1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
tcp_acceptable_seq(const struct sock * sk)94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
tcp_advertise_mss(struct sock * sk)118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
tcp_cwnd_restart(struct sock * sk,const struct dst_entry * dst)138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)191 void tcp_select_initial_window(int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (65535 << 14);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = (space / mss) * mss;
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window
223 * See RFC1323 for an explanation of the limit to 14
224 */
225 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
226 space = min_t(u32, space, *window_clamp);
227 while (space > 65535 && (*rcv_wscale) < 14) {
228 space >>= 1;
229 (*rcv_wscale)++;
230 }
231 }
232
233 /* Set initial window to a value enough for senders starting with
234 * initial congestion window of sysctl_tcp_default_init_rwnd. Place
235 * a limit on the initial window when mss is larger than 1460.
236 */
237 if (mss > (1 << *rcv_wscale)) {
238 int init_cwnd = sysctl_tcp_default_init_rwnd;
239 if (mss > 1460)
240 init_cwnd = max_t(u32, (1460 * init_cwnd) / mss, 2);
241 /* when initializing use the value from init_rcv_wnd
242 * rather than the default from above
243 */
244 if (init_rcv_wnd)
245 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
246 else
247 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
248 }
249
250 /* Set the clamp no higher than max representable value */
251 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
252 }
253 EXPORT_SYMBOL(tcp_select_initial_window);
254
255 /* Chose a new window to advertise, update state in tcp_sock for the
256 * socket, and return result with RFC1323 scaling applied. The return
257 * value can be stuffed directly into th->window for an outgoing
258 * frame.
259 */
tcp_select_window(struct sock * sk)260 static u16 tcp_select_window(struct sock *sk)
261 {
262 struct tcp_sock *tp = tcp_sk(sk);
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
265
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
272 *
273 * Relax Will Robinson.
274 */
275 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 }
277 tp->rcv_wnd = new_win;
278 tp->rcv_wup = tp->rcv_nxt;
279
280 /* Make sure we do not exceed the maximum possible
281 * scaled window.
282 */
283 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
284 new_win = min(new_win, MAX_TCP_WINDOW);
285 else
286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287
288 /* RFC1323 scaling applied */
289 new_win >>= tp->rx_opt.rcv_wscale;
290
291 /* If we advertise zero window, disable fast path. */
292 if (new_win == 0)
293 tp->pred_flags = 0;
294
295 return new_win;
296 }
297
298 /* Packet ECN state for a SYN-ACK */
TCP_ECN_send_synack(const struct tcp_sock * tp,struct sk_buff * skb)299 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
300 {
301 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
302 if (!(tp->ecn_flags & TCP_ECN_OK))
303 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
304 }
305
306 /* Packet ECN state for a SYN. */
TCP_ECN_send_syn(struct sock * sk,struct sk_buff * skb)307 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
308 {
309 struct tcp_sock *tp = tcp_sk(sk);
310
311 tp->ecn_flags = 0;
312 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
313 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
314 tp->ecn_flags = TCP_ECN_OK;
315 }
316 }
317
318 static __inline__ void
TCP_ECN_make_synack(const struct request_sock * req,struct tcphdr * th)319 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
320 {
321 if (inet_rsk(req)->ecn_ok)
322 th->ece = 1;
323 }
324
325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
326 * be sent.
327 */
TCP_ECN_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)328 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
329 int tcp_header_len)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 if (tp->ecn_flags & TCP_ECN_OK) {
334 /* Not-retransmitted data segment: set ECT and inject CWR. */
335 if (skb->len != tcp_header_len &&
336 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
337 INET_ECN_xmit(sk);
338 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
339 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
340 tcp_hdr(skb)->cwr = 1;
341 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
342 }
343 } else {
344 /* ACK or retransmitted segment: clear ECT|CE */
345 INET_ECN_dontxmit(sk);
346 }
347 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
348 tcp_hdr(skb)->ece = 1;
349 }
350 }
351
352 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
353 * auto increment end seqno.
354 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)355 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
356 {
357 skb->ip_summed = CHECKSUM_PARTIAL;
358 skb->csum = 0;
359
360 TCP_SKB_CB(skb)->tcp_flags = flags;
361 TCP_SKB_CB(skb)->sacked = 0;
362
363 skb_shinfo(skb)->gso_segs = 1;
364 skb_shinfo(skb)->gso_size = 0;
365 skb_shinfo(skb)->gso_type = 0;
366
367 TCP_SKB_CB(skb)->seq = seq;
368 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
369 seq++;
370 TCP_SKB_CB(skb)->end_seq = seq;
371 }
372
tcp_urg_mode(const struct tcp_sock * tp)373 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
374 {
375 return tp->snd_una != tp->snd_up;
376 }
377
378 #define OPTION_SACK_ADVERTISE (1 << 0)
379 #define OPTION_TS (1 << 1)
380 #define OPTION_MD5 (1 << 2)
381 #define OPTION_WSCALE (1 << 3)
382 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
383
384 struct tcp_out_options {
385 u16 options; /* bit field of OPTION_* */
386 u16 mss; /* 0 to disable */
387 u8 ws; /* window scale, 0 to disable */
388 u8 num_sack_blocks; /* number of SACK blocks to include */
389 u8 hash_size; /* bytes in hash_location */
390 __u8 *hash_location; /* temporary pointer, overloaded */
391 __u32 tsval, tsecr; /* need to include OPTION_TS */
392 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
393 };
394
395 /* Write previously computed TCP options to the packet.
396 *
397 * Beware: Something in the Internet is very sensitive to the ordering of
398 * TCP options, we learned this through the hard way, so be careful here.
399 * Luckily we can at least blame others for their non-compliance but from
400 * inter-operatibility perspective it seems that we're somewhat stuck with
401 * the ordering which we have been using if we want to keep working with
402 * those broken things (not that it currently hurts anybody as there isn't
403 * particular reason why the ordering would need to be changed).
404 *
405 * At least SACK_PERM as the first option is known to lead to a disaster
406 * (but it may well be that other scenarios fail similarly).
407 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)408 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
409 struct tcp_out_options *opts)
410 {
411 u16 options = opts->options; /* mungable copy */
412
413 if (unlikely(OPTION_MD5 & options)) {
414 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
415 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
416 /* overload cookie hash location */
417 opts->hash_location = (__u8 *)ptr;
418 ptr += 4;
419 }
420
421 if (unlikely(opts->mss)) {
422 *ptr++ = htonl((TCPOPT_MSS << 24) |
423 (TCPOLEN_MSS << 16) |
424 opts->mss);
425 }
426
427 if (likely(OPTION_TS & options)) {
428 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
429 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
430 (TCPOLEN_SACK_PERM << 16) |
431 (TCPOPT_TIMESTAMP << 8) |
432 TCPOLEN_TIMESTAMP);
433 options &= ~OPTION_SACK_ADVERTISE;
434 } else {
435 *ptr++ = htonl((TCPOPT_NOP << 24) |
436 (TCPOPT_NOP << 16) |
437 (TCPOPT_TIMESTAMP << 8) |
438 TCPOLEN_TIMESTAMP);
439 }
440 *ptr++ = htonl(opts->tsval);
441 *ptr++ = htonl(opts->tsecr);
442 }
443
444 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
445 *ptr++ = htonl((TCPOPT_NOP << 24) |
446 (TCPOPT_NOP << 16) |
447 (TCPOPT_SACK_PERM << 8) |
448 TCPOLEN_SACK_PERM);
449 }
450
451 if (unlikely(OPTION_WSCALE & options)) {
452 *ptr++ = htonl((TCPOPT_NOP << 24) |
453 (TCPOPT_WINDOW << 16) |
454 (TCPOLEN_WINDOW << 8) |
455 opts->ws);
456 }
457
458 if (unlikely(opts->num_sack_blocks)) {
459 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
460 tp->duplicate_sack : tp->selective_acks;
461 int this_sack;
462
463 *ptr++ = htonl((TCPOPT_NOP << 24) |
464 (TCPOPT_NOP << 16) |
465 (TCPOPT_SACK << 8) |
466 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
467 TCPOLEN_SACK_PERBLOCK)));
468
469 for (this_sack = 0; this_sack < opts->num_sack_blocks;
470 ++this_sack) {
471 *ptr++ = htonl(sp[this_sack].start_seq);
472 *ptr++ = htonl(sp[this_sack].end_seq);
473 }
474
475 tp->rx_opt.dsack = 0;
476 }
477
478 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
479 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
480
481 *ptr++ = htonl((TCPOPT_EXP << 24) |
482 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
483 TCPOPT_FASTOPEN_MAGIC);
484
485 memcpy(ptr, foc->val, foc->len);
486 if ((foc->len & 3) == 2) {
487 u8 *align = ((u8 *)ptr) + foc->len;
488 align[0] = align[1] = TCPOPT_NOP;
489 }
490 ptr += (foc->len + 3) >> 2;
491 }
492 }
493
494 /* Compute TCP options for SYN packets. This is not the final
495 * network wire format yet.
496 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)497 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
498 struct tcp_out_options *opts,
499 struct tcp_md5sig_key **md5)
500 {
501 struct tcp_sock *tp = tcp_sk(sk);
502 unsigned int remaining = MAX_TCP_OPTION_SPACE;
503 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
504
505 #ifdef CONFIG_TCP_MD5SIG
506 *md5 = tp->af_specific->md5_lookup(sk, sk);
507 if (*md5) {
508 opts->options |= OPTION_MD5;
509 remaining -= TCPOLEN_MD5SIG_ALIGNED;
510 }
511 #else
512 *md5 = NULL;
513 #endif
514
515 /* We always get an MSS option. The option bytes which will be seen in
516 * normal data packets should timestamps be used, must be in the MSS
517 * advertised. But we subtract them from tp->mss_cache so that
518 * calculations in tcp_sendmsg are simpler etc. So account for this
519 * fact here if necessary. If we don't do this correctly, as a
520 * receiver we won't recognize data packets as being full sized when we
521 * should, and thus we won't abide by the delayed ACK rules correctly.
522 * SACKs don't matter, we never delay an ACK when we have any of those
523 * going out. */
524 opts->mss = tcp_advertise_mss(sk);
525 remaining -= TCPOLEN_MSS_ALIGNED;
526
527 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
528 opts->options |= OPTION_TS;
529 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
530 opts->tsecr = tp->rx_opt.ts_recent;
531 remaining -= TCPOLEN_TSTAMP_ALIGNED;
532 }
533 if (likely(sysctl_tcp_window_scaling)) {
534 opts->ws = tp->rx_opt.rcv_wscale;
535 opts->options |= OPTION_WSCALE;
536 remaining -= TCPOLEN_WSCALE_ALIGNED;
537 }
538 if (likely(sysctl_tcp_sack)) {
539 opts->options |= OPTION_SACK_ADVERTISE;
540 if (unlikely(!(OPTION_TS & opts->options)))
541 remaining -= TCPOLEN_SACKPERM_ALIGNED;
542 }
543
544 if (fastopen && fastopen->cookie.len >= 0) {
545 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
546 need = (need + 3) & ~3U; /* Align to 32 bits */
547 if (remaining >= need) {
548 opts->options |= OPTION_FAST_OPEN_COOKIE;
549 opts->fastopen_cookie = &fastopen->cookie;
550 remaining -= need;
551 tp->syn_fastopen = 1;
552 }
553 }
554
555 return MAX_TCP_OPTION_SPACE - remaining;
556 }
557
558 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5,struct tcp_fastopen_cookie * foc)559 static unsigned int tcp_synack_options(struct sock *sk,
560 struct request_sock *req,
561 unsigned int mss, struct sk_buff *skb,
562 struct tcp_out_options *opts,
563 struct tcp_md5sig_key **md5,
564 struct tcp_fastopen_cookie *foc)
565 {
566 struct inet_request_sock *ireq = inet_rsk(req);
567 unsigned int remaining = MAX_TCP_OPTION_SPACE;
568
569 #ifdef CONFIG_TCP_MD5SIG
570 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
571 if (*md5) {
572 opts->options |= OPTION_MD5;
573 remaining -= TCPOLEN_MD5SIG_ALIGNED;
574
575 /* We can't fit any SACK blocks in a packet with MD5 + TS
576 * options. There was discussion about disabling SACK
577 * rather than TS in order to fit in better with old,
578 * buggy kernels, but that was deemed to be unnecessary.
