• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include "builtin.h"
16 
17 #include "util/util.h"
18 
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27 
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
39 
40 
41 static unsigned int	numcpus;
42 static u64		min_freq;	/* Lowest CPU frequency seen */
43 static u64		max_freq;	/* Highest CPU frequency seen */
44 static u64		turbo_frequency;
45 
46 static u64		first_time, last_time;
47 
48 static bool		power_only;
49 
50 
51 struct per_pid;
52 struct per_pidcomm;
53 
54 struct cpu_sample;
55 struct power_event;
56 struct wake_event;
57 
58 struct sample_wrapper;
59 
60 /*
61  * Datastructure layout:
62  * We keep an list of "pid"s, matching the kernels notion of a task struct.
63  * Each "pid" entry, has a list of "comm"s.
64  *	this is because we want to track different programs different, while
65  *	exec will reuse the original pid (by design).
66  * Each comm has a list of samples that will be used to draw
67  * final graph.
68  */
69 
70 struct per_pid {
71 	struct per_pid *next;
72 
73 	int		pid;
74 	int		ppid;
75 
76 	u64		start_time;
77 	u64		end_time;
78 	u64		total_time;
79 	int		display;
80 
81 	struct per_pidcomm *all;
82 	struct per_pidcomm *current;
83 };
84 
85 
86 struct per_pidcomm {
87 	struct per_pidcomm *next;
88 
89 	u64		start_time;
90 	u64		end_time;
91 	u64		total_time;
92 
93 	int		Y;
94 	int		display;
95 
96 	long		state;
97 	u64		state_since;
98 
99 	char		*comm;
100 
101 	struct cpu_sample *samples;
102 };
103 
104 struct sample_wrapper {
105 	struct sample_wrapper *next;
106 
107 	u64		timestamp;
108 	unsigned char	data[0];
109 };
110 
111 #define TYPE_NONE	0
112 #define TYPE_RUNNING	1
113 #define TYPE_WAITING	2
114 #define TYPE_BLOCKED	3
115 
116 struct cpu_sample {
117 	struct cpu_sample *next;
118 
119 	u64 start_time;
120 	u64 end_time;
121 	int type;
122 	int cpu;
123 };
124 
125 static struct per_pid *all_data;
126 
127 #define CSTATE 1
128 #define PSTATE 2
129 
130 struct power_event {
131 	struct power_event *next;
132 	int type;
133 	int state;
134 	u64 start_time;
135 	u64 end_time;
136 	int cpu;
137 };
138 
139 struct wake_event {
140 	struct wake_event *next;
141 	int waker;
142 	int wakee;
143 	u64 time;
144 };
145 
146 static struct power_event    *power_events;
147 static struct wake_event     *wake_events;
148 
149 struct process_filter;
150 struct process_filter {
151 	char			*name;
152 	int			pid;
153 	struct process_filter	*next;
154 };
155 
156 static struct process_filter *process_filter;
157 
158 
find_create_pid(int pid)159 static struct per_pid *find_create_pid(int pid)
160 {
161 	struct per_pid *cursor = all_data;
162 
163 	while (cursor) {
164 		if (cursor->pid == pid)
165 			return cursor;
166 		cursor = cursor->next;
167 	}
168 	cursor = zalloc(sizeof(*cursor));
169 	assert(cursor != NULL);
170 	cursor->pid = pid;
171 	cursor->next = all_data;
172 	all_data = cursor;
173 	return cursor;
174 }
175 
pid_set_comm(int pid,char * comm)176 static void pid_set_comm(int pid, char *comm)
177 {
178 	struct per_pid *p;
179 	struct per_pidcomm *c;
180 	p = find_create_pid(pid);
181 	c = p->all;
182 	while (c) {
183 		if (c->comm && strcmp(c->comm, comm) == 0) {
184 			p->current = c;
185 			return;
186 		}
187 		if (!c->comm) {
188 			c->comm = strdup(comm);
189 			p->current = c;
190 			return;
191 		}
192 		c = c->next;
193 	}
194 	c = zalloc(sizeof(*c));
195 	assert(c != NULL);
196 	c->comm = strdup(comm);
197 	p->current = c;
198 	c->next = p->all;
199 	p->all = c;
200 }
201 
pid_fork(int pid,int ppid,u64 timestamp)202 static void pid_fork(int pid, int ppid, u64 timestamp)
