFIG_ZSMALLOC_STAT
222 struct zs_size_stat stats;
223 #endif
224
225 spinlock_t lock;
226
227 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
228 };
229
230 /*
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, first_page->freelist gives head of this list.
233 *
234 * This must be power of 2 and less than or equal to ZS_ALIGN
235 */
236 struct link_free {
237 union {
238 /*
239 * Position of next free chunk (encodes <PFN, obj_idx>)
240 * It's valid for non-allocated object
241 */
242 void *next;
243 /*
244 * Handle of allocated object.
245 */
246 unsigned long handle;
247 };
248 };
249
250 struct zs_pool {
251 char *name;
252
253 struct size_class **size_class;
254 struct kmem_cache *handle_cachep;
255
256 gfp_t flags; /* allocation flags used when growing pool */
257 atomic_long_t pages_allocated;
258
259 #ifdef CONFIG_ZSMALLOC_STAT
260 struct dentry *stat_dentry;
261 #endif
262 };
263
264 /*
265 * A zspage's class index and fullness group
266 * are encoded in its (first)page->mapping
267 */
268 #define CLASS_IDX_BITS 28
269 #define FULLNESS_BITS 4
270 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
271 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
272
273 struct mapping_area {
274 #ifdef CONFIG_PGTABLE_MAPPING
275 struct vm_struct *vm; /* vm area for mapping object that span pages */
276 #else
277 char *vm_buf; /* copy buffer for objects that span pages */
278 #endif
279 char *vm_addr; /* address of kmap_atomic()'ed pages */
280 enum zs_mapmode vm_mm; /* mapping mode */
281 bool huge;
282 };
283
create_handle_cache(struct zs_pool * pool)284 static int create_handle_cache(struct zs_pool *pool)
285 {
286 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
287 0, 0, NULL);
288 return pool->handle_cachep ? 0 : 1;
289 }
290
destroy_handle_cache(struct zs_pool * pool)291 static void destroy_handle_cache(struct zs_pool *pool)
292 {
293 if (pool->handle_cachep)
294 kmem_cache_destroy(pool->handle_cachep);
295 }
296
alloc_handle(struct zs_pool * pool)297 static unsigned long alloc_handle(struct zs_pool *pool)
298 {
299 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
300 pool->flags & ~__GFP_HIGHMEM);
301 }
302
free_handle(struct zs_pool * pool,unsigned long handle)303 static void free_handle(struct zs_pool *pool, unsigned long handle)
304 {
305 kmem_cache_free(pool->handle_cachep, (void *)handle);
306 }
307
record_obj(unsigned long handle,unsigned long obj)308 static void record_obj(unsigned long handle, unsigned long obj)
309 {
310 *(unsigned long *)handle = obj;
311 }
312
313 /* zpool driver */
314
315 #ifdef CONFIG_ZPOOL
316
zs_zpool_create(char * name,gfp_t gfp,struct zpool_ops * zpool_ops)317 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
318 {
319 return zs_create_pool(name, gfp);
320 }
321
zs_zpool_destroy(void * pool)322 static void zs_zpool_destroy(void *pool)
323 {
324 zs_destroy_pool(pool);
325 }
326
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)327 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
328 unsigned long *handle)
329 {
330 *handle = zs_malloc(pool, size);
331 return *handle ? 0 : -1;
332 }
zs_zpool_free(void * pool,unsigned long handle)333 static void zs_zpool_free(void *pool, unsigned long handle)
334 {
335 zs_free(pool, handle);
336 }
337
zs_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)338 static int zs_zpool_shrink(void *pool, unsigned int pages,
339 unsigned int *reclaimed)
340 {
341 return -EINVAL;
342 }
343
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)344 static void *zs_zpool_map(void *pool, unsigned long handle,
345 enum zpool_mapmode mm)
346 {
347 enum zs_mapmode zs_mm;
348
349 switch (mm) {
350 case ZPOOL_MM_RO:
351 zs_mm = ZS_MM_RO;
352 break;
353 case ZPOOL_MM_WO:
354 zs_mm = ZS_MM_WO;
355 break;
356 case ZPOOL_MM_RW: /* fallthru */
357 default:
358 zs_mm = ZS_MM_RW;
359 break;
360 }
361
362 return zs_map_object(pool, handle, zs_mm);
363 }
zs_zpool_unmap(void * pool,unsigned long handle)364 static void zs_zpool_unmap(void *pool, unsigned long handle)
365 {
366 zs_unmap_object(pool, handle);
367 }
368
zs_zpool_total_size(void * pool)369 static u64 zs_zpool_total_size(void *pool)
370 {
371 return zs_get_total_pages(pool) << PAGE_SHIFT;
372 }
373
374 static struct zpool_driver zs_zpool_driver = {
375 .type = "zsmalloc",
376 .owner = THIS_MODULE,
377 .create = zs_zpool_create,
378 .destroy = zs_zpool_destroy,
379 .malloc = zs_zpool_malloc,
380 .free = zs_zpool_free,
381 .shrink = zs_zpool_shrink,
382 .map = zs_zpool_map,
383 .unmap = zs_zpool_unmap,
384 .total_size = zs_zpool_total_size,
385 };
386
387 MODULE_ALIAS("zpool-zsmalloc");
388 #endif /* CONFIG_ZPOOL */
389
get_maxobj_per_zspage(int size,int pages_per_zspage)390 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
391 {
392 return pages_per_zspage * PAGE_SIZE / size;
393 }
394
395 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
396 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
397
is_first_page(struct page * page)398 static int is_first_page(struct page *page)
399 {
400 return PagePrivate(page);
401 }
402
is_last_page(struct page * page)403 static int is_last_page(struct page *page)
404 {
405 return PagePrivate2(page);
406 }
407
get_zspage_mapping(struct page * page,unsigned int * class_idx,enum fullness_group * fullness)408 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
409 enum fullness_group *fullness)
410 {
411 unsigned long m;
412 BUG_ON(!is_first_page(page));
413
414 m = (unsigned long)page->mapping;
415 *fullness = m & FULLNESS_MASK;
416 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
417 }
418
set_zspage_mapping(struct page * page,unsigned int class_idx,enum fullness_group fullness)419 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
420 enum fullness_group fullness)
421 {
422 unsigned long m;
423 BUG_ON(!is_first_page(page));
424
425 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
426 (fullness & FULLNESS_MASK);
427 page->mapping = (struct address_space *)m;
428 }
429
430 /*
431 * zsmalloc divides the pool into various size classes where each
432 * class maintains a list of zspages where each zspage is divided
433 * into equal sized chunks. Each allocation falls into one of these
434 * classes depending on its size. This function returns index of the
435 * size class which has chunk size big enough to hold the give size.