579 */
580 ireq->tstamp_ok &= !ireq->sack_ok;
581 }
582 #else
583 *md5 = NULL;
584 #endif
585
586 /* We always send an MSS option. */
587 opts->mss = mss;
588 remaining -= TCPOLEN_MSS_ALIGNED;
589
590 if (likely(ireq->wscale_ok)) {
591 opts->ws = ireq->rcv_wscale;
592 opts->options |= OPTION_WSCALE;
593 remaining -= TCPOLEN_WSCALE_ALIGNED;
594 }
595 if (likely(ireq->tstamp_ok)) {
596 opts->options |= OPTION_TS;
597 opts->tsval = TCP_SKB_CB(skb)->when;
598 opts->tsecr = req->ts_recent;
599 remaining -= TCPOLEN_TSTAMP_ALIGNED;
600 }
601 if (likely(ireq->sack_ok)) {
602 opts->options |= OPTION_SACK_ADVERTISE;
603 if (unlikely(!ireq->tstamp_ok))
604 remaining -= TCPOLEN_SACKPERM_ALIGNED;
605 }
606 if (foc != NULL) {
607 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
608 need = (need + 3) & ~3U; /* Align to 32 bits */
609 if (remaining >= need) {
610 opts->options |= OPTION_FAST_OPEN_COOKIE;
611 opts->fastopen_cookie = foc;
612 remaining -= need;
613 }
614 }
615
616 return MAX_TCP_OPTION_SPACE - remaining;
617 }
618
619 /* Compute TCP options for ESTABLISHED sockets. This is not the
620 * final wire format yet.
621 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)622 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
623 struct tcp_out_options *opts,
624 struct tcp_md5sig_key **md5)
625 {
626 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
627 struct tcp_sock *tp = tcp_sk(sk);
628 unsigned int size = 0;
629 unsigned int eff_sacks;
630
631 #ifdef CONFIG_TCP_MD5SIG
632 *md5 = tp->af_specific->md5_lookup(sk, sk);
633 if (unlikely(*md5)) {
634 opts->options |= OPTION_MD5;
635 size += TCPOLEN_MD5SIG_ALIGNED;
636 }
637 #else
638 *md5 = NULL;
639 #endif
640
641 if (likely(tp->rx_opt.tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
644 opts->tsecr = tp->rx_opt.ts_recent;
645 size += TCPOLEN_TSTAMP_ALIGNED;
646 }
647
648 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
649 if (unlikely(eff_sacks)) {
650 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
651 opts->num_sack_blocks =
652 min_t(unsigned int, eff_sacks,
653 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
654 TCPOLEN_SACK_PERBLOCK);
655 size += TCPOLEN_SACK_BASE_ALIGNED +
656 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
657 }
658
659 return size;
660 }
661
662
663 /* TCP SMALL QUEUES (TSQ)
664 *
665 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
666 * to reduce RTT and bufferbloat.
667 * We do this using a special skb destructor (tcp_wfree).
668 *
669 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
670 * needs to be reallocated in a driver.
671 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
672 *
673 * Since transmit from skb destructor is forbidden, we use a tasklet
674 * to process all sockets that eventually need to send more skbs.
675 * We use one tasklet per cpu, with its own queue of sockets.
676 */
677 struct tsq_tasklet {
678 struct tasklet_struct tasklet;
679 struct list_head head; /* queue of tcp sockets */
680 };
681 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
682
tcp_tsq_handler(struct sock * sk)683 static void tcp_tsq_handler(struct sock *sk)
684 {
685 if ((1 << sk->sk_state) &
686 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
687 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
688 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
689 }
690 /*
691 * One tasklest per cpu tries to send more skbs.
692 * We run in tasklet context but need to disable irqs when
693 * transfering tsq->head because tcp_wfree() might
694 * interrupt us (non NAPI drivers)
695 */
tcp_tasklet_func(unsigned long data)696 static void tcp_tasklet_func(unsigned long data)
697 {
698 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
699 LIST_HEAD(list);
700 unsigned long flags;
701 struct list_head *q, *n;
702 struct tcp_sock *tp;
703 struct sock *sk;
704
705 local_irq_save(flags);
706 list_splice_init(&tsq->head, &list);
707 local_irq_restore(flags);
708
709 list_for_each_safe(q, n, &list) {
710 tp = list_entry(q, struct tcp_sock, tsq_node);
711 list_del(&tp->tsq_node);
712
713 sk = (struct sock *)tp;
714 bh_lock_sock(sk);
715
716 if (!sock_owned_by_user(sk)) {
717 tcp_tsq_handler(sk);
718 } else {
719 /* defer the work to tcp_release_cb() */
720 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
721 }
722 bh_unlock_sock(sk);
723
724 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
725 sk_free(sk);
726 }
727 }
728
729 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
730 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
731 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
732 (1UL << TCP_MTU_REDUCED_DEFERRED))
733 /**
734 * tcp_release_cb - tcp release_sock() callback
735 * @sk: socket
736 *
737 * called from release_sock() to perform protocol dependent
738 * actions before socket release.
739 */
tcp_release_cb(struct sock * sk)740 void tcp_release_cb(struct sock *sk)
741 {
742 struct tcp_sock *tp = tcp_sk(sk);
743 unsigned long flags, nflags;
744
745 /* perform an atomic operation only if at least one flag is set */
746 do {
747 flags = tp->tsq_flags;
748 if (!(flags & TCP_DEFERRED_ALL))
749 return;
750 nflags = flags & ~TCP_DEFERRED_ALL;
751 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
752
753 if (flags & (1UL << TCP_TSQ_DEFERRED))
754 tcp_tsq_handler(sk);
755
756 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
757 tcp_write_timer_handler(sk);
758 __sock_put(sk);
759 }
760 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
761 tcp_delack_timer_handler(sk);
762 __sock_put(sk);
763 }
764 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
765 sk->sk_prot->mtu_reduced(sk);
766 __sock_put(sk);
767 }
768 }
769 EXPORT_SYMBOL(tcp_release_cb);
770
tcp_tasklet_init(void)771 void __init tcp_tasklet_init(void)
772 {
773 int i;
774
775 for_each_possible_cpu(i) {
776 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
777
778 INIT_LIST_HEAD(&tsq->head);
779 tasklet_init(&tsq->tasklet,
780 tcp_tasklet_func,
781 (unsigned long)tsq);
782 }
783 }
784
785 /*
786 * Write buffer destructor automatically called from kfree_skb.
787 * We cant xmit new skbs from this context, as we might already
788 * hold qdisc lock.
789 */
tcp_wfree(struct sk_buff * skb)790 void tcp_wfree(struct sk_buff *skb)
791 {
792 struct sock *sk = skb->sk;
793 struct tcp_sock *tp = tcp_sk(sk);
794
795 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
796 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
797 unsigned long flags;
798 struct tsq_tasklet *tsq;
799
800 /* Keep a ref on socket.
801 * This last ref will be released in tcp_tasklet_func()
802 */
803 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
804
805 /* queue this socket to tasklet queue */
806 local_irq_save(flags);
807 tsq = &__get_cpu_var(tsq_tasklet);
808 list_add(&tp->tsq_node, &tsq->head);
809 tasklet_schedule(&tsq->tasklet);
810 local_irq_restore(flags);
811 } else {
812 sock_wfree(skb);
813 }
814 }
815
816 /* This routine actually transmits TCP packets queued in by
817 * tcp_do_sendmsg(). This is used by both the initial
818 * transmission and possible later retransmissions.
819 * All SKB's seen here are completely headerless. It is our
820 * job to build the TCP header, and pass the packet down to
821 * IP so it can do the same plus pass the packet off to the
822 * device.
823 *
824 * We are working here with either a clone of the original
825 * SKB, or a fresh unique copy made by the retransmit engine.
826 */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)827 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
828 gfp_t gfp_mask)
829 {
830 const struct inet_connection_sock *icsk = inet_csk(sk);
831 struct inet_sock *inet;
832 struct tcp_sock *tp;
833 struct tcp_skb_cb *tcb;
834 struct tcp_out_options opts;
835 unsigned int tcp_options_size, tcp_header_size;
836 struct tcp_md5sig_key *md5;
837 struct tcphdr *th;
838 int err;
839
840 BUG_ON(!skb || !tcp_skb_pcount(skb));
841
842 /* If congestion control is doing timestamping, we must
843 * take such a timestamp before we potentially clone/copy.
844 */
845 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
846 __net_timestamp(skb);
847
848 if (likely(clone_it)) {
849 const struct sk_buff *fclone = skb + 1;
850
851 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
852 fclone->fclone == SKB_FCLONE_CLONE))
853 NET_INC_STATS_BH(sock_net(sk),
854 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
855
856 if (unlikely(skb_cloned(skb)))
857 skb = pskb_copy(skb, gfp_mask);
858 else
859 skb = skb_clone(skb, gfp_mask);
860 if (unlikely(!skb))
861 return -ENOBUFS;
862 }
863
864 inet = inet_sk(sk);
865 tp = tcp_sk(sk);
866 tcb = TCP_SKB_CB(skb);
867 memset(&opts, 0, sizeof(opts));
868
869 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
870 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
871 else
872 tcp_options_size = tcp_established_options(sk, skb, &opts,
873 &md5);
874 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
875
876 if (tcp_packets_in_flight(tp) == 0)
877 tcp_ca_event(sk, CA_EVENT_TX_START);
878
879 /* if no packet is in qdisc/device queue, then allow XPS to select
880 * another queue.
881 */
882 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
883
884 skb_push(skb, tcp_header_size);
885 skb_reset_transport_header(skb);
886
887 skb_orphan(skb);
888 skb->sk = sk;
889 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
890 tcp_wfree : sock_wfree;
891 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
892
893 /* Build TCP header and checksum it. */
894 th = tcp_hdr(skb);
895 th->source = inet->inet_sport;
896 th->dest = inet->inet_dport;
897 th->seq = htonl(tcb->seq);
898 th->ack_seq = htonl(tp->rcv_nxt);
899 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
900 tcb->tcp_flags);
901
902 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
903 /* RFC1323: The window in SYN & SYN/ACK segments
904 * is never scaled.