203 {
204 	struct per_pid *p, *pp;
205 	p = find_create_pid(pid);
206 	pp = find_create_pid(ppid);
207 	p->ppid = ppid;
208 	if (pp->current && pp->current->comm && !p->current)
209 		pid_set_comm(pid, pp->current->comm);
210 
211 	p->start_time = timestamp;
212 	if (p->current) {
213 		p->current->start_time = timestamp;
214 		p->current->state_since = timestamp;
215 	}
216 }
217 
pid_exit(int pid,u64 timestamp)218 static void pid_exit(int pid, u64 timestamp)
219 {
220 	struct per_pid *p;
221 	p = find_create_pid(pid);
222 	p->end_time = timestamp;
223 	if (p->current)
224 		p->current->end_time = timestamp;
225 }
226 
227 static void
pid_put_sample(int pid,int type,unsigned int cpu,u64 start,u64 end)228 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
229 {
230 	struct per_pid *p;
231 	struct per_pidcomm *c;
232 	struct cpu_sample *sample;
233 
234 	p = find_create_pid(pid);
235 	c = p->current;
236 	if (!c) {
237 		c = zalloc(sizeof(*c));
238 		assert(c != NULL);
239 		p->current = c;
240 		c->next = p->all;
241 		p->all = c;
242 	}
243 
244 	sample = zalloc(sizeof(*sample));
245 	assert(sample != NULL);
246 	sample->start_time = start;
247 	sample->end_time = end;
248 	sample->type = type;
249 	sample->next = c->samples;
250 	sample->cpu = cpu;
251 	c->samples = sample;
252 
253 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
254 		c->total_time += (end-start);
255 		p->total_time += (end-start);
256 	}
257 
258 	if (c->start_time == 0 || c->start_time > start)
259 		c->start_time = start;
260 	if (p->start_time == 0 || p->start_time > start)
261 		p->start_time = start;
262 }
263 
264 #define MAX_CPUS 4096
265 
266 static u64 cpus_cstate_start_times[MAX_CPUS];
267 static int cpus_cstate_state[MAX_CPUS];
268 static u64 cpus_pstate_start_times[MAX_CPUS];
269 static u64 cpus_pstate_state[MAX_CPUS];
270 
process_comm_event(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)271 static int process_comm_event(struct perf_tool *tool __maybe_unused,
272 			      union perf_event *event,
273 			      struct perf_sample *sample __maybe_unused,
274 			      struct machine *machine __maybe_unused)
275 {
276 	pid_set_comm(event->comm.tid, event->comm.comm);
277 	return 0;
278 }
279 
process_fork_event(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)280 static int process_fork_event(struct perf_tool *tool __maybe_unused,
281 			      union perf_event *event,
282 			      struct perf_sample *sample __maybe_unused,
283 			      struct machine *machine __maybe_unused)
284 {
285 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
286 	return 0;
287 }
288 
process_exit_event(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)289 static int process_exit_event(struct perf_tool *tool __maybe_unused,
290 			      union perf_event *event,
291 			      struct perf_sample *sample __maybe_unused,
292 			      struct machine *machine __maybe_unused)
293 {
294 	pid_exit(event->fork.pid, event->fork.time);
295 	return 0;
296 }
297 
298 struct trace_entry {
299 	unsigned short		type;
300 	unsigned char		flags;
301 	unsigned char		preempt_count;
302 	int			pid;
303 	int			lock_depth;
304 };
305 
306 #ifdef SUPPORT_OLD_POWER_EVENTS
307 static int use_old_power_events;
308 struct power_entry_old {
309 	struct trace_entry te;
310 	u64	type;
311 	u64	value;
312 	u64	cpu_id;
313 };
314 #endif
315 
316 struct power_processor_entry {
317 	struct trace_entry te;
318 	u32	state;
319 	u32	cpu_id;
320 };
321 
322 #define TASK_COMM_LEN 16
323 struct wakeup_entry {
324 	struct trace_entry te;
325 	char comm[TASK_COMM_LEN];