436 */
get_size_class_index(int size)437 static int get_size_class_index(int size)
438 {
439 int idx = 0;
440
441 if (likely(size > ZS_MIN_ALLOC_SIZE))
442 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
443 ZS_SIZE_CLASS_DELTA);
444
445 return min(zs_size_classes - 1, idx);
446 }
447
448 #ifdef CONFIG_ZSMALLOC_STAT
449
zs_stat_inc(struct size_class * class,enum zs_stat_type type,unsigned long cnt)450 static inline void zs_stat_inc(struct size_class *class,
451 enum zs_stat_type type, unsigned long cnt)
452 {
453 class->stats.objs[type] += cnt;
454 }
455
zs_stat_dec(struct size_class * class,enum zs_stat_type type,unsigned long cnt)456 static inline void zs_stat_dec(struct size_class *class,
457 enum zs_stat_type type, unsigned long cnt)
458 {
459 class->stats.objs[type] -= cnt;
460 }
461
zs_stat_get(struct size_class * class,enum zs_stat_type type)462 static inline unsigned long zs_stat_get(struct size_class *class,
463 enum zs_stat_type type)
464 {
465 return class->stats.objs[type];
466 }
467
zs_stat_init(void)468 static int __init zs_stat_init(void)
469 {
470 if (!debugfs_initialized())
471 return -ENODEV;
472
473 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
474 if (!zs_stat_root)
475 return -ENOMEM;
476
477 return 0;
478 }
479
zs_stat_exit(void)480 static void __exit zs_stat_exit(void)
481 {
482 debugfs_remove_recursive(zs_stat_root);
483 }
484
zs_stats_size_show(struct seq_file * s,void * v)485 static int zs_stats_size_show(struct seq_file *s, void *v)
486 {
487 int i;
488 struct zs_pool *pool = s->private;
489 struct size_class *class;
490 int objs_per_zspage;
491 unsigned long class_almost_full, class_almost_empty;
492 unsigned long obj_allocated, obj_used, pages_used;
493 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
494 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
495
496 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
497 "class", "size", "almost_full", "almost_empty",
498 "obj_allocated", "obj_used", "pages_used",
499 "pages_per_zspage");
500
501 for (i = 0; i < zs_size_classes; i++) {
502 class = pool->size_class[i];
503
504 if (class->index != i)
505 continue;
506
507 spin_lock(&class->lock);
508 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
509 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
510 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
511 obj_used = zs_stat_get(class, OBJ_USED);
512 spin_unlock(&class->lock);
513
514 objs_per_zspage = get_maxobj_per_zspage(class->size,
515 class->pages_per_zspage);
516 pages_used = obj_allocated / objs_per_zspage *
517 class->pages_per_zspage;
518
519 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
520 i, class->size, class_almost_full, class_almost_empty,
521 obj_allocated, obj_used, pages_used,
522 class->pages_per_zspage);
523
524 total_class_almost_full += class_almost_full;
525 total_class_almost_empty += class_almost_empty;
526 total_objs += obj_allocated;
527 total_used_objs += obj_used;
528 total_pages += pages_used;
529 }
530
531 seq_puts(s, "\n");
532 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
533 "Total", "", total_class_almost_full,
534 total_class_almost_empty, total_objs,
535 total_used_objs, total_pages);
536
537 return 0;
538 }
539
zs_stats_size_open(struct inode * inode,struct file * file)540 static int zs_stats_size_open(struct inode *inode, struct file *file)
541 {
542 return single_open(file, zs_stats_size_show, inode->i_private);
543 }
544
545 static const struct file_operations zs_stat_size_ops = {
546 .open = zs_stats_size_open,
547 .read = seq_read,
548 .llseek = seq_lseek,
549 .release = single_release,
550 };
551
zs_pool_stat_create(char * name,struct zs_pool * pool)552 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
553 {
554 struct dentry *entry;
555
556 if (!zs_stat_root)
557 return -ENODEV;
558
559 entry = debugfs_create_dir(name, zs_stat_root);
560 if (!entry) {
561 pr_warn("debugfs dir <%s> creation failed\n", name);
562 return -ENOMEM;
563 }
564 pool->stat_dentry = entry;
565
566 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
567 pool->stat_dentry, pool, &zs_stat_size_ops);
568 if (!entry) {
569 pr_warn("%s: debugfs file entry <%s> creation failed\n",
570 name, "classes");
571 return -ENOMEM;
572 }
573
574 return 0;
575 }
576
zs_pool_stat_destroy(struct zs_pool * pool)577 static void zs_pool_stat_destroy(struct zs_pool *pool)
578 {
579 debugfs_remove_recursive(pool->stat_dentry);
580 }
581
582 #else /* CONFIG_ZSMALLOC_STAT */
583
zs_stat_inc(struct size_class * class,enum zs_stat_type type,unsigned long cnt)584 static inline void zs_stat_inc(struct size_class *class,
585 enum zs_stat_type type, unsigned long cnt)
586 {
587 }
588
zs_stat_dec(struct size_class * class,enum zs_stat_type type,unsigned long cnt)589 static inline void zs_stat_dec(struct size_class *class,
590 enum zs_stat_type type, unsigned long cnt)
591 {
592 }
593
zs_stat_get(struct size_class * class,enum zs_stat_type type)594 static inline unsigned long zs_stat_get(struct size_class *class,
595 enum zs_stat_type type)
596 {
597 return 0;
598 }
599
zs_stat_init(void)600 static int __init zs_stat_init(void)
601 {
602 return 0;
603 }
604
zs_stat_exit(void)605 static void __exit zs_stat_exit(void)
606 {
607 }
608
zs_pool_stat_create(char * name,struct zs_pool * pool)609 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
610 {
611 return 0;
612 }
613
zs_pool_stat_destroy(struct zs_pool * pool)614 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
615 {
616 }
617
618 #endif
619
620
621 /*
622 * For each size class, zspages are divided into different groups
623 * depending on how "full" they are. This was done so that we could
624 * easily find empty or nearly empty zspages when we try to shrink
625 * the pool (not yet implemented). This function returns fullness
626 * status of the given page.
627 */
get_fullness_group(struct page * page)628 static enum fullness_group get_fullness_group(struct page *page)
629 {
630 int inuse, max_objects;
631 enum fullness_group fg;
632 BUG_ON(!is_first_page(page));
633
634 inuse = page->inuse;
635 max_objects = page->objects;
636
637 if (inuse == 0)
638 fg = ZS_EMPTY;
639 else if (inuse == max_objects)
640 fg = ZS_FULL;
641 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
642 fg = ZS_ALMOST_EMPTY;
643 else
644 fg = ZS_ALMOST_FULL;
645
646 return fg;
647 }
648
649 /*
650 * Each size class maintains various freelists and zspages are assigned
651 * to one of these freelists based on the number of live objects they
652 * have. This functions inserts the given zspage into the freelist
653 * identified by <class, fullness_group>.