905 */
906 th->window = htons(min(tp->rcv_wnd, 65535U));
907 } else {
908 th->window = htons(tcp_select_window(sk));
909 }
910 th->check = 0;
911 th->urg_ptr = 0;
912
913 /* The urg_mode check is necessary during a below snd_una win probe */
914 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
915 if (before(tp->snd_up, tcb->seq + 0x10000)) {
916 th->urg_ptr = htons(tp->snd_up - tcb->seq);
917 th->urg = 1;
918 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
919 th->urg_ptr = htons(0xFFFF);
920 th->urg = 1;
921 }
922 }
923
924 tcp_options_write((__be32 *)(th + 1), tp, &opts);
925 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
926 TCP_ECN_send(sk, skb, tcp_header_size);
927
928 #ifdef CONFIG_TCP_MD5SIG
929 /* Calculate the MD5 hash, as we have all we need now */
930 if (md5) {
931 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
932 tp->af_specific->calc_md5_hash(opts.hash_location,
933 md5, sk, NULL, skb);
934 }
935 #endif
936
937 icsk->icsk_af_ops->send_check(sk, skb);
938
939 if (likely(tcb->tcp_flags & TCPHDR_ACK))
940 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
941
942 if (skb->len != tcp_header_size)
943 tcp_event_data_sent(tp, sk);
944
945 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
946 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
947 tcp_skb_pcount(skb));
948
949 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
950 if (likely(err <= 0))
951 return err;
952
953 tcp_enter_cwr(sk, 1);
954
955 return net_xmit_eval(err);
956 }
957
958 /* This routine just queues the buffer for sending.
959 *
960 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
961 * otherwise socket can stall.
962 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)963 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
964 {
965 struct tcp_sock *tp = tcp_sk(sk);
966
967 /* Advance write_seq and place onto the write_queue. */
968 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
969 skb_header_release(skb);
970 tcp_add_write_queue_tail(sk, skb);
971 sk->sk_wmem_queued += skb->truesize;
972 sk_mem_charge(sk, skb->truesize);
973 }
974
975 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)976 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
977 unsigned int mss_now)
978 {
979 if (skb->len <= mss_now || !sk_can_gso(sk) ||
980 skb->ip_summed == CHECKSUM_NONE) {
981 /* Avoid the costly divide in the normal
982 * non-TSO case.
983 */
984 skb_shinfo(skb)->gso_segs = 1;
985 skb_shinfo(skb)->gso_size = 0;
986 skb_shinfo(skb)->gso_type = 0;
987 } else {
988 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
989 skb_shinfo(skb)->gso_size = mss_now;
990 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
991 }
992 }
993
994 /* When a modification to fackets out becomes necessary, we need to check
995 * skb is counted to fackets_out or not.
996 */
tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)997 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
998 int decr)
999 {
1000 struct tcp_sock *tp = tcp_sk(sk);
1001
1002 if (!tp->sacked_out || tcp_is_reno(tp))
1003 return;
1004
1005 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1006 tp->fackets_out -= decr;
1007 }
1008
1009 /* Pcount in the middle of the write queue got changed, we need to do various
1010 * tweaks to fix counters
1011 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1012 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1013 {
1014 struct tcp_sock *tp = tcp_sk(sk);
1015
1016 tp->packets_out -= decr;
1017
1018 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1019 tp->sacked_out -= decr;
1020 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1021 tp->retrans_out -= decr;
1022 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1023 tp->lost_out -= decr;
1024
1025 /* Reno case is special. Sigh... */
1026 if (tcp_is_reno(tp) && decr > 0)
1027 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1028
1029 tcp_adjust_fackets_out(sk, skb, decr);
1030
1031 if (tp->lost_skb_hint &&
1032 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1033 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1034 tp->lost_cnt_hint -= decr;
1035
1036 tcp_verify_left_out(tp);
1037 }
1038
1039 /* Function to create two new TCP segments. Shrinks the given segment
1040 * to the specified size and appends a new segment with the rest of the
1041 * packet to the list. This won't be called frequently, I hope.
1042 * Remember, these are still headerless SKBs at this point.
1043 */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now)1044 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1045 unsigned int mss_now)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct sk_buff *buff;
1049 int nsize, old_factor;
1050 int nlen;
1051 u8 flags;
1052
1053 if (WARN_ON(len > skb->len))
1054 return -EINVAL;
1055
1056 nsize = skb_headlen(skb) - len;
1057 if (nsize < 0)
1058 nsize = 0;
1059
1060 if (skb_cloned(skb) &&
1061 skb_is_nonlinear(skb) &&
1062 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1063 return -ENOMEM;
1064
1065 /* Get a new skb... force flag on. */
1066 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1067 if (buff == NULL)
1068 return -ENOMEM; /* We'll just try again later. */
1069
1070 sk->sk_wmem_queued += buff->truesize;
1071 sk_mem_charge(sk, buff->truesize);
1072 nlen = skb->len - len - nsize;
1073 buff->truesize += nlen;
1074 skb->truesize -= nlen;
1075
1076 /* Correct the sequence numbers. */
1077 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1078 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1079 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1080
1081 /* PSH and FIN should only be set in the second packet. */
1082 flags = TCP_SKB_CB(skb)->tcp_flags;
1083 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1084 TCP_SKB_CB(buff)->tcp_flags = flags;
1085 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1086
1087 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1088 /* Copy and checksum data tail into the new buffer. */
1089 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1090 skb_put(buff, nsize),
1091 nsize, 0);
1092
1093 skb_trim(skb, len);
1094
1095 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1096 } else {
1097 skb->ip_summed = CHECKSUM_PARTIAL;
1098 skb_split(skb, buff, len);
1099 }
1100
1101 buff->ip_summed = skb->ip_summed;
1102
1103 /* Looks stupid, but our code really uses when of
1104 * skbs, which it never sent before. --ANK
1105 */
1106 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1107 buff->tstamp = skb->tstamp;
1108
1109 old_factor = tcp_skb_pcount(skb);
1110
1111 /* Fix up tso_factor for both original and new SKB. */
1112 tcp_set_skb_tso_segs(sk, skb, mss_now);
1113 tcp_set_skb_tso_segs(sk, buff, mss_now);
1114
1115 /* If this packet has been sent out already, we must
1116 * adjust the various packet counters.
1117 */
1118 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1119 int diff = old_factor - tcp_skb_pcount(skb) -
1120 tcp_skb_pcount(buff);
1121
1122 if (diff)
1123 tcp_adjust_pcount(sk, skb, diff);
1124 }
1125
1126 /* Link BUFF into the send queue. */
1127 skb_header_release(buff);
1128 tcp_insert_write_queue_after(skb, buff, sk);
1129
1130 return 0;
1131 }
1132
1133 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1134 * eventually). The difference is that pulled data not copied, but
1135 * immediately discarded.
1136 */
__pskb_trim_head(struct sk_buff * skb,int len)1137 static void __pskb_trim_head(struct sk_buff *skb, int len)
1138 {
1139 int i, k, eat;
1140
1141 eat = min_t(int, len, skb_headlen(skb));
1142 if (eat) {
1143 __skb_pull(skb, eat);
1144 len -= eat;
1145 if (!len)
1146 return;
1147 }
1148 eat = len;
1149 k = 0;
1150 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1151 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1152
1153 if (size <= eat) {
1154 skb_frag_unref(skb, i);
1155 eat -= size;
1156 } else {
1157 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1158 if (eat) {
1159 skb_shinfo(skb)->frags[k].page_offset += eat;
1160 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1161 eat = 0;
1162 }
1163 k++;
1164 }
1165 }
1166 skb_shinfo(skb)->nr_frags = k;
1167
1168 skb_reset_tail_pointer(skb);
1169 skb->data_len -= len;
1170 skb->len = skb->data_len;
1171 }
1172
1173 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1174 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1175 {
1176 if (skb_unclone(skb, GFP_ATOMIC))
1177 return -ENOMEM;
1178
1179 __pskb_trim_head(skb, len);
1180
1181 TCP_SKB_CB(skb)->seq += len;
1182 skb->ip_summed = CHECKSUM_PARTIAL;
1183
1184 skb->truesize -= len;
1185 sk->sk_wmem_queued -= len;
1186 sk_mem_uncharge(sk, len);
1187 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1188
1189 /* Any change of skb->len requires recalculation of tso factor. */
1190 if (tcp_skb_pcount(skb) > 1)
1191 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1192
1193 return 0;
1194 }
1195
1196 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1197 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1198 {
1199 const struct tcp_sock *tp = tcp_sk(sk);
1200 const struct inet_connection_sock *icsk = inet_csk(sk);
1201 int mss_now;
1202
1203 /* Calculate base mss without TCP options:
1204 It is MMS_S - sizeof(tcphdr) of rfc1122
1205 */
1206 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1207
1208 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1209 if (icsk->icsk_af_ops->net_frag_header_len) {
1210 const struct dst_entry *dst = __sk_dst_get(sk);
1211
1212 if (dst && dst_allfrag(dst))
1213 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1214 }
1215
1216 /* Clamp it (mss_clamp does not include tcp options) */
1217 if (mss_now > tp->rx_opt.mss_clamp)
1218 mss_now = tp->rx_opt.mss_clamp;
1219
1220 /* Now subtract optional transport overhead */
1221 mss_now -= icsk->icsk_ext_hdr_len;
1222
1223 /* Then reserve room for full set of TCP options and 8 bytes of data */
1224 if (mss_now < 48)
1225 mss_now = 48;
1226 return mss_now;
1227 }
1228
1229 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1230 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1231 {
1232 /* Subtract TCP options size, not including SACKs */
1233 return __tcp_mtu_to_mss(sk, pmtu) -
1234 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1235 }
1236
1237 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1238 int tcp_mss_to_mtu(struct sock *sk, int mss)
1239 {
1240 const struct tcp_sock *tp = tcp_sk(sk);
1241 const struct inet_connection_sock *icsk = inet_csk(sk);
1242 int mtu;
1243
1244 mtu = mss +
1245 tp->tcp_header_len +
1246 icsk->icsk_ext_hdr_len +
1247 icsk->icsk_af_ops->net_header_len;
1248
1249 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1250 if (icsk->icsk_af_ops->net_frag_header_len) {
1251 const struct dst_entry *dst = __sk_dst_get(sk);
1252
1253 if (dst && dst_allfrag(dst))
1254 mtu += icsk->icsk_af_ops->net_frag_header_len;
1255 }
1256 return mtu;
1257 }
1258
1259 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1260 void tcp_mtup_init(struct sock *sk)
1261 {
1262 struct tcp_sock *tp = tcp_sk(sk);
1263 struct inet_connection_sock *icsk = inet_csk(sk);
1264
1265 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1266 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1267 icsk->icsk_af_ops->net_header_len;
1268 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1269 icsk->icsk_mtup.probe_size = 0;
1270 }
1271 EXPORT_SYMBOL(tcp_mtup_init);
1272
1273 /* This function synchronize snd mss to current pmtu/exthdr set.
1274
1275 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1276 for TCP options, but includes only bare TCP header.
1277
1278 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1279 It is minimum of user_mss and mss received with SYN.
1280 It also does not include TCP options.
1281
1282 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1283
1284 tp->mss_cache is current effective sending mss, including
1285 all tcp options except for SACKs. It is evaluated,
1286 taking into account current pmtu, but never exceeds
1287 tp->rx_opt.mss_clamp.
1288
1289 NOTE1. rfc1122 clearly states that advertised MSS
1290 DOES NOT include either tcp or ip options.
1291
1292 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1293 are READ ONLY outside this function. --ANK (980731)
1294 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1295 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct inet_connection_sock *icsk = inet_csk(sk);
1299 int mss_now;
1300
1301 if (icsk->icsk_mtup.search_high > pmtu)
1302 icsk->icsk_mtup.search_high = pmtu;
1303
1304 mss_now = tcp_mtu_to_mss(sk, pmtu);
1305 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1306
1307 /* And store cached results */
1308 icsk->icsk_pmtu_cookie = pmtu;
1309 if (icsk->icsk_mtup.enabled)
1310 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1311 tp->mss_cache = mss_now;
1312
1313 return mss_now;
1314 }
1315 EXPORT_SYMBOL(tcp_sync_mss);
1316
1317 /* Compute the current effective MSS, taking SACKs and IP options,
1318 * and even PMTU discovery events into account.