326 	int   pid;
327 	int   prio;
328 	int   success;
329 };
330 
331 /*
332  * trace_flag_type is an enumeration that holds different
333  * states when a trace occurs. These are:
334  *  IRQS_OFF            - interrupts were disabled
335  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
336  *  NEED_RESCED         - reschedule is requested
337  *  HARDIRQ             - inside an interrupt handler
338  *  SOFTIRQ             - inside a softirq handler
339  */
340 enum trace_flag_type {
341 	TRACE_FLAG_IRQS_OFF		= 0x01,
342 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
343 	TRACE_FLAG_NEED_RESCHED		= 0x04,
344 	TRACE_FLAG_HARDIRQ		= 0x08,
345 	TRACE_FLAG_SOFTIRQ		= 0x10,
346 };
347 
348 
349 
350 struct sched_switch {
351 	struct trace_entry te;
352 	char prev_comm[TASK_COMM_LEN];
353 	int  prev_pid;
354 	int  prev_prio;
355 	long prev_state; /* Arjan weeps. */
356 	char next_comm[TASK_COMM_LEN];
357 	int  next_pid;
358 	int  next_prio;
359 };
360 
c_state_start(int cpu,u64 timestamp,int state)361 static void c_state_start(int cpu, u64 timestamp, int state)
362 {
363 	cpus_cstate_start_times[cpu] = timestamp;
364 	cpus_cstate_state[cpu] = state;
365 }
366 
c_state_end(int cpu,u64 timestamp)367 static void c_state_end(int cpu, u64 timestamp)
368 {
369 	struct power_event *pwr = zalloc(sizeof(*pwr));
370 
371 	if (!pwr)
372 		return;
373 
374 	pwr->state = cpus_cstate_state[cpu];
375 	pwr->start_time = cpus_cstate_start_times[cpu];
376 	pwr->end_time = timestamp;
377 	pwr->cpu = cpu;
378 	pwr->type = CSTATE;
379 	pwr->next = power_events;
380 
381 	power_events = pwr;
382 }
383 
p_state_change(int cpu,u64 timestamp,u64 new_freq)384 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
385 {
386 	struct power_event *pwr;
387 
388 	if (new_freq > 8000000) /* detect invalid data */
389 		return;
390 
391 	pwr = zalloc(sizeof(*pwr));
392 	if (!pwr)
393 		return;
394 
395 	pwr->state = cpus_pstate_state[cpu];
396 	pwr->start_time = cpus_pstate_start_times[cpu];
397 	pwr->end_time = timestamp;
398 	pwr->cpu = cpu;
399 	pwr->type = PSTATE;
400 	pwr->next = power_events;
401 
402 	if (!pwr->start_time)
403 		pwr->start_time = first_time;
404 
405 	power_events = pwr;
406 
407 	cpus_pstate_state[cpu] = new_freq;
408 	cpus_pstate_start_times[cpu] = timestamp;
409 
410 	if ((u64)new_freq > max_freq)
411 		max_freq = new_freq;
412 
413 	if (new_freq < min_freq || min_freq == 0)
414 		min_freq = new_freq;
415 
416 	if (new_freq == max_freq - 1000)
417 			turbo_frequency = max_freq;
418 }
419 
420 static void
sched_wakeup(int cpu,u64 timestamp,int pid,struct trace_entry * te)421 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
422 {
423 	struct per_pid *p;
424 	struct wakeup_entry *wake = (void *)te;
425 	struct wake_event *we = zalloc(sizeof(*we));
426 
427 	if (!we)
428 		return;
429 
430 	we->time = timestamp;
431 	we->waker = pid;
432 
433 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
434 		we->waker = -1;
435 
436 	we->wakee = wake->pid;
437 	we->next = wake_events;
438 	wake_events = we;
439 	p = find_create_pid(we->wakee);
440 
441 	if (p && p->current && p->current->state == TYPE_NONE) {
442 		p->current->state_since = timestamp;
443 		p->current->state = TYPE_WAITING;
444 	}
445 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
446 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
447 		p->current->state_since = timestamp;
448 		p->current->state = TYPE_WAITING;
449 	}
450 }
451 
sched_switch(int cpu,u64 timestamp,struct trace_entry * te)452 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
453 {