654 */
insert_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)655 static void insert_zspage(struct page *page, struct size_class *class,
656 enum fullness_group fullness)
657 {
658 struct page **head;
659
660 BUG_ON(!is_first_page(page));
661
662 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
663 return;
664
665 head = &class->fullness_list[fullness];
666 if (*head)
667 list_add_tail(&page->lru, &(*head)->lru);
668
669 *head = page;
670 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
671 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
672 }
673
674 /*
675 * This function removes the given zspage from the freelist identified
676 * by <class, fullness_group>.
677 */
remove_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)678 static void remove_zspage(struct page *page, struct size_class *class,
679 enum fullness_group fullness)
680 {
681 struct page **head;
682
683 BUG_ON(!is_first_page(page));
684
685 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
686 return;
687
688 head = &class->fullness_list[fullness];
689 BUG_ON(!*head);
690 if (list_empty(&(*head)->lru))
691 *head = NULL;
692 else if (*head == page)
693 *head = (struct page *)list_entry((*head)->lru.next,
694 struct page, lru);
695
696 list_del_init(&page->lru);
697 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
698 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
699 }
700
701 /*
702 * Each size class maintains zspages in different fullness groups depending
703 * on the number of live objects they contain. When allocating or freeing
704 * objects, the fullness status of the page can change, say, from ALMOST_FULL
705 * to ALMOST_EMPTY when freeing an object. This function checks if such
706 * a status change has occurred for the given page and accordingly moves the
707 * page from the freelist of the old fullness group to that of the new
708 * fullness group.
709 */
fix_fullness_group(struct size_class * class,struct page * page)710 static enum fullness_group fix_fullness_group(struct size_class *class,
711 struct page *page)
712 {
713 int class_idx;
714 enum fullness_group currfg, newfg;
715
716 BUG_ON(!is_first_page(page));
717
718 get_zspage_mapping(page, &class_idx, &currfg);
719 newfg = get_fullness_group(page);
720 if (newfg == currfg)
721 goto out;
722
723 remove_zspage(page, class, currfg);
724 insert_zspage(page, class, newfg);
725 set_zspage_mapping(page, class_idx, newfg);
726
727 out:
728 return newfg;
729 }
730
731 /*
732 * We have to decide on how many pages to link together
733 * to form a zspage for each size class. This is important
734 * to reduce wastage due to unusable space left at end of
735 * each zspage which is given as:
736 * wastage = Zp % class_size
737 * usage = Zp - wastage
738 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
739 *
740 * For example, for size class of 3/8 * PAGE_SIZE, we should
741 * link together 3 PAGE_SIZE sized pages to form a zspage
742 * since then we can perfectly fit in 8 such objects.
743 */
get_pages_per_zspage(int class_size)744 static int get_pages_per_zspage(int class_size)
745 {
746 int i, max_usedpc = 0;
747 /* zspage order which gives maximum used size per KB */
748 int max_usedpc_order = 1;
749
750 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
751 int zspage_size;
752 int waste, usedpc;
753
754 zspage_size = i * PAGE_SIZE;
755 waste = zspage_size % class_size;
756 usedpc = (zspage_size - waste) * 100 / zspage_size;
757
758 if (usedpc > max_usedpc) {
759 max_usedpc = usedpc;
760 max_usedpc_order = i;
761 }
762 }
763
764 return max_usedpc_order;
765 }
766
767 /*
768 * A single 'zspage' is composed of many system pages which are
769 * linked together using fields in struct page. This function finds
770 * the first/head page, given any component page of a zspage.
771 */
get_first_page(struct page * page)772 static struct page *get_first_page(struct page *page)
773 {
774 if (is_first_page(page))
775 return page;
776 else
777 return page->first_page;
778 }
779
get_next_page(struct page * page)780 static struct page *get_next_page(struct page *page)
781 {
782 struct page *next;
783
784 if (is_last_page(page))
785 next = NULL;
786 else if (is_first_page(page))
787 next = (struct page *)page_private(page);
788 else
789 next = list_entry(page->lru.next, struct page, lru);
790
791 return next;
792 }
793
794 /*
795 * Encode <page, obj_idx> as a single handle value.
796 * We use the least bit of handle for tagging.
797 */
location_to_obj(struct page * page,unsigned long obj_idx)798 static void *location_to_obj(struct page *page, unsigned long obj_idx)
799 {
800 unsigned long obj;
801
802 if (!page) {
803 BUG_ON(obj_idx);
804 return NULL;
805 }
806
807 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
808 obj |= ((obj_idx) & OBJ_INDEX_MASK);
809 obj <<= OBJ_TAG_BITS;
810
811 return (void *)obj;
812 }
813
814 /*
815 * Decode <page, obj_idx> pair from the given object handle. We adjust the
816 * decoded obj_idx back to its original value since it was adjusted in
817 * location_to_obj().
818 */
obj_to_location(unsigned long obj,struct page ** page,unsigned long * obj_idx)819 static void obj_to_location(unsigned long obj, struct page **page,
820 unsigned long *obj_idx)
821 {
822 obj >>= OBJ_TAG_BITS;
823 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
824 *obj_idx = (obj & OBJ_INDEX_MASK);
825 }
826
handle_to_obj(unsigned long handle)827 static unsigned long handle_to_obj(unsigned long handle)
828 {
829 return *(unsigned long *)handle;
830 }
831
obj_to_head(struct size_class * class,struct page * page,void * obj)832 static unsigned long obj_to_head(struct size_class *class, struct page *page,
833 void *obj)
834 {
835 if (class->huge) {
836 VM_BUG_ON(!is_first_page(page));
837 return *(unsigned long *)page_private(page);
838 } else
839 return *(unsigned long *)obj;
840 }
841
obj_idx_to_offset(struct page * page,unsigned long obj_idx,int class_size)842 static unsigned long obj_idx_to_offset(struct page *page,
843 unsigned long obj_idx, int class_size)
844 {
845 unsigned long off = 0;
846
847 if (!is_first_page(page))
848 off = page->index;
849
850 return off + obj_idx * class_size;
851 }
852
trypin_tag(unsigned long handle)853 static inline int trypin_tag(unsigned long handle)
854 {
855 unsigned long *ptr = (unsigned long *)handle;
856
857 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
858 }
859
pin_tag(unsigned long handle)860 static void pin_tag(unsigned long handle)
861 {
862 while (!trypin_tag(handle));
863 }
864
unpin_tag(unsigned long handle)865 static void unpin_tag(unsigned long handle)
866 {
867 unsigned long *ptr = (unsigned long *)handle;
868
869 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
870 }
871
reset_page(struct page * page)872 static void reset_page(struct page *page)
873 {
874 clear_bit(PG_private, &page->flags);
875 clear_bit(PG_private_2, &page->flags);
876 set_page_private(page, 0);
877 page->mapping = NULL;
878 page->freelist = NULL;
879 page_mapcount_reset(page);
880 }
881
free_zspage(struct page * first_page)882 static void free_zspage(struct page *first_page)
883 {
884 struct page *nextp, *tmp, *head_extra;
885
886 BUG_ON(!is_first_page(first_page));
887 BUG_ON(first_page->inuse);
888
889 head_extra = (struct page *)page_private(first_page);
890
891 reset_page(first_page);
892 __free_page(first_page);
893
894 /* zspage with only 1 system page */
895 if (!head_extra)
896 return;
897
898 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
899 list_del(&nextp->lru);
900 reset_page(nextp);
901 __free_page(nextp);
902 }
903 reset_page(head_extra);
904 __free_page(head_extra);
905 }
906
907 /* Initialize a newly allocated zspage */
init_zspage(struct page * first_page,struct size_class * class)908 static void init_zspage(struct page *first_page, struct size_class *class)
909 {
910 unsigned long off = 0;
911 struct page *page = first_page;
912
913 BUG_ON(!is_first_page(first_page));
914 while (page) {
915 struct page *next_page;
916 struct link_free *link;
917 unsigned int i = 1;
918 void *vaddr;
919
920 /*
921 * page->index stores offset of first object starting
922 * in the page. For the first page, this is always 0,
923 * so we use first_page->index (aka ->freelist) to store
924 * head of corresponding zspage's freelist.