1319 */
tcp_current_mss(struct sock * sk)1320 unsigned int tcp_current_mss(struct sock *sk)
1321 {
1322 const struct tcp_sock *tp = tcp_sk(sk);
1323 const struct dst_entry *dst = __sk_dst_get(sk);
1324 u32 mss_now;
1325 unsigned int header_len;
1326 struct tcp_out_options opts;
1327 struct tcp_md5sig_key *md5;
1328
1329 mss_now = tp->mss_cache;
1330
1331 if (dst) {
1332 u32 mtu = dst_mtu(dst);
1333 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1334 mss_now = tcp_sync_mss(sk, mtu);
1335 }
1336
1337 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1338 sizeof(struct tcphdr);
1339 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1340 * some common options. If this is an odd packet (because we have SACK
1341 * blocks etc) then our calculated header_len will be different, and
1342 * we have to adjust mss_now correspondingly */
1343 if (header_len != tp->tcp_header_len) {
1344 int delta = (int) header_len - tp->tcp_header_len;
1345 mss_now -= delta;
1346 }
1347
1348 return mss_now;
1349 }
1350
1351 /* Congestion window validation. (RFC2861) */
tcp_cwnd_validate(struct sock * sk)1352 static void tcp_cwnd_validate(struct sock *sk)
1353 {
1354 struct tcp_sock *tp = tcp_sk(sk);
1355
1356 if (tp->packets_out >= tp->snd_cwnd) {
1357 /* Network is feed fully. */
1358 tp->snd_cwnd_used = 0;
1359 tp->snd_cwnd_stamp = tcp_time_stamp;
1360 } else {
1361 /* Network starves. */
1362 if (tp->packets_out > tp->snd_cwnd_used)
1363 tp->snd_cwnd_used = tp->packets_out;
1364
1365 if (sysctl_tcp_slow_start_after_idle &&
1366 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1367 tcp_cwnd_application_limited(sk);
1368 }
1369 }
1370
1371 /* Returns the portion of skb which can be sent right away without
1372 * introducing MSS oddities to segment boundaries. In rare cases where
1373 * mss_now != mss_cache, we will request caller to create a small skb
1374 * per input skb which could be mostly avoided here (if desired).
1375 *
1376 * We explicitly want to create a request for splitting write queue tail
1377 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1378 * thus all the complexity (cwnd_len is always MSS multiple which we
1379 * return whenever allowed by the other factors). Basically we need the
1380 * modulo only when the receiver window alone is the limiting factor or
1381 * when we would be allowed to send the split-due-to-Nagle skb fully.
1382 */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs)1383 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1384 unsigned int mss_now, unsigned int max_segs)
1385 {
1386 const struct tcp_sock *tp = tcp_sk(sk);
1387 u32 needed, window, max_len;
1388
1389 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1390 max_len = mss_now * max_segs;
1391
1392 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1393 return max_len;
1394
1395 needed = min(skb->len, window);
1396
1397 if (max_len <= needed)
1398 return max_len;
1399
1400 return needed - needed % mss_now;
1401 }
1402
1403 /* Can at least one segment of SKB be sent right now, according to the
1404 * congestion window rules? If so, return how many segments are allowed.
1405 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1406 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1407 const struct sk_buff *skb)
1408 {
1409 u32 in_flight, cwnd;
1410
1411 /* Don't be strict about the congestion window for the final FIN. */
1412 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1413 tcp_skb_pcount(skb) == 1)
1414 return 1;
1415
1416 in_flight = tcp_packets_in_flight(tp);
1417 cwnd = tp->snd_cwnd;
1418 if (in_flight < cwnd)
1419 return (cwnd - in_flight);
1420
1421 return 0;
1422 }
1423
1424 /* Initialize TSO state of a skb.
1425 * This must be invoked the first time we consider transmitting
1426 * SKB onto the wire.
1427 */
tcp_init_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1428 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1429 unsigned int mss_now)
1430 {
1431 int tso_segs = tcp_skb_pcount(skb);
1432
1433 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1434 tcp_set_skb_tso_segs(sk, skb, mss_now);
1435 tso_segs = tcp_skb_pcount(skb);
1436 }
1437 return tso_segs;
1438 }
1439
1440 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1441 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1442 {
1443 return after(tp->snd_sml, tp->snd_una) &&
1444 !after(tp->snd_sml, tp->snd_nxt);
1445 }
1446
1447 /* Return false, if packet can be sent now without violation Nagle's rules:
1448 * 1. It is full sized.
1449 * 2. Or it contains FIN. (already checked by caller)
1450 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1451 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1452 * With Minshall's modification: all sent small packets are ACKed.
1453 */
tcp_nagle_check(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int mss_now,int nonagle)1454 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1455 const struct sk_buff *skb,
1456 unsigned int mss_now, int nonagle)
1457 {
1458 return skb->len < mss_now &&
1459 ((nonagle & TCP_NAGLE_CORK) ||
1460 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1461 }
1462
1463 /* Return true if the Nagle test allows this packet to be
1464 * sent now.
1465 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1466 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1467 unsigned int cur_mss, int nonagle)
1468 {
1469 /* Nagle rule does not apply to frames, which sit in the middle of the
1470 * write_queue (they have no chances to get new data).
1471 *
1472 * This is implemented in the callers, where they modify the 'nonagle'
1473 * argument based upon the location of SKB in the send queue.
1474 */
1475 if (nonagle & TCP_NAGLE_PUSH)
1476 return true;
1477
1478 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1479 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1480 return true;
1481
1482 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1483 return true;
1484
1485 return false;
1486 }
1487
1488 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1489 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1490 const struct sk_buff *skb,
1491 unsigned int cur_mss)
1492 {
1493 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1494
1495 if (skb->len > cur_mss)
1496 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1497
1498 return !after(end_seq, tcp_wnd_end(tp));
1499 }
1500
1501 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1502 * should be put on the wire right now. If so, it returns the number of
1503 * packets allowed by the congestion window.
1504 */
tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1505 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1506 unsigned int cur_mss, int nonagle)
1507 {
1508 const struct tcp_sock *tp = tcp_sk(sk);
1509 unsigned int cwnd_quota;
1510
1511 tcp_init_tso_segs(sk, skb, cur_mss);
1512
1513 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1514 return 0;
1515
1516 cwnd_quota = tcp_cwnd_test(tp, skb);
1517 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1518 cwnd_quota = 0;
1519
1520 return cwnd_quota;
1521 }
1522
1523 /* Test if sending is allowed right now. */
tcp_may_send_now(struct sock * sk)1524 bool tcp_may_send_now(struct sock *sk)
1525 {
1526 const struct tcp_sock *tp = tcp_sk(sk);
1527 struct sk_buff *skb = tcp_send_head(sk);
1528
1529 return skb &&
1530 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1531 (tcp_skb_is_last(sk, skb) ?
1532 tp->nonagle : TCP_NAGLE_PUSH));
1533 }
1534
1535 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1536 * which is put after SKB on the list. It is very much like
1537 * tcp_fragment() except that it may make several kinds of assumptions
1538 * in order to speed up the splitting operation. In particular, we
1539 * know that all the data is in scatter-gather pages, and that the
1540 * packet has never been sent out before (and thus is not cloned).
1541 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1542 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1543 unsigned int mss_now, gfp_t gfp)
1544 {
1545 struct sk_buff *buff;
1546 int nlen = skb->len - len;
1547 u8 flags;
1548
1549 /* All of a TSO frame must be composed of paged data. */
1550 if (skb->len != skb->data_len)
1551 return tcp_fragment(sk, skb, len, mss_now);
1552
1553 buff = sk_stream_alloc_skb(sk, 0, gfp);
1554 if (unlikely(buff == NULL))
1555 return -ENOMEM;
1556
1557 sk->sk_wmem_queued += buff->truesize;
1558 sk_mem_charge(sk, buff->truesize);
1559 buff->truesize += nlen;
1560 skb->truesize -= nlen;
1561
1562 /* Correct the sequence numbers. */
1563 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1564 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1565 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1566
1567 /* PSH and FIN should only be set in the second packet. */
1568 flags = TCP_SKB_CB(skb)->tcp_flags;
1569 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1570 TCP_SKB_CB(buff)->tcp_flags = flags;
1571
1572 /* This packet was never sent out yet, so no SACK bits. */
1573 TCP_SKB_CB(buff)->sacked = 0;
1574
1575 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1576 skb_split(skb, buff, len);
1577
1578 /* Fix up tso_factor for both original and new SKB. */
1579 tcp_set_skb_tso_segs(sk, skb, mss_now);
1580 tcp_set_skb_tso_segs(sk, buff, mss_now);
1581
1582 /* Link BUFF into the send queue. */
1583 skb_header_release(buff);
1584 tcp_insert_write_queue_after(skb, buff, sk);
1585
1586 return 0;
1587 }
1588
1589 /* Try to defer sending, if possible, in order to minimize the amount
1590 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1591 *
1592 * This algorithm is from John Heffner.
1593 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb)1594 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1595 {
1596 struct tcp_sock *tp = tcp_sk(sk);
1597 const struct inet_connection_sock *icsk = inet_csk(sk);
1598 u32 send_win, cong_win, limit, in_flight;
1599 int win_divisor;
1600
1601 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1602 goto send_now;
1603
1604 if (icsk->icsk_ca_state != TCP_CA_Open)
1605 goto send_now;
1606
1607 /* Defer for less than two clock ticks. */
1608 if (tp->tso_deferred &&
1609 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1610 goto send_now;
1611
1612 in_flight = tcp_packets_in_flight(tp);
1613
1614 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1615
1616 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1617
1618 /* From in_flight test above, we know that cwnd > in_flight. */
1619 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1620
1621 limit = min(send_win, cong_win);
1622
1623 /* If a full-sized TSO skb can be sent, do it. */
1624 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1625 sk->sk_gso_max_segs * tp->mss_cache))
1626 goto send_now;
1627
1628 /* Middle in queue won't get any more data, full sendable already? */
1629 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1630 goto send_now;
1631
1632 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1633 if (win_divisor) {
1634 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1635
1636 /* If at least some fraction of a window is available,
1637 * just use it.
1638 */
1639 chunk /= win_divisor;
1640 if (limit >= chunk)
1641 goto send_now;
1642 } else {
1643 /* Different approach, try not to defer past a single
1644 * ACK. Receiver should ACK every other full sized
1645 * frame, so if we have space for more than 3 frames
1646 * then send now.
1647 */
1648 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1649 goto send_now;
1650 }
1651
1652 /* Ok, it looks like it is advisable to defer.
1653 * Do not rearm the timer if already set to not break TCP ACK clocking.
1654 */
1655 if (!tp->tso_deferred)
1656 tp->tso_deferred = 1 | (jiffies << 1);
1657
1658 return true;
1659
1660 send_now:
1661 tp->tso_deferred = 0;
1662 return false;
1663 }
1664
1665 /* Create a new MTU probe if we are ready.
1666 * MTU probe is regularly attempting to increase the path MTU by
1667 * deliberately sending larger packets. This discovers routing
1668 * changes resulting in larger path MTUs.