454 	struct per_pid *p = NULL, *prev_p;
455 	struct sched_switch *sw = (void *)te;
456 
457 
458 	prev_p = find_create_pid(sw->prev_pid);
459 
460 	p = find_create_pid(sw->next_pid);
461 
462 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
463 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
464 	if (p && p->current) {
465 		if (p->current->state != TYPE_NONE)
466 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
467 
468 		p->current->state_since = timestamp;
469 		p->current->state = TYPE_RUNNING;
470 	}
471 
472 	if (prev_p->current) {
473 		prev_p->current->state = TYPE_NONE;
474 		prev_p->current->state_since = timestamp;
475 		if (sw->prev_state & 2)
476 			prev_p->current->state = TYPE_BLOCKED;
477 		if (sw->prev_state == 0)
478 			prev_p->current->state = TYPE_WAITING;
479 	}
480 }
481 
482 
process_sample_event(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct perf_evsel * evsel,struct machine * machine __maybe_unused)483 static int process_sample_event(struct perf_tool *tool __maybe_unused,
484 				union perf_event *event __maybe_unused,
485 				struct perf_sample *sample,
486 				struct perf_evsel *evsel,
487 				struct machine *machine __maybe_unused)
488 {
489 	struct trace_entry *te;
490 
491 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
492 		if (!first_time || first_time > sample->time)
493 			first_time = sample->time;
494 		if (last_time < sample->time)
495 			last_time = sample->time;
496 	}
497 
498 	te = (void *)sample->raw_data;
499 	if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
500 		char *event_str;
501 #ifdef SUPPORT_OLD_POWER_EVENTS
502 		struct power_entry_old *peo;
503 		peo = (void *)te;
504 #endif
505 		/*
506 		 * FIXME: use evsel, its already mapped from id to perf_evsel,
507 		 * remove perf_header__find_event infrastructure bits.
508 		 * Mapping all these "power:cpu_idle" strings to the tracepoint
509 		 * ID and then just comparing against evsel->attr.config.
510 		 *
511 		 * e.g.:
512 		 *
513 		 * if (evsel->attr.config == power_cpu_idle_id)
514 		 */
515 		event_str = perf_header__find_event(te->type);
516 
517 		if (!event_str)
518 			return 0;
519 
520 		if (sample->cpu > numcpus)
521 			numcpus = sample->cpu;
522 
523 		if (strcmp(event_str, "power:cpu_idle") == 0) {
524 			struct power_processor_entry *ppe = (void *)te;
525 			if (ppe->state == (u32)PWR_EVENT_EXIT)
526 				c_state_end(ppe->cpu_id, sample->time);
527 			else
528 				c_state_start(ppe->cpu_id, sample->time,
529 					      ppe->state);
530 		}
531 		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
532 			struct power_processor_entry *ppe = (void *)te;
533 			p_state_change(ppe->cpu_id, sample->time, ppe->state);
534 		}
535 
536 		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
537 			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
538 
539 		else if (strcmp(event_str, "sched:sched_switch") == 0)
540 			sched_switch(sample->cpu, sample->time, te);
541 
542 #ifdef SUPPORT_OLD_POWER_EVENTS
543 		if (use_old_power_events) {
544 			if (strcmp(event_str, "power:power_start") == 0)
545 				c_state_start(peo->cpu_id, sample->time,
546 					      peo->value);
547 
548 			else if (strcmp(event_str, "power:power_end") == 0)
549 				c_state_end(sample->cpu, sample->time);
550 
551 			else if (strcmp(event_str,
552 					"power:power_frequency") == 0)
553 				p_state_change(peo->cpu_id, sample->time,
554 					       peo->value);
555 		}
556 #endif
557 	}
558 	return 0;
559 }
560 
561 /*
562  * After the last sample we need to wrap up the current C/P state
563  * and close out each CPU for these.