925 */
926 if (page != first_page)
927 page->index = off;
928
929 vaddr = kmap_atomic(page);
930 link = (struct link_free *)vaddr + off / sizeof(*link);
931
932 while ((off += class->size) < PAGE_SIZE) {
933 link->next = location_to_obj(page, i++);
934 link += class->size / sizeof(*link);
935 }
936
937 /*
938 * We now come to the last (full or partial) object on this
939 * page, which must point to the first object on the next
940 * page (if present)
941 */
942 next_page = get_next_page(page);
943 link->next = location_to_obj(next_page, 0);
944 kunmap_atomic(vaddr);
945 page = next_page;
946 off %= PAGE_SIZE;
947 }
948 }
949
950 /*
951 * Allocate a zspage for the given size class
952 */
alloc_zspage(struct size_class * class,gfp_t flags)953 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
954 {
955 int i, error;
956 struct page *first_page = NULL, *uninitialized_var(prev_page);
957
958 /*
959 * Allocate individual pages and link them together as:
960 * 1. first page->private = first sub-page
961 * 2. all sub-pages are linked together using page->lru
962 * 3. each sub-page is linked to the first page using page->first_page
963 *
964 * For each size class, First/Head pages are linked together using
965 * page->lru. Also, we set PG_private to identify the first page
966 * (i.e. no other sub-page has this flag set) and PG_private_2 to
967 * identify the last page.
968 */
969 error = -ENOMEM;
970 for (i = 0; i < class->pages_per_zspage; i++) {
971 struct page *page;
972
973 page = alloc_page(flags);
974 if (!page)
975 goto cleanup;
976
977 INIT_LIST_HEAD(&page->lru);
978 if (i == 0) { /* first page */
979 SetPagePrivate(page);
980 set_page_private(page, 0);
981 first_page = page;
982 first_page->inuse = 0;
983 }
984 if (i == 1)
985 set_page_private(first_page, (unsigned long)page);
986 if (i >= 1)
987 page->first_page = first_page;
988 if (i >= 2)
989 list_add(&page->lru, &prev_page->lru);
990 if (i == class->pages_per_zspage - 1) /* last page */
991 SetPagePrivate2(page);
992 prev_page = page;
993 }
994
995 init_zspage(first_page, class);
996
997 first_page->freelist = location_to_obj(first_page, 0);
998 /* Maximum number of objects we can store in this zspage */
999 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1000
1001 error = 0; /* Success */
1002
1003 cleanup:
1004 if (unlikely(error) && first_page) {
1005 free_zspage(first_page);
1006 first_page = NULL;
1007 }
1008
1009 return first_page;
1010 }
1011
find_get_zspage(struct size_class * class)1012 static struct page *find_get_zspage(struct size_class *class)
1013 {
1014 int i;
1015 struct page *page;
1016
1017 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1018 page = class->fullness_list[i];
1019 if (page)
1020 break;
1021 }
1022
1023 return page;
1024 }
1025
1026 #ifdef CONFIG_PGTABLE_MAPPING
__zs_cpu_up(struct mapping_area * area)1027 static inline int __zs_cpu_up(struct mapping_area *area)
1028 {
1029 /*
1030 * Make sure we don't leak memory if a cpu UP notification
1031 * and zs_init() race and both call zs_cpu_up() on the same cpu
1032 */
1033 if (area->vm)
1034 return 0;
1035 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1036 if (!area->vm)
1037 return -ENOMEM;
1038 return 0;
1039 }
1040
__zs_cpu_down(struct mapping_area * area)1041 static inline void __zs_cpu_down(struct mapping_area *area)
1042 {
1043 if (area->vm)
1044 free_vm_area(area->vm);
1045 area->vm = NULL;
1046 }
1047
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1048 static inline void *__zs_map_object(struct mapping_area *area,
1049 struct page *pages[2], int off, int size)
1050 {
1051 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
1052 area->vm_addr = area->vm->addr;
1053 return area->vm_addr + off;
1054 }
1055
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1056 static inline void __zs_unmap_object(struct mapping_area *area,
1057 struct page *pages[2], int off, int size)
1058 {
1059 unsigned long addr = (unsigned long)area->vm_addr;
1060
1061 unmap_kernel_range(addr, PAGE_SIZE * 2);
1062 }
1063
1064 #else /* CONFIG_PGTABLE_MAPPING */
1065
__zs_cpu_up(struct mapping_area * area)1066 static inline int __zs_cpu_up(struct mapping_area *area)
1067 {
1068 /*
1069 * Make sure we don't leak memory if a cpu UP notification
1070 * and zs_init() race and both call zs_cpu_up() on the same cpu
1071 */
1072 if (area->vm_buf)
1073 return 0;
1074 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1075 if (!area->vm_buf)
1076 return -ENOMEM;
1077 return 0;
1078 }
1079
__zs_cpu_down(struct mapping_area * area)1080 static inline void __zs_cpu_down(struct mapping_area *area)
1081 {
1082 kfree(area->vm_buf);
1083 area->vm_buf = NULL;
1084 }
1085
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1086 static void *__zs_map_object(struct mapping_area *area,
1087 struct page *pages[2], int off, int size)
1088 {
1089 int sizes[2];
1090 void *addr;
1091 char *buf = area->vm_buf;
1092
1093 /* disable page faults to match kmap_atomic() return conditions */
1094 pagefault_disable();
1095
1096 /* no read fastpath */