1669 *
1670 * Returns 0 if we should wait to probe (no cwnd available),
1671 * 1 if a probe was sent,
1672 * -1 otherwise
1673 */
tcp_mtu_probe(struct sock * sk)1674 static int tcp_mtu_probe(struct sock *sk)
1675 {
1676 struct tcp_sock *tp = tcp_sk(sk);
1677 struct inet_connection_sock *icsk = inet_csk(sk);
1678 struct sk_buff *skb, *nskb, *next;
1679 int len;
1680 int probe_size;
1681 int size_needed;
1682 int copy;
1683 int mss_now;
1684
1685 /* Not currently probing/verifying,
1686 * not in recovery,
1687 * have enough cwnd, and
1688 * not SACKing (the variable headers throw things off) */
1689 if (!icsk->icsk_mtup.enabled ||
1690 icsk->icsk_mtup.probe_size ||
1691 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1692 tp->snd_cwnd < 11 ||
1693 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1694 return -1;
1695
1696 /* Very simple search strategy: just double the MSS. */
1697 mss_now = tcp_current_mss(sk);
1698 probe_size = 2 * tp->mss_cache;
1699 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1700 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1701 /* TODO: set timer for probe_converge_event */
1702 return -1;
1703 }
1704
1705 /* Have enough data in the send queue to probe? */
1706 if (tp->write_seq - tp->snd_nxt < size_needed)
1707 return -1;
1708
1709 if (tp->snd_wnd < size_needed)
1710 return -1;
1711 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1712 return 0;
1713
1714 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1715 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1716 if (!tcp_packets_in_flight(tp))
1717 return -1;
1718 else
1719 return 0;
1720 }
1721
1722 /* We're allowed to probe. Build it now. */
1723 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1724 return -1;
1725 sk->sk_wmem_queued += nskb->truesize;
1726 sk_mem_charge(sk, nskb->truesize);
1727
1728 skb = tcp_send_head(sk);
1729
1730 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1731 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1732 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1733 TCP_SKB_CB(nskb)->sacked = 0;
1734 nskb->csum = 0;
1735 nskb->ip_summed = skb->ip_summed;
1736
1737 tcp_insert_write_queue_before(nskb, skb, sk);
1738
1739 len = 0;
1740 tcp_for_write_queue_from_safe(skb, next, sk) {
1741 copy = min_t(int, skb->len, probe_size - len);
1742 if (nskb->ip_summed)
1743 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1744 else
1745 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1746 skb_put(nskb, copy),
1747 copy, nskb->csum);
1748
1749 if (skb->len <= copy) {
1750 /* We've eaten all the data from this skb.
1751 * Throw it away. */
1752 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1753 tcp_unlink_write_queue(skb, sk);
1754 sk_wmem_free_skb(sk, skb);
1755 } else {
1756 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1757 ~(TCPHDR_FIN|TCPHDR_PSH);
1758 if (!skb_shinfo(skb)->nr_frags) {
1759 skb_pull(skb, copy);
1760 if (skb->ip_summed != CHECKSUM_PARTIAL)
1761 skb->csum = csum_partial(skb->data,
1762 skb->len, 0);
1763 } else {
1764 __pskb_trim_head(skb, copy);
1765 tcp_set_skb_tso_segs(sk, skb, mss_now);
1766 }
1767 TCP_SKB_CB(skb)->seq += copy;
1768 }
1769
1770 len += copy;
1771
1772 if (len >= probe_size)
1773 break;
1774 }
1775 tcp_init_tso_segs(sk, nskb, nskb->len);
1776
1777 /* We're ready to send. If this fails, the probe will
1778 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1779 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1780 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1781 /* Decrement cwnd here because we are sending
1782 * effectively two packets. */
1783 tp->snd_cwnd--;
1784 tcp_event_new_data_sent(sk, nskb);
1785
1786 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1787 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1788 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1789
1790 return 1;
1791 }
1792
1793 return -1;
1794 }
1795
1796 /* This routine writes packets to the network. It advances the
1797 * send_head. This happens as incoming acks open up the remote
1798 * window for us.
1799 *
1800 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1801 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1802 * account rare use of URG, this is not a big flaw.
1803 *
1804 * Send at most one packet when push_one > 0. Temporarily ignore
1805 * cwnd limit to force at most one packet out when push_one == 2.
1806
1807 * Returns true, if no segments are in flight and we have queued segments,
1808 * but cannot send anything now because of SWS or another problem.
1809 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1810 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1811 int push_one, gfp_t gfp)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 struct sk_buff *skb;
1815 unsigned int tso_segs, sent_pkts;
1816 int cwnd_quota;
1817 int result;
1818
1819 sent_pkts = 0;
1820
1821 if (!push_one) {
1822 /* Do MTU probing. */
1823 result = tcp_mtu_probe(sk);
1824 if (!result) {
1825 return false;
1826 } else if (result > 0) {
1827 sent_pkts = 1;
1828 }
1829 }
1830
1831 while ((skb = tcp_send_head(sk))) {
1832 unsigned int limit;
1833
1834
1835 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1836 BUG_ON(!tso_segs);
1837
1838 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1839 goto repair; /* Skip network transmission */
1840
1841 cwnd_quota = tcp_cwnd_test(tp, skb);
1842 if (!cwnd_quota) {
1843 if (push_one == 2)
1844 /* Force out a loss probe pkt. */
1845 cwnd_quota = 1;
1846 else
1847 break;
1848 }
1849
1850 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1851 break;
1852
1853 if (tso_segs == 1) {
1854 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1855 (tcp_skb_is_last(sk, skb) ?
1856 nonagle : TCP_NAGLE_PUSH))))
1857 break;
1858 } else {
1859 if (!push_one && tcp_tso_should_defer(sk, skb))
1860 break;
1861 }
1862
1863 /* TSQ : sk_wmem_alloc accounts skb truesize,
1864 * including skb overhead. But thats OK.
1865 */
1866 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1867 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1868 break;
1869 }
1870 limit = mss_now;
1871 if (tso_segs > 1 && !tcp_urg_mode(tp))
1872 limit = tcp_mss_split_point(sk, skb, mss_now,
1873 min_t(unsigned int,
1874 cwnd_quota,
1875 sk->sk_gso_max_segs));
1876
1877 if (skb->len > limit &&
1878 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1879 break;
1880
1881 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1882
1883 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1884 break;
1885
1886 repair:
1887 /* Advance the send_head. This one is sent out.
1888 * This call will increment packets_out.
1889 */
1890 tcp_event_new_data_sent(sk, skb);
1891
1892 tcp_minshall_update(tp, mss_now, skb);
1893 sent_pkts += tcp_skb_pcount(skb);
1894
1895 if (push_one)
1896 break;
1897 }
1898
1899 if (likely(sent_pkts)) {
1900 if (tcp_in_cwnd_reduction(sk))
1901 tp->prr_out += sent_pkts;
1902
1903 /* Send one loss probe per tail loss episode. */
1904 if (push_one != 2)
1905 tcp_schedule_loss_probe(sk);
1906 tcp_cwnd_validate(sk);
1907 return false;
1908 }
1909 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1910 }
1911
tcp_schedule_loss_probe(struct sock * sk)1912 bool tcp_schedule_loss_probe(struct sock *sk)
1913 {
1914 struct inet_connection_sock *icsk = inet_csk(sk);
1915 struct tcp_sock *tp = tcp_sk(sk);
1916 u32 timeout, tlp_time_stamp, rto_time_stamp;
1917 u32 rtt = tp->srtt >> 3;
1918
1919 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1920 return false;
1921 /* No consecutive loss probes. */
1922 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1923 tcp_rearm_rto(sk);
1924 return false;
1925 }
1926 /* Don't do any loss probe on a Fast Open connection before 3WHS
1927 * finishes.
1928 */
1929 if (sk->sk_state == TCP_SYN_RECV)
1930 return false;
1931
1932 /* TLP is only scheduled when next timer event is RTO. */
1933 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1934 return false;
1935
1936 /* Schedule a loss probe in 2*RTT for SACK capable connections
1937 * in Open state, that are either limited by cwnd or application.
1938 */
1939 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1940 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1941 return false;
1942
1943 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1944 tcp_send_head(sk))
1945 return false;
1946
1947 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1948 * for delayed ack when there's one outstanding packet.
1949 */
1950 timeout = rtt << 1;
1951 if (tp->packets_out == 1)
1952 timeout = max_t(u32, timeout,
1953 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1954 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1955
1956 /* If RTO is shorter, just schedule TLP in its place. */
1957 tlp_time_stamp = tcp_time_stamp + timeout;
1958 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1959 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1960 s32 delta = rto_time_stamp - tcp_time_stamp;
1961 if (delta > 0)
1962 timeout = delta;
1963 }
1964
1965 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1966 TCP_RTO_MAX);
1967 return true;
1968 }
1969
1970 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1971 * retransmit the last segment.
1972 */
tcp_send_loss_probe(struct sock * sk)1973 void tcp_send_loss_probe(struct sock *sk)
1974 {
1975 struct tcp_sock *tp = tcp_sk(sk);
1976 struct sk_buff *skb;
1977 int pcount;
1978 int mss = tcp_current_mss(sk);
1979 int err = -1;
1980
1981 if (tcp_send_head(sk) != NULL) {
1982 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1983 goto rearm_timer;
1984 }
1985
1986 /* At most one outstanding TLP retransmission. */
1987 if (tp->tlp_high_seq)
1988 goto rearm_timer;
1989
1990 /* Retransmit last segment. */
1991 skb = tcp_write_queue_tail(sk);
1992 if (WARN_ON(!skb))
1993 goto rearm_timer;
1994
1995 pcount = tcp_skb_pcount(skb);
1996 if (WARN_ON(!pcount))
1997 goto rearm_timer;
1998
1999 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2000 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2001 goto rearm_timer;
2002 skb = tcp_write_queue_tail(sk);
2003 }
2004
2005 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2006 goto rearm_timer;
2007
2008 /* Probe with zero data doesn't trigger fast recovery. */
2009 if (skb->len > 0)
2010 err = __tcp_retransmit_skb(sk, skb);
2011
2012 /* Record snd_nxt for loss detection. */
2013 if (likely(!err))
2014 tp->tlp_high_seq = tp->snd_nxt;
2015
2016 rearm_timer:
2017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2018 inet_csk(sk)->icsk_rto,
2019 TCP_RTO_MAX);
2020
2021 if (likely(!err))
2022 NET_INC_STATS_BH(sock_net(sk),
2023 LINUX_MIB_TCPLOSSPROBES);
2024 return;
2025 }
2026
2027 /* Push out any pending frames which were held back due to
2028 * TCP_CORK or attempt at coalescing tiny packets.
2029 * The socket must be locked by the caller.
2030 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2031 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2032 int nonagle)
2033 {
2034 /* If we are closed, the bytes will have to remain here.
2035 * In time closedown will finish, we empty the write queue and
2036 * all will be happy.
2037 */
2038 if (unlikely(sk->sk_state == TCP_CLOSE))
2039 return;
2040
2041 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2042 sk_gfp_atomic(sk, GFP_ATOMIC)))
2043 tcp_check_probe_timer(sk);
2044 }
2045
2046 /* Send _single_ skb sitting at the send head. This function requires
2047 * true push pending frames to setup probe timer etc.
2048 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2049 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2050 {
2051 struct sk_buff *skb = tcp_send_head(sk);
2052
2053 BUG_ON(!skb || skb->len < mss_now);
2054
2055 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2056 }
2057
2058 /* This function returns the amount that we can raise the
2059 * usable window based on the following constraints
2060 *
2061 * 1. The window can never be shrunk once it is offered (RFC 793)
2062 * 2. We limit memory per socket
2063 *
2064 * RFC 1122:
2065 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2066 * RECV.NEXT + RCV.WIN fixed until:
2067 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2068 *
2069 * i.e. don't raise the right edge of the window until you can raise
2070 * it at least MSS bytes.
2071 *
2072 * Unfortunately, the recommended algorithm breaks header prediction,
2073 * since header prediction assumes th->window stays fixed.