564  */
end_sample_processing(void)565 static void end_sample_processing(void)
566 {
567 	u64 cpu;
568 	struct power_event *pwr;
569 
570 	for (cpu = 0; cpu <= numcpus; cpu++) {
571 		/* C state */
572 #if 0
573 		pwr = zalloc(sizeof(*pwr));
574 		if (!pwr)
575 			return;
576 
577 		pwr->state = cpus_cstate_state[cpu];
578 		pwr->start_time = cpus_cstate_start_times[cpu];
579 		pwr->end_time = last_time;
580 		pwr->cpu = cpu;
581 		pwr->type = CSTATE;
582 		pwr->next = power_events;
583 
584 		power_events = pwr;
585 #endif
586 		/* P state */
587 
588 		pwr = zalloc(sizeof(*pwr));
589 		if (!pwr)
590 			return;
591 
592 		pwr->state = cpus_pstate_state[cpu];
593 		pwr->start_time = cpus_pstate_start_times[cpu];
594 		pwr->end_time = last_time;
595 		pwr->cpu = cpu;
596 		pwr->type = PSTATE;
597 		pwr->next = power_events;
598 
599 		if (!pwr->start_time)
600 			pwr->start_time = first_time;
601 		if (!pwr->state)
602 			pwr->state = min_freq;
603 		power_events = pwr;
604 	}
605 }
606 
607 /*
608  * Sort the pid datastructure
609  */
sort_pids(void)610 static void sort_pids(void)
611 {
612 	struct per_pid *new_list, *p, *cursor, *prev;
613 	/* sort by ppid first, then by pid, lowest to highest */
614 
615 	new_list = NULL;
616 
617 	while (all_data) {
618 		p = all_data;
619 		all_data = p->next;
620 		p->next = NULL;
621 
622 		if (new_list == NULL) {
623 			new_list = p;
624 			p->next = NULL;
625 			continue;
626 		}
627 		prev = NULL;
628 		cursor = new_list;
629 		while (cursor) {
630 			if (cursor->ppid > p->ppid ||
631 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
632 				/* must insert before */
633 				if (prev) {
634 					p->next = prev->next;
635 					prev->next = p;
636 					cursor = NULL;
637 					continue;
638 				} else {
639 					p->next = new_list;
640 					new_list = p;
641 					cursor = NULL;
642 					continue;
643 				}
644 			}
645 
646 			prev = cursor;
647 			cursor = cursor->next;
648 			if (!cursor)
649 				prev->next = p;
650 		}
651 	}
652 	all_data = new_list;
653 }
654 
655 
draw_c_p_states(void)656 static void draw_c_p_states(void)
657 {
658 	struct power_event *pwr;
659 	pwr = power_events;
660 
661 	/*
662 	 * two pass drawing so that the P state bars are on top of the C state blocks
663 	 */
664 	while (pwr) {
665 		if (pwr->type == CSTATE)
666 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
667 		pwr = pwr->next;
668 	}
669 
670 	pwr = power_events;
671 	while (pwr) {
672 		if (pwr->type == PSTATE) {
673 			if (!pwr->state)
674 				pwr->state = min_freq;
675 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
676 		}
677 		pwr = pwr->next;
678 	}
679 }
680 
draw_wakeups(void)681 static void draw_wakeups(void)
682 {
683 	struct wake_event *we;
684 	struct per_pid *p;
685 	struct per_pidcomm *c;
686 
687 	we = wake_events;
688 	while (we) {
689 		int from = 0, to = 0;
690 		char *task_from = NULL, *task_to = NULL;
691 
692 		/* locate the column of the waker and wakee */
693 		p = all_data;
694 		while (p) {
695 			if (p->pid == we->waker || p->pid == we->wakee) {
696 				c = p->all;
697 				while (c) {
698 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
699 						if (p->pid == we->waker && !from) {
700 							from = c->Y;
701 							task_from = strdup(c->comm);
702 						}
703 						if (p->pid == we->wakee && !to) {
704 							to = c->Y;
705 							task_to = strdup(c->comm);
706 						}
707 					}
708 					c = c->next;
709 				}
710 				c = p->all;
711 				while (c) {
712 					if (p->pid == we->waker && !from) {
713 						from = c->Y;
714 						task_from = strdup(c->comm);
715 					}
716 					if (p->pid == we->wakee && !to) {
717 						to = c->Y;