1097 if (area->vm_mm == ZS_MM_WO)
1098 goto out;
1099
1100 sizes[0] = PAGE_SIZE - off;
1101 sizes[1] = size - sizes[0];
1102
1103 /* copy object to per-cpu buffer */
1104 addr = kmap_atomic(pages[0]);
1105 memcpy(buf, addr + off, sizes[0]);
1106 kunmap_atomic(addr);
1107 addr = kmap_atomic(pages[1]);
1108 memcpy(buf + sizes[0], addr, sizes[1]);
1109 kunmap_atomic(addr);
1110 out:
1111 return area->vm_buf;
1112 }
1113
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1114 static void __zs_unmap_object(struct mapping_area *area,
1115 struct page *pages[2], int off, int size)
1116 {
1117 int sizes[2];
1118 void *addr;
1119 char *buf;
1120
1121 /* no write fastpath */
1122 if (area->vm_mm == ZS_MM_RO)
1123 goto out;
1124
1125 buf = area->vm_buf;
1126 if (!area->huge) {
1127 buf = buf + ZS_HANDLE_SIZE;
1128 size -= ZS_HANDLE_SIZE;
1129 off += ZS_HANDLE_SIZE;
1130 }
1131
1132 sizes[0] = PAGE_SIZE - off;
1133 sizes[1] = size - sizes[0];
1134
1135 /* copy per-cpu buffer to object */
1136 addr = kmap_atomic(pages[0]);
1137 memcpy(addr + off, buf, sizes[0]);
1138 kunmap_atomic(addr);
1139 addr = kmap_atomic(pages[1]);
1140 memcpy(addr, buf + sizes[0], sizes[1]);
1141 kunmap_atomic(addr);
1142
1143 out:
1144 /* enable page faults to match kunmap_atomic() return conditions */
1145 pagefault_enable();
1146 }
1147
1148 #endif /* CONFIG_PGTABLE_MAPPING */
1149
zs_cpu_notifier(struct notifier_block * nb,unsigned long action,void * pcpu)1150 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1151 void *pcpu)
1152 {
1153 int ret, cpu = (long)pcpu;
1154 struct mapping_area *area;
1155
1156 switch (action) {
1157 case CPU_UP_PREPARE:
1158 area = &per_cpu(zs_map_area, cpu);
1159 ret = __zs_cpu_up(area);
1160 if (ret)
1161 return notifier_from_errno(ret);
1162 break;
1163 case CPU_DEAD:
1164 case CPU_UP_CANCELED:
1165 area = &per_cpu(zs_map_area, cpu);
1166 __zs_cpu_down(area);
1167 break;
1168 }
1169
1170 return NOTIFY_OK;
1171 }
1172
1173 static struct notifier_block zs_cpu_nb = {
1174 .notifier_call = zs_cpu_notifier
1175 };
1176
zs_register_cpu_notifier(void)1177 static int zs_register_cpu_notifier(void)
1178 {
1179 int cpu, uninitialized_var(ret);
1180
1181 cpu_notifier_register_begin();
1182
1183 __register_cpu_notifier(&zs_cpu_nb);
1184 for_each_online_cpu(cpu) {
1185 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1186 if (notifier_to_errno(ret))
1187 break;
1188 }
1189
1190 cpu_notifier_register_done();
1191 return notifier_to_errno(ret);
1192 }
1193
zs_unregister_cpu_notifier(void)1194 static void zs_unregister_cpu_notifier(void)
1195 {
1196 int cpu;
1197
1198 cpu_notifier_register_begin();
1199
1200 for_each_online_cpu(cpu)
1201 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1202 __unregister_cpu_notifier(&zs_cpu_nb);
1203
1204 cpu_notifier_register_done();
1205 }
1206
init_zs_size_classes(void)1207 static void init_zs_size_classes(void)
1208 {
1209 int nr;
1210
1211 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1212 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1213 nr += 1;
1214
1215 zs_size_classes = nr;
1216 }
1217
can_merge(struct size_class * prev,int size,int pages_per_zspage)1218 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1219 {
1220 if (prev->pages_per_zspage != pages_per_zspage)
1221 return false;
1222
1223 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1224 != get_maxobj_per_zspage(size, pages_per_zspage))
1225 return false;
1226
1227 return true;
1228 }
1229
zspage_full(struct page * page)1230 static bool zspage_full(struct page *page)
1231 {
1232 BUG_ON(!is_first_page(page));
1233
1234 return page->inuse == page->objects;
1235 }
1236
zs_get_total_pages(struct zs_pool * pool)1237 unsigned long zs_get_total_pages(struct zs_pool *pool)
1238 {
1239 return atomic_long_read(&pool->pages_allocated);
1240 }
1241 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1242
1243 /**
1244 * zs_map_object - get address of allocated object from handle.
1245 * @pool: pool from which the object was allocated
1246 * @handle: handle returned from zs_malloc
1247 *
1248 * Before using an object allocated from zs_malloc, it must be mapped using
1249 * this function. When done with the object, it must be unmapped using
1250 * zs_unmap_object.
1251 *
1252 * Only one object can be mapped per cpu at a time. There is no protection
1253 * against nested mappings.
1254 *
1255 * This function returns with preemption and page faults disabled.
1256 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1257 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1258 enum zs_mapmode mm)
1259 {
1260 struct page *page;
1261 unsigned long obj, obj_idx, off;
1262
1263 unsigned int class_idx;
1264 enum fullness_group fg;
1265 struct size_class *class;
1266 struct mapping_area *area;
1267 struct page *pages[2];
1268 void *ret;
1269
1270 BUG_ON(!handle);
1271
1272 /*
1273 * Because we use per-cpu mapping areas shared among the
1274 * pools/users, we can't allow mapping in interrupt context
1275 * because it can corrupt another users mappings.