2074 *
2075 * Strictly speaking, keeping th->window fixed violates the receiver
2076 * side SWS prevention criteria. The problem is that under this rule
2077 * a stream of single byte packets will cause the right side of the
2078 * window to always advance by a single byte.
2079 *
2080 * Of course, if the sender implements sender side SWS prevention
2081 * then this will not be a problem.
2082 *
2083 * BSD seems to make the following compromise:
2084 *
2085 * If the free space is less than the 1/4 of the maximum
2086 * space available and the free space is less than 1/2 mss,
2087 * then set the window to 0.
2088 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2089 * Otherwise, just prevent the window from shrinking
2090 * and from being larger than the largest representable value.
2091 *
2092 * This prevents incremental opening of the window in the regime
2093 * where TCP is limited by the speed of the reader side taking
2094 * data out of the TCP receive queue. It does nothing about
2095 * those cases where the window is constrained on the sender side
2096 * because the pipeline is full.
2097 *
2098 * BSD also seems to "accidentally" limit itself to windows that are a
2099 * multiple of MSS, at least until the free space gets quite small.
2100 * This would appear to be a side effect of the mbuf implementation.
2101 * Combining these two algorithms results in the observed behavior
2102 * of having a fixed window size at almost all times.
2103 *
2104 * Below we obtain similar behavior by forcing the offered window to
2105 * a multiple of the mss when it is feasible to do so.
2106 *
2107 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2108 * Regular options like TIMESTAMP are taken into account.
2109 */
__tcp_select_window(struct sock * sk)2110 u32 __tcp_select_window(struct sock *sk)
2111 {
2112 struct inet_connection_sock *icsk = inet_csk(sk);
2113 struct tcp_sock *tp = tcp_sk(sk);
2114 /* MSS for the peer's data. Previous versions used mss_clamp
2115 * here. I don't know if the value based on our guesses
2116 * of peer's MSS is better for the performance. It's more correct
2117 * but may be worse for the performance because of rcv_mss
2118 * fluctuations. --SAW 1998/11/1
2119 */
2120 int mss = icsk->icsk_ack.rcv_mss;
2121 int free_space = tcp_space(sk);
2122 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2123 int window;
2124
2125 if (mss > full_space)
2126 mss = full_space;
2127
2128 if (free_space < (full_space >> 1)) {
2129 icsk->icsk_ack.quick = 0;
2130
2131 if (sk_under_memory_pressure(sk))
2132 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2133 4U * tp->advmss);
2134
2135 if (free_space < mss)
2136 return 0;
2137 }
2138
2139 if (free_space > tp->rcv_ssthresh)
2140 free_space = tp->rcv_ssthresh;
2141
2142 /* Don't do rounding if we are using window scaling, since the
2143 * scaled window will not line up with the MSS boundary anyway.
2144 */
2145 window = tp->rcv_wnd;
2146 if (tp->rx_opt.rcv_wscale) {
2147 window = free_space;
2148
2149 /* Advertise enough space so that it won't get scaled away.
2150 * Import case: prevent zero window announcement if
2151 * 1<<rcv_wscale > mss.
2152 */
2153 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2154 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2155 << tp->rx_opt.rcv_wscale);
2156 } else {
2157 /* Get the largest window that is a nice multiple of mss.
2158 * Window clamp already applied above.
2159 * If our current window offering is within 1 mss of the
2160 * free space we just keep it. This prevents the divide
2161 * and multiply from happening most of the time.
2162 * We also don't do any window rounding when the free space
2163 * is too small.
2164 */
2165 if (window <= free_space - mss || window > free_space)
2166 window = (free_space / mss) * mss;
2167 else if (mss == full_space &&
2168 free_space > window + (full_space >> 1))
2169 window = free_space;
2170 }
2171
2172 return window;
2173 }
2174
2175 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2176 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2180 int skb_size, next_skb_size;
2181
2182 skb_size = skb->len;
2183 next_skb_size = next_skb->len;
2184
2185 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2186
2187 tcp_highest_sack_combine(sk, next_skb, skb);
2188
2189 tcp_unlink_write_queue(next_skb, sk);
2190
2191 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2192 next_skb_size);
2193
2194 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2195 skb->ip_summed = CHECKSUM_PARTIAL;
2196
2197 if (skb->ip_summed != CHECKSUM_PARTIAL)
2198 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2199
2200 /* Update sequence range on original skb. */
2201 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2202
2203 /* Merge over control information. This moves PSH/FIN etc. over */
2204 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2205
2206 /* All done, get rid of second SKB and account for it so
2207 * packet counting does not break.
2208 */
2209 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2210
2211 /* changed transmit queue under us so clear hints */
2212 tcp_clear_retrans_hints_partial(tp);
2213 if (next_skb == tp->retransmit_skb_hint)
2214 tp->retransmit_skb_hint = skb;
2215
2216 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2217
2218 sk_wmem_free_skb(sk, next_skb);
2219 }
2220
2221 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2222 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2223 {
2224 if (tcp_skb_pcount(skb) > 1)
2225 return false;
2226 /* TODO: SACK collapsing could be used to remove this condition */
2227 if (skb_shinfo(skb)->nr_frags != 0)
2228 return false;
2229 if (skb_cloned(skb))
2230 return false;
2231 if (skb == tcp_send_head(sk))
2232 return false;
2233 /* Some heurestics for collapsing over SACK'd could be invented */
2234 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2235 return false;
2236
2237 return true;
2238 }
2239
2240 /* Collapse packets in the retransmit queue to make to create
2241 * less packets on the wire. This is only done on retransmission.
2242 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2243 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2244 int space)
2245 {
2246 struct tcp_sock *tp = tcp_sk(sk);
2247 struct sk_buff *skb = to, *tmp;
2248 bool first = true;
2249
2250 if (!sysctl_tcp_retrans_collapse)
2251 return;
2252 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2253 return;
2254
2255 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2256 if (!tcp_can_collapse(sk, skb))
2257 break;
2258
2259 space -= skb->len;
2260
2261 if (first) {
2262 first = false;
2263 continue;
2264 }
2265
2266 if (space < 0)
2267 break;
2268 /* Punt if not enough space exists in the first SKB for
2269 * the data in the second
2270 */
2271 if (skb->len > skb_availroom(to))
2272 break;
2273
2274 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2275 break;
2276
2277 tcp_collapse_retrans(sk, to);
2278 }
2279 }
2280
2281 /* This retransmits one SKB. Policy decisions and retransmit queue
2282 * state updates are done by the caller. Returns non-zero if an
2283 * error occurred which prevented the send.
2284 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2285 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2286 {
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 struct inet_connection_sock *icsk = inet_csk(sk);
2289 unsigned int cur_mss;
2290
2291 /* Inconslusive MTU probe */
2292 if (icsk->icsk_mtup.probe_size) {
2293 icsk->icsk_mtup.probe_size = 0;
2294 }
2295
2296 /* Do not sent more than we queued. 1/4 is reserved for possible
2297 * copying overhead: fragmentation, tunneling, mangling etc.
2298 */
2299 if (atomic_read(&sk->sk_wmem_alloc) >
2300 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2301 return -EAGAIN;
2302
2303 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2304 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2305 BUG();
2306 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2307 return -ENOMEM;
2308 }
2309
2310 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2311 return -EHOSTUNREACH; /* Routing failure or similar. */
2312
2313 cur_mss = tcp_current_mss(sk);
2314
2315 /* If receiver has shrunk his window, and skb is out of
2316 * new window, do not retransmit it. The exception is the
2317 * case, when window is shrunk to zero. In this case
2318 * our retransmit serves as a zero window probe.
2319 */
2320 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2321 TCP_SKB_CB(skb)->seq != tp->snd_una)
2322 return -EAGAIN;
2323
2324 if (skb->len > cur_mss) {
2325 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2326 return -ENOMEM; /* We'll try again later. */
2327 } else {
2328 int oldpcount = tcp_skb_pcount(skb);
2329
2330 if (unlikely(oldpcount > 1)) {
2331 tcp_init_tso_segs(sk, skb, cur_mss);
2332 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2333 }
2334 }
2335
2336 tcp_retrans_try_collapse(sk, skb, cur_mss);
2337
2338 /* Some Solaris stacks overoptimize and ignore the FIN on a
2339 * retransmit when old data is attached. So strip it off
2340 * since it is cheap to do so and saves bytes on the network.
2341 */
2342 if (skb->len > 0 &&
2343 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2344 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2345 if (!pskb_trim(skb, 0)) {
2346 /* Reuse, even though it does some unnecessary work */
2347 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2348 TCP_SKB_CB(skb)->tcp_flags);
2349 skb->ip_summed = CHECKSUM_NONE;
2350 }
2351 }
2352
2353 /* Make a copy, if the first transmission SKB clone we made
2354 * is still in somebody's hands, else make a clone.
2355 */
2356 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2357
2358 /* make sure skb->data is aligned on arches that require it
2359 * and check if ack-trimming & collapsing extended the headroom
2360 * beyond what csum_start can cover.
2361 */
2362 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2363 skb_headroom(skb) >= 0xFFFF)) {
2364 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2365 GFP_ATOMIC);
2366 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2367 -ENOBUFS;
2368 } else {
2369 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2370 }
2371 }
2372
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2373 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376 int err = __tcp_retransmit_skb(sk, skb);
2377
2378 if (err == 0) {
2379 /* Update global TCP statistics. */
2380 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2381
2382 tp->total_retrans++;
2383
2384 #if FASTRETRANS_DEBUG > 0
2385 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2386 net_dbg_ratelimited("retrans_out leaked\n");
2387 }
2388 #endif
2389 if (!tp->retrans_out)
2390 tp->lost_retrans_low = tp->snd_nxt;
2391 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2392 tp->retrans_out += tcp_skb_pcount(skb);
2393
2394 /* Save stamp of the first retransmit. */
2395 if (!tp->retrans_stamp)
2396 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2397
2398 tp->undo_retrans += tcp_skb_pcount(skb);
2399
2400 /* snd_nxt is stored to detect loss of retransmitted segment,
2401 * see tcp_input.c tcp_sacktag_write_queue().
2402 */
2403 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2404 }
2405 return err;
2406 }
2407
2408 /* Check if we forward retransmits are possible in the current
2409 * window/congestion state.
2410 */
tcp_can_forward_retransmit(struct sock * sk)2411 static bool tcp_can_forward_retransmit(struct sock *sk)
2412 {
2413 const struct inet_connection_sock *icsk = inet_csk(sk);
2414 const struct tcp_sock *tp = tcp_sk(sk);
2415
2416 /* Forward retransmissions are possible only during Recovery. */
2417 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2418 return false;
2419
2420 /* No forward retransmissions in Reno are possible. */
2421 if (tcp_is_reno(tp))
2422 return false;
2423
2424 /* Yeah, we have to make difficult choice between forward transmission
2425 * and retransmission... Both ways have their merits...
2426 *
2427 * For now we do not retransmit anything, while we have some new
2428 * segments to send. In the other cases, follow rule 3 for
2429 * NextSeg() specified in RFC3517.
2430 */
2431
2432 if (tcp_may_send_now(sk))
2433 return false;
2434
2435 return true;
2436 }
2437
2438 /* This gets called after a retransmit timeout, and the initially
2439 * retransmitted data is acknowledged. It tries to continue
2440 * resending the rest of the retransmit queue, until either
2441 * we've sent it all or the congestion window limit is reached.
2442 * If doing SACK, the first ACK which comes back for a timeout
2443 * based retransmit packet might feed us FACK information again.