718 						task_to = strdup(c->comm);
719 					}
720 					c = c->next;
721 				}
722 			}
723 			p = p->next;
724 		}
725 
726 		if (!task_from) {
727 			task_from = malloc(40);
728 			sprintf(task_from, "[%i]", we->waker);
729 		}
730 		if (!task_to) {
731 			task_to = malloc(40);
732 			sprintf(task_to, "[%i]", we->wakee);
733 		}
734 
735 		if (we->waker == -1)
736 			svg_interrupt(we->time, to);
737 		else if (from && to && abs(from - to) == 1)
738 			svg_wakeline(we->time, from, to);
739 		else
740 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
741 		we = we->next;
742 
743 		free(task_from);
744 		free(task_to);
745 	}
746 }
747 
draw_cpu_usage(void)748 static void draw_cpu_usage(void)
749 {
750 	struct per_pid *p;
751 	struct per_pidcomm *c;
752 	struct cpu_sample *sample;
753 	p = all_data;
754 	while (p) {
755 		c = p->all;
756 		while (c) {
757 			sample = c->samples;
758 			while (sample) {
759 				if (sample->type == TYPE_RUNNING)
760 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
761 
762 				sample = sample->next;
763 			}
764 			c = c->next;
765 		}
766 		p = p->next;
767 	}
768 }
769 
draw_process_bars(void)770 static void draw_process_bars(void)
771 {
772 	struct per_pid *p;
773 	struct per_pidcomm *c;
774 	struct cpu_sample *sample;
775 	int Y = 0;
776 
777 	Y = 2 * numcpus + 2;
778 
779 	p = all_data;
780 	while (p) {
781 		c = p->all;
782 		while (c) {
783 			if (!c->display) {
784 				c->Y = 0;
785 				c = c->next;
786 				continue;
787 			}
788 
789 			svg_box(Y, c->start_time, c->end_time, "process");
790 			sample = c->samples;
791 			while (sample) {
792 				if (sample->type == TYPE_RUNNING)
793 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
794 				if (sample->type == TYPE_BLOCKED)
795 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
796 				if (sample->type == TYPE_WAITING)
797 					svg_waiting(Y, sample->start_time, sample->end_time);
798 				sample = sample->next;
799 			}
800 
801 			if (c->comm) {
802 				char comm[256];
803 				if (c->total_time > 5000000000) /* 5 seconds */
804 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
805 				else
806 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
807 
808 				svg_text(Y, c->start_time, comm);
809 			}
810 			c->Y = Y;
811 			Y++;
812 			c = c->next;
813 		}
814 		p = p->next;
815 	}
816 }
817 
add_process_filter(const char * string)818 static void add_process_filter(const char *string)
819 {
820 	int pid = strtoull(string, NULL, 10);
821 	struct process_filter *filt = malloc(sizeof(*filt));
822 
823 	if (!filt)
824 		return;
825 
826 	filt->name = strdup(string);
827 	filt->pid  = pid;
828 	filt->next = process_filter;
829 
830 	process_filter = filt;
831 }
832 
passes_filter(struct per_pid * p,struct per_pidcomm * c)833 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
834 {
835 	struct process_filter *filt;
836 	if (!process_filter)
837 		return 1;
838 
839 	filt = process_filter;
840 	while (filt) {
841 		if (filt->pid && p->pid == filt->pid)
842 			return 1;
843 		if (strcmp(filt->name, c->comm) == 0)
844 			return 1;
845 		filt = filt->next;
846 	}
847 	return 0;
848 }
849 
determine_display_tasks_filtered(void)850 static int determine_display_tasks_filtered(void)
851 {
852 	struct per_pid *p;
853 	struct per_pidcomm *c;
854 	int count = 0;
855 
856 	p = all_data;
857 	while (p) {
858 		p->display = 0;
859 		if (p->start_time == 1)
860 			p->start_time = first_time;
861 
862 		/* no exit marker, task kept running to the end */
863 		if (p->end_time == 0)
864 			p->end_time = last_time;
865 
866 		c = p->all;
867 
868 		while (c) {
869 			c->display = 0;
870 
871 			if (c->start_time == 1)
872 				c->start_time = first_time;