1276 */
1277 BUG_ON(in_interrupt());
1278
1279 /* From now on, migration cannot move the object */
1280 pin_tag(handle);
1281
1282 obj = handle_to_obj(handle);
1283 obj_to_location(obj, &page, &obj_idx);
1284 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1285 class = pool->size_class[class_idx];
1286 off = obj_idx_to_offset(page, obj_idx, class->size);
1287
1288 area = &get_cpu_var(zs_map_area);
1289 area->vm_mm = mm;
1290 if (off + class->size <= PAGE_SIZE) {
1291 /* this object is contained entirely within a page */
1292 area->vm_addr = kmap_atomic(page);
1293 ret = area->vm_addr + off;
1294 goto out;
1295 }
1296
1297 /* this object spans two pages */
1298 pages[0] = page;
1299 pages[1] = get_next_page(page);
1300 BUG_ON(!pages[1]);
1301
1302 ret = __zs_map_object(area, pages, off, class->size);
1303 out:
1304 if (!class->huge)
1305 ret += ZS_HANDLE_SIZE;
1306
1307 return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(zs_map_object);
1310
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1311 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1312 {
1313 struct page *page;
1314 unsigned long obj, obj_idx, off;
1315
1316 unsigned int class_idx;
1317 enum fullness_group fg;
1318 struct size_class *class;
1319 struct mapping_area *area;
1320
1321 BUG_ON(!handle);
1322
1323 obj = handle_to_obj(handle);
1324 obj_to_location(obj, &page, &obj_idx);
1325 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1326 class = pool->size_class[class_idx];
1327 off = obj_idx_to_offset(page, obj_idx, class->size);
1328
1329 area = this_cpu_ptr(&zs_map_area);
1330 if (off + class->size <= PAGE_SIZE)
1331 kunmap_atomic(area->vm_addr);
1332 else {
1333 struct page *pages[2];
1334
1335 pages[0] = page;
1336 pages[1] = get_next_page(page);
1337 BUG_ON(!pages[1]);
1338
1339 __zs_unmap_object(area, pages, off, class->size);
1340 }
1341 put_cpu_var(zs_map_area);
1342 unpin_tag(handle);
1343 }
1344 EXPORT_SYMBOL_GPL(zs_unmap_object);
1345
obj_malloc(struct page * first_page,struct size_class * class,unsigned long handle)1346 static unsigned long obj_malloc(struct page *first_page,
1347 struct size_class *class, unsigned long handle)
1348 {
1349 unsigned long obj;
1350 struct link_free *link;
1351
1352 struct page *m_page;
1353 unsigned long m_objidx, m_offset;
1354 void *vaddr;
1355
1356 handle |= OBJ_ALLOCATED_TAG;
1357 obj = (unsigned long)first_page->freelist;
1358 obj_to_location(obj, &m_page, &m_objidx);
1359 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1360
1361 vaddr = kmap_atomic(m_page);
1362 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1363 first_page->freelist = link->next;
1364 if (!class->huge)
1365 /* record handle in the header of allocated chunk */
1366 link->handle = handle;
1367 else
1368 /* record handle in first_page->private */
1369 set_page_private(first_page, handle);
1370 kunmap_atomic(vaddr);
1371 first_page->inuse++;
1372 zs_stat_inc(class, OBJ_USED, 1);
1373
1374 return obj;
1375 }
1376
1377
1378 /**
1379 * zs_malloc - Allocate block of given size from pool.
1380 * @pool: pool to allocate from
1381 * @size: size of block to allocate
1382 *
1383 * On success, handle to the allocated object is returned,
1384 * otherwise 0.
1385 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1386 */
zs_malloc(struct zs_pool * pool,size_t size)1387 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1388 {
1389 unsigned long handle, obj;
1390 struct size_class *class;
1391 struct page *first_page;
1392
1393 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1394 return 0;
1395
1396 handle = alloc_handle(pool);
1397 if (!handle)
1398 return 0;
1399
1400 /* extra space in chunk to keep the handle */
1401 size += ZS_HANDLE_SIZE;
1402 class = pool->size_class[get_size_class_index(size)];
1403
1404 spin_lock(&class->lock);
1405 first_page = find_get_zspage(class);
1406
1407 if (!first_page) {
1408 spin_unlock(&class->lock);
1409 first_page = alloc_zspage(class, pool->flags);
1410 if (unlikely(!first_page)) {
1411 free_handle(pool, handle);
1412 return 0;
1413 }
1414
1415 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1416 atomic_long_add(class->pages_per_zspage,
1417 &pool->pages_allocated);
1418
1419 spin_lock(&class->lock);
1420 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1421 class->size, class->pages_per_zspage));
1422 }
1423
1424 obj = obj_malloc(first_page, class, handle);
1425 /* Now move the zspage to another fullness group, if required */
1426 fix_fullness_group(class, first_page);
1427 record_obj(handle, obj);
1428 spin_unlock(&class->lock);
1429
1430 return handle;
1431 }
1432 EXPORT_SYMBOL_GPL(zs_malloc);
1433
obj_free(struct zs_pool * pool,struct size_class * class,unsigned long obj)1434 static void obj_free(struct zs_pool *pool, struct size_class *class,
1435 unsigned long obj)
1436 {
1437 struct link_free *link;
1438 struct page *first_page, *f_page;
1439 unsigned long f_objidx, f_offset;
1440 void *vaddr;
1441 int class_idx;
1442 enum fullness_group fullness;
1443
1444 BUG_ON(!obj);
1445
1446 obj &= ~OBJ_ALLOCATED_TAG;
1447 obj_to_location(obj, &f_page, &f_objidx);
1448 first_page = get_first_page(f_page);
1449
1450 get_zspage_mapping(first_page, &class_idx, &fullness);
1451 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1452
1453 vaddr = kmap_atomic(f_page);
1454
1455 /* Insert this object in containing zspage's freelist */
1456 link = (struct link_free *)(vaddr + f_offset);
1457 link->next = first_page->freelist;
1458 if (class->huge)
1459 set_page_private(first_page, 0);
1460 kunmap_atomic(vaddr);
1461 first_page->freelist = (void *)obj;
1462 first_page->inuse--;
1463 zs_stat_dec(class, OBJ_USED, 1);
1464 }
1465
zs_free(struct zs_pool * pool,unsigned long handle)1466 void zs_free(struct zs_pool *pool, unsigned long handle)
1467 {
1468 struct page *first_page, *f_page;
1469 unsigned long obj, f_objidx;
1470 int class_idx;
1471 struct size_class *class;
1472 enum fullness_group fullness;
1473
1474 if (unlikely(!handle))
1475 return;
1476
1477 pin_tag(handle);
1478 obj = handle_to_obj(handle);
1479 obj_to_location(obj, &f_page, &f_objidx);
1480 first_page = get_first_page(f_page);
1481
1482 get_zspage_mapping(first_page, &class_idx, &fullness);
1483 class = pool->size_class[class_idx];
1484
1485 spin_lock(&class->lock);
1486 obj_free(pool, class, obj);
1487 fullness = fix_fullness_group(class, first_page);
1488 if (fullness == ZS_EMPTY) {
1489 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1490 class->size, class->pages_per_zspage));
1491 atomic_long_sub(class->pages_per_zspage,
1492 &pool->pages_allocated);