2444 * If so, we use it to avoid unnecessarily retransmissions.
2445 */
tcp_xmit_retransmit_queue(struct sock * sk)2446 void tcp_xmit_retransmit_queue(struct sock *sk)
2447 {
2448 const struct inet_connection_sock *icsk = inet_csk(sk);
2449 struct tcp_sock *tp = tcp_sk(sk);
2450 struct sk_buff *skb;
2451 struct sk_buff *hole = NULL;
2452 u32 last_lost;
2453 int mib_idx;
2454 int fwd_rexmitting = 0;
2455
2456 if (!tp->packets_out)
2457 return;
2458
2459 if (!tp->lost_out)
2460 tp->retransmit_high = tp->snd_una;
2461
2462 if (tp->retransmit_skb_hint) {
2463 skb = tp->retransmit_skb_hint;
2464 last_lost = TCP_SKB_CB(skb)->end_seq;
2465 if (after(last_lost, tp->retransmit_high))
2466 last_lost = tp->retransmit_high;
2467 } else {
2468 skb = tcp_write_queue_head(sk);
2469 last_lost = tp->snd_una;
2470 }
2471
2472 tcp_for_write_queue_from(skb, sk) {
2473 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2474
2475 if (skb == tcp_send_head(sk))
2476 break;
2477 /* we could do better than to assign each time */
2478 if (hole == NULL)
2479 tp->retransmit_skb_hint = skb;
2480
2481 /* Assume this retransmit will generate
2482 * only one packet for congestion window
2483 * calculation purposes. This works because
2484 * tcp_retransmit_skb() will chop up the
2485 * packet to be MSS sized and all the
2486 * packet counting works out.
2487 */
2488 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2489 return;
2490
2491 if (fwd_rexmitting) {
2492 begin_fwd:
2493 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2494 break;
2495 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2496
2497 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2498 tp->retransmit_high = last_lost;
2499 if (!tcp_can_forward_retransmit(sk))
2500 break;
2501 /* Backtrack if necessary to non-L'ed skb */
2502 if (hole != NULL) {
2503 skb = hole;
2504 hole = NULL;
2505 }
2506 fwd_rexmitting = 1;
2507 goto begin_fwd;
2508
2509 } else if (!(sacked & TCPCB_LOST)) {
2510 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2511 hole = skb;
2512 continue;
2513
2514 } else {
2515 last_lost = TCP_SKB_CB(skb)->end_seq;
2516 if (icsk->icsk_ca_state != TCP_CA_Loss)
2517 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2518 else
2519 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2520 }
2521
2522 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2523 continue;
2524
2525 if (tcp_retransmit_skb(sk, skb)) {
2526 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2527 return;
2528 }
2529 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2530
2531 if (tcp_in_cwnd_reduction(sk))
2532 tp->prr_out += tcp_skb_pcount(skb);
2533
2534 if (skb == tcp_write_queue_head(sk))
2535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2536 inet_csk(sk)->icsk_rto,
2537 TCP_RTO_MAX);
2538 }
2539 }
2540
2541 /* Send a fin. The caller locks the socket for us. This cannot be
2542 * allowed to fail queueing a FIN frame under any circumstances.
2543 */
tcp_send_fin(struct sock * sk)2544 void tcp_send_fin(struct sock *sk)
2545 {
2546 struct tcp_sock *tp = tcp_sk(sk);
2547 struct sk_buff *skb = tcp_write_queue_tail(sk);
2548 int mss_now;
2549
2550 /* Optimization, tack on the FIN if we have a queue of
2551 * unsent frames. But be careful about outgoing SACKS
2552 * and IP options.
2553 */
2554 mss_now = tcp_current_mss(sk);
2555
2556 if (tcp_send_head(sk) != NULL) {
2557 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2558 TCP_SKB_CB(skb)->end_seq++;
2559 tp->write_seq++;
2560 } else {
2561 /* Socket is locked, keep trying until memory is available. */
2562 for (;;) {
2563 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2564 sk->sk_allocation);
2565 if (skb)
2566 break;
2567 yield();
2568 }
2569
2570 /* Reserve space for headers and prepare control bits. */
2571 skb_reserve(skb, MAX_TCP_HEADER);
2572 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2573 tcp_init_nondata_skb(skb, tp->write_seq,
2574 TCPHDR_ACK | TCPHDR_FIN);
2575 tcp_queue_skb(sk, skb);
2576 }
2577 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2578 }
2579
2580 /* We get here when a process closes a file descriptor (either due to
2581 * an explicit close() or as a byproduct of exit()'ing) and there
2582 * was unread data in the receive queue. This behavior is recommended
2583 * by RFC 2525, section 2.17. -DaveM
2584 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)2585 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2586 {
2587 struct sk_buff *skb;
2588
2589 /* NOTE: No TCP options attached and we never retransmit this. */
2590 skb = alloc_skb(MAX_TCP_HEADER, priority);
2591 if (!skb) {
2592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2593 return;
2594 }
2595
2596 /* Reserve space for headers and prepare control bits. */
2597 skb_reserve(skb, MAX_TCP_HEADER);
2598 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2599 TCPHDR_ACK | TCPHDR_RST);
2600 /* Send it off. */
2601 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2602 if (tcp_transmit_skb(sk, skb, 0, priority))
2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2604
2605 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2606 }
2607
2608 /* Send a crossed SYN-ACK during socket establishment.
2609 * WARNING: This routine must only be called when we have already sent
2610 * a SYN packet that crossed the incoming SYN that caused this routine
2611 * to get called. If this assumption fails then the initial rcv_wnd
2612 * and rcv_wscale values will not be correct.
2613 */
tcp_send_synack(struct sock * sk)2614 int tcp_send_synack(struct sock *sk)
2615 {
2616 struct sk_buff *skb;
2617
2618 skb = tcp_write_queue_head(sk);
2619 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2620 pr_debug("%s: wrong queue state\n", __func__);
2621 return -EFAULT;
2622 }
2623 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2624 if (skb_cloned(skb)) {
2625 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2626 if (nskb == NULL)
2627 return -ENOMEM;
2628 tcp_unlink_write_queue(skb, sk);
2629 skb_header_release(nskb);
2630 __tcp_add_write_queue_head(sk, nskb);
2631 sk_wmem_free_skb(sk, skb);
2632 sk->sk_wmem_queued += nskb->truesize;
2633 sk_mem_charge(sk, nskb->truesize);
2634 skb = nskb;
2635 }
2636
2637 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2638 TCP_ECN_send_synack(tcp_sk(sk), skb);
2639 }
2640 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2641 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2642 }
2643
2644 /**
2645 * tcp_make_synack - Prepare a SYN-ACK.
2646 * sk: listener socket
2647 * dst: dst entry attached to the SYNACK
2648 * req: request_sock pointer
2649 *
2650 * Allocate one skb and build a SYNACK packet.
2651 * @dst is consumed : Caller should not use it again.
2652 */
tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc)2653 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2654 struct request_sock *req,
2655 struct tcp_fastopen_cookie *foc)
2656 {
2657 struct tcp_out_options opts;
2658 struct inet_request_sock *ireq = inet_rsk(req);
2659 struct tcp_sock *tp = tcp_sk(sk);
2660 struct tcphdr *th;
2661 struct sk_buff *skb;
2662 struct tcp_md5sig_key *md5;
2663 int tcp_header_size;
2664 int mss;
2665
2666 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2667 if (unlikely(!skb)) {
2668 dst_release(dst);
2669 return NULL;
2670 }
2671 /* Reserve space for headers. */
2672 skb_reserve(skb, MAX_TCP_HEADER);
2673
2674 skb_dst_set(skb, dst);
2675 security_skb_owned_by(skb, sk);
2676
2677 mss = dst_metric_advmss(dst);
2678 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2679 mss = tp->rx_opt.user_mss;
2680
2681 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2682 __u8 rcv_wscale;
2683 /* Set this up on the first call only */
2684 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2685
2686 /* limit the window selection if the user enforce a smaller rx buffer */
2687 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2688 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2689 req->window_clamp = tcp_full_space(sk);
2690
2691 /* tcp_full_space because it is guaranteed to be the first packet */
2692 tcp_select_initial_window(tcp_full_space(sk),
2693 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2694 &req->rcv_wnd,
2695 &req->window_clamp,
2696 ireq->wscale_ok,
2697 &rcv_wscale,
2698 dst_metric(dst, RTAX_INITRWND));
2699 ireq->rcv_wscale = rcv_wscale;
2700 }
2701
2702 memset(&opts, 0, sizeof(opts));
2703 #ifdef CONFIG_SYN_COOKIES
2704 if (unlikely(req->cookie_ts))
2705 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2706 else
2707 #endif
2708 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2709 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2710 foc) + sizeof(*th);
2711
2712 skb_push(skb, tcp_header_size);
2713 skb_reset_transport_header(skb);
2714
2715 th = tcp_hdr(skb);
2716 memset(th, 0, sizeof(struct tcphdr));
2717 th->syn = 1;
2718 th->ack = 1;
2719 TCP_ECN_make_synack(req, th);
2720 th->source = ireq->loc_port;
2721 th->dest = ireq->rmt_port;
2722 /* Setting of flags are superfluous here for callers (and ECE is
2723 * not even correctly set)
2724 */
2725 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2726 TCPHDR_SYN | TCPHDR_ACK);
2727
2728 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2729 /* XXX data is queued and acked as is. No buffer/window check */
2730 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2731
2732 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2733 th->window = htons(min(req->rcv_wnd, 65535U));
2734 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2735 th->doff = (tcp_header_size >> 2);
2736 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2737
2738 #ifdef CONFIG_TCP_MD5SIG
2739 /* Okay, we have all we need - do the md5 hash if needed */
2740 if (md5) {
2741 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2742 md5, NULL, req, skb);
2743 }
2744 #endif
2745
2746 return skb;
2747 }
2748 EXPORT_SYMBOL(tcp_make_synack);
2749
2750 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)2751 void tcp_connect_init(struct sock *sk)
2752 {
2753 const struct dst_entry *dst = __sk_dst_get(sk);
2754 struct tcp_sock *tp = tcp_sk(sk);
2755 __u8 rcv_wscale;
2756
2757 /* We'll fix this up when we get a response from the other end.
2758 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2759 */
2760 tp->tcp_header_len = sizeof(struct tcphdr) +
2761 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2762
2763 #ifdef CONFIG_TCP_MD5SIG
2764 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2765 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2766 #endif
2767
2768 /* If user gave his TCP_MAXSEG, record it to clamp */
2769 if (tp->rx_opt.user_mss)
2770 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2771 tp->max_window = 0;
2772 tcp_mtup_init(sk);
2773 tcp_sync_mss(sk, dst_mtu(dst));
2774
2775 if (!tp->window_clamp)
2776 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2777 tp->advmss = dst_metric_advmss(dst);
2778 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2779 tp->advmss = tp->rx_opt.user_mss;
2780
2781 tcp_initialize_rcv_mss(sk);
2782
2783 /* limit the window selection if the user enforce a smaller rx buffer */
2784 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2785 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2786 tp->window_clamp = tcp_full_space(sk);
2787
2788 tcp_select_initial_window(tcp_full_space(sk),
2789 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2790 &tp->rcv_wnd,
2791 &tp->window_clamp,
2792 sysctl_tcp_window_scaling,
2793 &rcv_wscale,
2794 dst_metric(dst, RTAX_INITRWND));
2795
2796 tp->rx_opt.rcv_wscale = rcv_wscale;
2797 tp->rcv_ssthresh = tp->rcv_wnd;
2798
2799 sk->sk_err = 0;
2800 sock_reset_flag(sk, SOCK_DONE);
2801 tp->snd_wnd = 0;
2802 tcp_init_wl(tp, 0);
2803 tp->snd_una = tp->write_seq;
2804 tp->snd_sml = tp->write_seq;
2805 tp->snd_up = tp->write_seq;
2806 tp->snd_nxt = tp->write_seq;
2807
2808 if (likely(!tp->repair))
2809 tp->rcv_nxt = 0;
2810 tp->rcv_wup = tp->rcv_nxt;
2811 tp->copied_seq = tp->rcv_nxt;
2812
2813 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2814 inet_csk(sk)->icsk_retransmits = 0;
2815 tcp_clear_retrans(tp);
2816 }
2817
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)2818 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2819 {
2820 struct tcp_sock *tp = tcp_sk(sk);
2821 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2822
2823 tcb->end_seq += skb->len;
2824 skb_header_release(skb);
2825 __tcp_add_write_queue_tail(sk, skb);
2826 sk->sk_wmem_queued += skb->truesize;
2827 sk_mem_charge(sk, skb->truesize);
2828 tp->write_seq = tcb->end_seq;
2829 tp->packets_out += tcp_skb_pcount(skb);
2830 }
2831
2832 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2833 * queue a data-only packet after the regular SYN, such that regular SYNs
2834 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2835 * only the SYN sequence, the data are retransmitted in the first ACK.
2836 * If cookie is not cached or other error occurs, falls back to send a
2837 * regular SYN with Fast Open cookie request option.
2838 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)2839 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2840 {
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 struct tcp_fastopen_request *fo = tp->fastopen_req;
2843 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2844 struct sk_buff *syn_data = NULL, *data;
2845 unsigned long last_syn_loss = 0;
2846
2847 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2848 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2849 &syn_loss, &last_syn_loss);
2850 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2851 if (syn_loss > 1 &&
2852 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2853 fo->cookie.len = -1;
2854 goto fallback;
2855 }
2856
2857 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2858 fo->cookie.len = -1;
2859 else if (fo->cookie.len <= 0)
2860 goto fallback;
2861
2862 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2863 * user-MSS. Reserve maximum option space for middleboxes that add
2864 * private TCP options. The cost is reduced data space in SYN :(
2865 */
2866 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2867 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2868 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2869 MAX_TCP_OPTION_SPACE;
2870
2871 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2872 sk->sk_allocation);
2873 if (syn_data == NULL)
2874 goto fallback;
2875
2876 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2877 struct iovec *iov = &fo->data->msg_iov[i];
2878 unsigned char __user *from = iov->iov_base;
2879 int len = iov->iov_len;
2880
2881 if (syn_data->len + len > space)
2882 len = space - syn_data->len;
2883 else if (i + 1 == iovlen)
2884 /* No more data pending in inet_wait_for_connect() */
2885 fo->data = NULL;
2886
2887 if (skb_add_data(syn_data, from, len))
2888 goto fallback;
2889 }
2890
2891 /* Queue a data-only packet after the regular SYN for retransmission */
2892 data = pskb_copy(syn_data, sk->sk_allocation);
2893 if (data == NULL)
2894 goto fallback;
2895 TCP_SKB_CB(data)->seq++;
2896 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2897 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2898 tcp_connect_queue_skb(sk, data);
2899 fo->copied = data->len;
2900
2901 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2902 tp->syn_data = (fo->copied > 0);
2903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2904 goto done;
2905 }
2906 syn_data = NULL;
2907
2908 fallback:
2909 /* Send a regular SYN with Fast Open cookie request option */
2910 if (fo->cookie.len > 0)
2911 fo->cookie.len = 0;
2912 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2913 if (err)
2914 tp->syn_fastopen = 0;
2915 kfree_skb(syn_data);
2916 done:
2917 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2918 return err;
2919 }
2920
2921 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)2922 int tcp_connect(struct sock *sk)
2923 {
2924 struct tcp_sock *tp = tcp_sk(sk);
2925 struct sk_buff *buff;
2926 int err;
2927
2928 tcp_connect_init(sk);
2929
2930 if (unlikely(tp->repair)) {
2931 tcp_finish_connect(sk, NULL);
2932 return 0;
2933 }
2934
2935 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2936 if (unlikely(buff == NULL))
2937 return -ENOBUFS;
2938
2939 /* Reserve space for headers. */
2940 skb_reserve(buff, MAX_TCP_HEADER);
2941
2942 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2943 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2944 tcp_connect_queue_skb(sk, buff);
2945 TCP_ECN_send_syn(sk, buff);
2946
2947 /* Send off SYN; include data in Fast Open. */
2948 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2949 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2950 if (err == -ECONNREFUSED)
2951 return err;
2952
2953 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2954 * in order to make this packet get counted in tcpOutSegs.
2955 */
2956 tp->snd_nxt = tp->write_seq;
2957 tp->pushed_seq = tp->write_seq;
2958 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2959
2960 /* Timer for repeating the SYN until an answer. */
2961 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2962 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2963 return 0;
2964 }
2965 EXPORT_SYMBOL(tcp_connect);
2966
2967 /* Send out a delayed ack, the caller does the policy checking
2968 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2969 * for details.
2970 */
tcp_send_delayed_ack(struct sock * sk)2971 void tcp_send_delayed_ack(struct sock *sk)
2972 {
2973 struct inet_connection_sock *icsk = inet_csk(sk);
2974 int ato = icsk->icsk_ack.ato;
2975 unsigned long timeout;
2976
2977 if (ato > TCP_DELACK_MIN) {
2978 const struct tcp_sock *tp = tcp_sk(sk);
2979 int max_ato = HZ / 2;
2980
2981 if (icsk->icsk_ack.pingpong ||
2982 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2983 max_ato = TCP_DELACK_MAX;
2984
2985 /* Slow path, intersegment interval is "high". */
2986
2987 /* If some rtt estimate is known, use it to bound delayed ack.
2988 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2989 * directly.
2990 */
2991 if (tp->srtt) {
2992 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2993
2994 if (rtt < max_ato)
2995 max_ato = rtt;
2996 }
2997
2998 ato = min(ato, max_ato);
2999 }
3000
3001 /* Stay within the limit we were given */
3002 timeout = jiffies + ato;
3003
3004 /* Use new timeout only if there wasn't a older one earlier. */
3005 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3006 /* If delack timer was blocked or is about to expire,
3007 * send ACK now.
3008 */
3009 if (icsk->icsk_ack.blocked ||
3010 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3011 tcp_send_ack(sk);
3012 return;
3013 }
3014
3015 if (!time_before(timeout, icsk->icsk_ack.timeout))
3016 timeout = icsk->icsk_ack.timeout;
3017 }
3018 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3019 icsk->icsk_ack.timeout = timeout;
3020 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3021 }
3022
3023 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)3024 void tcp_send_ack(struct sock *sk)
3025 {
3026 struct sk_buff *buff;
3027
3028 /* If we have been reset, we may not send again. */
3029 if (sk->sk_state == TCP_CLOSE)
3030 return;
3031
3032 /* We are not putting this on the write queue, so
3033 * tcp_transmit_skb() will set the ownership to this
3034 * sock.
3035 */
3036 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3037 if (buff == NULL) {
3038 inet_csk_schedule_ack(sk);
3039 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3040 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3041 TCP_DELACK_MAX, TCP_RTO_MAX);
3042 return;
3043 }
3044
3045 /* Reserve space for headers and prepare control bits. */
3046 skb_reserve(buff, MAX_TCP_HEADER);
3047 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3048
3049 /* Send it off, this clears delayed acks for us. */
3050 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3051 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3052 }
3053
3054 /* This routine sends a packet with an out of date sequence
3055 * number. It assumes the other end will try to ack it.
3056 *
3057 * Question: what should we make while urgent mode?
3058 * 4.4BSD forces sending single byte of data. We cannot send
3059 * out of window data, because we have SND.NXT==SND.MAX...
3060 *
3061 * Current solution: to send TWO zero-length segments in urgent mode:
3062 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3063 * out-of-date with SND.UNA-1 to probe window.
3064 */
tcp_xmit_probe_skb(struct sock * sk,int urgent)3065 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3066 {
3067 struct tcp_sock *tp = tcp_sk(sk);
3068 struct sk_buff *skb;
3069
3070 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3071 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3072 if (skb == NULL)
3073 return -1;
3074
3075 /* Reserve space for headers and set control bits. */
3076 skb_reserve(skb, MAX_TCP_HEADER);
3077 /* Use a previous sequence. This should cause the other
3078 * end to send an ack. Don't queue or clone SKB, just
3079 * send it.
3080 */
3081 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3082 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3083 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3084 }
3085
tcp_send_window_probe(struct sock * sk)3086 void tcp_send_window_probe(struct sock *sk)
3087 {
3088 if (sk->sk_state == TCP_ESTABLISHED) {
3089 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3090 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3091 tcp_xmit_probe_skb(sk, 0);
3092 }
3093 }
3094
3095 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk)3096 int tcp_write_wakeup(struct sock *sk)
3097 {
3098 struct tcp_sock *tp = tcp_sk(sk);
3099 struct sk_buff *skb;
3100
3101 if (sk->sk_state == TCP_CLOSE)
3102 return -1;
3103
3104 if ((skb = tcp_send_head(sk)) != NULL &&
3105 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3106 int err;
3107 unsigned int mss = tcp_current_mss(sk);
3108 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3109
3110 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3111 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3112
3113 /* We are probing the opening of a window
3114 * but the window size is != 0
3115 * must have been a result SWS avoidance ( sender )
3116 */
3117 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3118 skb->len > mss) {
3119 seg_size = min(seg_size, mss);
3120 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3121 if (tcp_fragment(sk, skb, seg_size, mss))
3122 return -1;
3123 } else if (!tcp_skb_pcount(skb))
3124 tcp_set_skb_tso_segs(sk, skb, mss);
3125
3126 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3127 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3128 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3129 if (!err)
3130 tcp_event_new_data_sent(sk, skb);
3131 return err;
3132 } else {
3133 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3134 tcp_xmit_probe_skb(sk, 1);
3135 return tcp_xmit_probe_skb(sk, 0);
3136 }
3137 }
3138
3139 /* A window probe timeout has occurred. If window is not closed send
3140 * a partial packet else a zero probe.
3141 */
tcp_send_probe0(struct sock * sk)3142 void tcp_send_probe0(struct sock *sk)
3143 {
3144 struct inet_connection_sock *icsk = inet_csk(sk);
3145 struct tcp_sock *tp = tcp_sk(sk);
3146 int err;
3147
3148 err = tcp_write_wakeup(sk);
3149
3150 if (tp->packets_out || !tcp_send_head(sk)) {
3151 /* Cancel probe timer, if it is not required. */
3152 icsk->icsk_probes_out = 0;
3153 icsk->icsk_backoff = 0;
3154 return;
3155 }
3156
3157 if (err <= 0) {
3158 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3159 icsk->icsk_backoff++;
3160 icsk->icsk_probes_out++;
3161 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3162 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3163 TCP_RTO_MAX);
3164 } else {
3165 /* If packet was not sent due to local congestion,
3166 * do not backoff and do not remember icsk_probes_out.
3167 * Let local senders to fight for local resources.
3168 *
3169 * Use accumulated backoff yet.
3170 */
3171 if (!icsk->icsk_probes_out)
3172 icsk->icsk_probes_out = 1;
3173 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3174 min(icsk->icsk_rto << icsk->icsk_backoff,
3175 TCP_RESOURCE_PROBE_INTERVAL),
3176 TCP_RTO_MAX);
3177 }
3178 }
3179