1493 free_zspage(first_page);
1494 }
1495 spin_unlock(&class->lock);
1496 unpin_tag(handle);
1497
1498 free_handle(pool, handle);
1499 }
1500 EXPORT_SYMBOL_GPL(zs_free);
1501
zs_object_copy(unsigned long src,unsigned long dst,struct size_class * class)1502 static void zs_object_copy(unsigned long src, unsigned long dst,
1503 struct size_class *class)
1504 {
1505 struct page *s_page, *d_page;
1506 unsigned long s_objidx, d_objidx;
1507 unsigned long s_off, d_off;
1508 void *s_addr, *d_addr;
1509 int s_size, d_size, size;
1510 int written = 0;
1511
1512 s_size = d_size = class->size;
1513
1514 obj_to_location(src, &s_page, &s_objidx);
1515 obj_to_location(dst, &d_page, &d_objidx);
1516
1517 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1518 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1519
1520 if (s_off + class->size > PAGE_SIZE)
1521 s_size = PAGE_SIZE - s_off;
1522
1523 if (d_off + class->size > PAGE_SIZE)
1524 d_size = PAGE_SIZE - d_off;
1525
1526 s_addr = kmap_atomic(s_page);
1527 d_addr = kmap_atomic(d_page);
1528
1529 while (1) {
1530 size = min(s_size, d_size);
1531 memcpy(d_addr + d_off, s_addr + s_off, size);
1532 written += size;
1533
1534 if (written == class->size)
1535 break;
1536
1537 s_off += size;
1538 s_size -= size;
1539 d_off += size;
1540 d_size -= size;
1541
1542 if (s_off >= PAGE_SIZE) {
1543 kunmap_atomic(d_addr);
1544 kunmap_atomic(s_addr);
1545 s_page = get_next_page(s_page);
1546 BUG_ON(!s_page);
1547 s_addr = kmap_atomic(s_page);
1548 d_addr = kmap_atomic(d_page);
1549 s_size = class->size - written;
1550 s_off = 0;
1551 }
1552
1553 if (d_off >= PAGE_SIZE) {
1554 kunmap_atomic(d_addr);
1555 d_page = get_next_page(d_page);
1556 BUG_ON(!d_page);
1557 d_addr = kmap_atomic(d_page);
1558 d_size = class->size - written;
1559 d_off = 0;
1560 }
1561 }
1562
1563 kunmap_atomic(d_addr);
1564 kunmap_atomic(s_addr);
1565 }
1566
1567 /*
1568 * Find alloced object in zspage from index object and
1569 * return handle.
1570 */
find_alloced_obj(struct page * page,int index,struct size_class * class)1571 static unsigned long find_alloced_obj(struct page *page, int index,
1572 struct size_class *class)
1573 {
1574 unsigned long head;
1575 int offset = 0;
1576 unsigned long handle = 0;
1577 void *addr = kmap_atomic(page);
1578
1579 if (!is_first_page(page))
1580 offset = page->index;
1581 offset += class->size * index;
1582
1583 while (offset < PAGE_SIZE) {
1584 head = obj_to_head(class, page, addr + offset);
1585 if (head & OBJ_ALLOCATED_TAG) {
1586 handle = head & ~OBJ_ALLOCATED_TAG;
1587 if (trypin_tag(handle))
1588 break;
1589 handle = 0;
1590 }
1591
1592 offset += class->size;
1593 index++;
1594 }
1595
1596 kunmap_atomic(addr);
1597 return handle;
1598 }
1599
1600 struct zs_compact_control {
1601 /* Source page for migration which could be a subpage of zspage. */
1602 struct page *s_page;
1603 /* Destination page for migration which should be a first page
1604 * of zspage. */
1605 struct page *d_page;
1606 /* Starting object index within @s_page which used for live object
1607 * in the subpage. */
1608 int index;
1609 /* how many of objects are migrated */
1610 int nr_migrated;
1611 };
1612
migrate_zspage(struct zs_pool * pool,struct size_class * class,struct zs_compact_control * cc)1613 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1614 struct zs_compact_control *cc)
1615 {
1616 unsigned long used_obj, free_obj;
1617 unsigned long handle;
1618 struct page *s_page = cc->s_page;
1619 struct page *d_page = cc->d_page;
1620 unsigned long index = cc->index;
1621 int nr_migrated = 0;
1622 int ret = 0;
1623
1624 while (1) {
1625 handle = find_alloced_obj(s_page, index, class);
1626 if (!handle) {
1627 s_page = get_next_page(s_page);
1628 if (!s_page)
1629 break;
1630 index = 0;
1631 continue;
1632 }
1633
1634 /* Stop if there is no more space */
1635 if (zspage_full(d_page)) {
1636 unpin_tag(handle);
1637 ret = -ENOMEM;
1638 break;
1639 }
1640
1641 used_obj = handle_to_obj(handle);
1642 free_obj = obj_malloc(d_page, class, handle);
1643 zs_object_copy(used_obj, free_obj, class);
1644 index++;
1645 record_obj(handle, free_obj);
1646 unpin_tag(handle);
1647 obj_free(pool, class, used_obj);
1648 nr_migrated++;
1649 }
1650
1651 /* Remember last position in this iteration */
1652 cc->s_page = s_page;
1653 cc->index = index;
1654 cc->nr_migrated = nr_migrated;
1655
1656 return ret;
1657 }
1658
alloc_target_page(struct size_class * class)1659 static struct page *alloc_target_page(struct size_class *class)
1660 {
1661 int i;
1662 struct page *page;
1663
1664 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1665 page = class->fullness_list[i];
1666 if (page) {
1667 remove_zspage(page, class, i);
1668 break;
1669 }
1670 }
1671
1672 return page;
1673 }
1674
putback_zspage(struct zs_pool * pool,struct size_class * class,struct page * first_page)1675 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1676 struct page *first_page)
1677 {
1678 enum fullness_group fullness;
1679
1680 BUG_ON(!is_first_page(first_page));
1681
1682 fullness = get_fullness_group(first_page);
1683 insert_zspage(first_page, class, fullness);
1684 set_zspage_mapping(first_page, class->index, fullness);
1685
1686 if (fullness == ZS_EMPTY) {
1687 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1688 class->size, class->pages_per_zspage));
1689 atomic_long_sub(class->pages_per_zspage,
1690 &pool->pages_allocated);
1691
1692 free_zspage(first_page);
1693 }
1694 }
1695
isolate_source_page(struct size_class * class)1696 static struct page *isolate_source_page(struct size_class *class)
1697 {
1698 struct page *page;
1699
1700 page = class->fullness_list[ZS_ALMOST_EMPTY];
1701 if (page)
1702 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1703
1704 return page;
1705 }
1706
__zs_compact(struct zs_pool * pool,struct size_class * class)1707 static unsigned long __zs_compact(struct zs_pool *pool,
1708 struct size_class *class)
1709 {
1710 int nr_to_migrate;
1711 struct zs_compact_control cc;
1712 struct page *src_page;
1713 struct page *dst_page = NULL;
1714 unsigned long nr_total_migrated = 0;
1715
1716 spin_lock(&class->lock);
1717 while ((src_page = isolate_source_page(class))) {
1718
1719 BUG_ON(!is_first_page(src_page));
1720
1721 /* The goal is to migrate all live objects in source page */
1722 nr_to_migrate = src_page->inuse;
1723 cc.index = 0;
1724 cc.s_page = src_page;
1725
1726 while ((dst_page = alloc_target_page(class))) {
1727 cc.d_page = dst_page;
1728 /*
1729 * If there is no more space in dst_page, try to
1730 * allocate another zspage.
1731 */
1732 if (!migrate_zspage(pool, class, &cc))
1733 break;
1734
1735 putback_zspage(pool, class, dst_page);
1736 nr_total_migrated += cc.nr_migrated;
1737 nr_to_migrate -= cc.nr_migrated;
1738 }
1739
1740 /* Stop if we couldn't find slot */
1741 if (dst_page == NULL)
1742 break;
1743
1744 putback_zspage(pool, class, dst_page);
1745 putback_zspage(pool, class, src_page);
1746 spin_unlock(&class->lock);
1747 nr_total_migrated += cc.nr_migrated;
1748 cond_resched();
1749 spin_lock(&class->lock);
1750 }
1751
1752 if (src_page)
1753 putback_zspage(pool, class, src_page);
1754
1755 spin_unlock(&class->lock);
1756
1757 return nr_total_migrated;
1758 }
1759
zs_compact(struct zs_pool * pool)1760 unsigned long zs_compact(struct zs_pool *pool)
1761 {
1762 int i;
1763 unsigned long nr_migrated = 0;
1764 struct size_class *class;
1765
1766 for (i = zs_size_classes - 1; i >= 0; i--) {
1767 class = pool->size_class[i];
1768 if (!class)
1769 continue;
1770 if (class->index != i)
1771 continue;
1772 nr_migrated += __zs_compact(pool, class);
1773 }
1774
1775 return nr_migrated;
1776 }
1777 EXPORT_SYMBOL_GPL(zs_compact);
1778
1779 /**
1780 * zs_create_pool - Creates an allocation pool to work from.
1781 * @flags: allocation flags used to allocate pool metadata
1782 *
1783 * This function must be called before anything when using
1784 * the zsmalloc allocator.
1785 *
1786 * On success, a pointer to the newly created pool is returned,
1787 * otherwise NULL.
1788 */
zs_create_pool(char * name,gfp_t flags)1789 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1790 {
1791 int i;
1792 struct zs_pool *pool;
1793 struct size_class *prev_class = NULL;
1794
1795 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1796 if (!pool)
1797 return NULL;
1798
1799 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1800 GFP_KERNEL);
1801 if (!pool->size_class) {
1802 kfree(pool);
1803 return NULL;
1804 }
1805
1806 pool->name = kstrdup(name, GFP_KERNEL);
1807 if (!pool->name)
1808 goto err;
1809
1810 if (create_handle_cache(pool))
1811 goto err;
1812
1813 /*
1814 * Iterate reversly, because, size of size_class that we want to use
1815 * for merging should be larger or equal to current size.
1816 */
1817 for (i = zs_size_classes - 1; i >= 0; i--) {
1818 int size;
1819 int pages_per_zspage;
1820 struct size_class *class;
1821
1822 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1823 if (size > ZS_MAX_ALLOC_SIZE)
1824 size = ZS_MAX_ALLOC_SIZE;
1825 pages_per_zspage = get_pages_per_zspage(size);
1826
1827 /*
1828 * size_class is used for normal zsmalloc operation such
1829 * as alloc/free for that size. Although it is natural that we
1830 * have one size_class for each size, there is a chance that we
1831 * can get more memory utilization if we use one size_class for
1832 * many different sizes whose size_class have same
1833 * characteristics. So, we makes size_class point to
1834 * previous size_class if possible.
1835 */
1836 if (prev_class) {
1837 if (can_merge(prev_class, size, pages_per_zspage)) {
1838 pool->size_class[i] = prev_class;
1839 continue;
1840 }
1841 }
1842
1843 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1844 if (!class)
1845 goto err;
1846
1847 class->size = size;
1848 class->index = i;
1849 class->pages_per_zspage = pages_per_zspage;
1850 if (pages_per_zspage == 1 &&
1851 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1852 class->huge = true;
1853 spin_lock_init(&class->lock);
1854 pool->size_class[i] = class;
1855
1856 prev_class = class;
1857 }
1858
1859 pool->flags = flags;
1860
1861 if (zs_pool_stat_create(name, pool))
1862 goto err;
1863
1864 return pool;
1865
1866 err:
1867 zs_destroy_pool(pool);
1868 return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(zs_create_pool);
1871
zs_destroy_pool(struct zs_pool * pool)1872 void zs_destroy_pool(struct zs_pool *pool)
1873 {
1874 int i;
1875
1876 zs_pool_stat_destroy(pool);
1877
1878 for (i = 0; i < zs_size_classes; i++) {
1879 int fg;
1880 struct size_class *class = pool->size_class[i];
1881
1882 if (!class)
1883 continue;
1884
1885 if (class->index != i)
1886 continue;
1887
1888 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1889 if (class->fullness_list[fg]) {
1890 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1891 class->size, fg);
1892 }
1893 }
1894 kfree(class);
1895 }
1896
1897 destroy_handle_cache(pool);
1898 kfree(pool->size_class);
1899 kfree(pool->name);
1900 kfree(pool);
1901 }
1902 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1903
zs_init(void)1904 static int __init zs_init(void)
1905 {
1906 int ret = zs_register_cpu_notifier();
1907
1908 if (ret)
1909 goto notifier_fail;
1910
1911 init_zs_size_classes();
1912
1913 #ifdef CONFIG_ZPOOL
1914 zpool_register_driver(&zs_zpool_driver);
1915 #endif
1916
1917 ret = zs_stat_init();
1918 if (ret) {
1919 pr_err("zs stat initialization failed\n");
1920 goto stat_fail;
1921 }
1922 return 0;
1923
1924 stat_fail:
1925 #ifdef CONFIG_ZPOOL
1926 zpool_unregister_driver(&zs_zpool_driver);
1927 #endif
1928 notifier_fail:
1929 zs_unregister_cpu_notifier();
1930
1931 return ret;
1932 }
1933
zs_exit(void)1934 static void __exit zs_exit(void)
1935 {
1936 #ifdef CONFIG_ZPOOL
1937 zpool_unregister_driver(&zs_zpool_driver);
1938 #endif
1939 zs_unregister_cpu_notifier();
1940
1941 zs_stat_exit();
1942 }
1943
1944 module_init(zs_init);
1945 module_exit(zs_exit);
1946
1947 MODULE_LICENSE("Dual BSD/GPL");
1948 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1949