873 
874 			if (passes_filter(p, c)) {
875 				c->display = 1;
876 				p->display = 1;
877 				count++;
878 			}
879 
880 			if (c->end_time == 0)
881 				c->end_time = last_time;
882 
883 			c = c->next;
884 		}
885 		p = p->next;
886 	}
887 	return count;
888 }
889 
determine_display_tasks(u64 threshold)890 static int determine_display_tasks(u64 threshold)
891 {
892 	struct per_pid *p;
893 	struct per_pidcomm *c;
894 	int count = 0;
895 
896 	if (process_filter)
897 		return determine_display_tasks_filtered();
898 
899 	p = all_data;
900 	while (p) {
901 		p->display = 0;
902 		if (p->start_time == 1)
903 			p->start_time = first_time;
904 
905 		/* no exit marker, task kept running to the end */
906 		if (p->end_time == 0)
907 			p->end_time = last_time;
908 		if (p->total_time >= threshold && !power_only)
909 			p->display = 1;
910 
911 		c = p->all;
912 
913 		while (c) {
914 			c->display = 0;
915 
916 			if (c->start_time == 1)
917 				c->start_time = first_time;
918 
919 			if (c->total_time >= threshold && !power_only) {
920 				c->display = 1;
921 				count++;
922 			}
923 
924 			if (c->end_time == 0)
925 				c->end_time = last_time;
926 
927 			c = c->next;
928 		}
929 		p = p->next;
930 	}
931 	return count;
932 }
933 
934 
935 
936 #define TIME_THRESH 10000000
937 
write_svg_file(const char * filename)938 static void write_svg_file(const char *filename)
939 {
940 	u64 i;
941 	int count;
942 
943 	numcpus++;
944 
945 
946 	count = determine_display_tasks(TIME_THRESH);
947 
948 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
949 	if (count < 15)
950 		count = determine_display_tasks(TIME_THRESH / 10);
951 
952 	open_svg(filename, numcpus, count, first_time, last_time);
953 
954 	svg_time_grid();
955 	svg_legenda();
956 
957 	for (i = 0; i < numcpus; i++)
958 		svg_cpu_box(i, max_freq, turbo_frequency);
959 
960 	draw_cpu_usage();
961 	draw_process_bars();
962 	draw_c_p_states();
963 	draw_wakeups();
964 
965 	svg_close();
966 }
967 
__cmd_timechart(const char * output_name)968 static int __cmd_timechart(const char *output_name)
969 {
970 	struct perf_tool perf_timechart = {
971 		.comm		 = process_comm_event,
972 		.fork		 = process_fork_event,
973 		.exit		 = process_exit_event,
974 		.sample		 = process_sample_event,
975 		.ordered_samples = true,
976 	};
977 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
978 							 0, false, &perf_timechart);
979 	int ret = -EINVAL;
980 
981 	if (session == NULL)
982 		return -ENOMEM;
983 
984 	if (!perf_session__has_traces(session, "timechart record"))
985 		goto out_delete;
986 
987 	ret = perf_session__process_events(session, &perf_timechart);
988 	if (ret)
989 		goto out_delete;
990 
991 	end_sample_processing();
992 
993 	sort_pids();
994 
995 	write_svg_file(output_name);
996 
997 	pr_info("Written %2.1f seconds of trace to %s.\n",
998 		(last_time - first_time) / 1000000000.0, output_name);
999 out_delete:
1000 	perf_session__delete(session);
1001 	return ret;
1002 }
1003 
__cmd_record(int argc,const char ** argv)1004 static int __cmd_record(int argc, const char **argv)
1005 {
1006 #ifdef SUPPORT_OLD_POWER_EVENTS
1007 	const char * const record_old_args[] = {
1008 		"record", "-a", "-R", "-f", "-c", "1",
1009 		"-e", "power:power_start",
1010 		"-e", "power:power_end",
1011 		"-e", "power:power_frequency",
1012 		"-e", "sched:sched_wakeup",
1013 		"-e", "sched:sched_switch",
1014 	};
1015 #endif
1016 	const char * const record_new_args[] = {
1017 		"record", "-a", "-R", "-f", "-c", "1",
1018 		"-e", "power:cpu_frequency",
1019 		"-e", "power:cpu_idle",
1020 		"-e", "sched:sched_wakeup",
1021 		"-e", "sched:sched_switch",
1022 	};
1023 	unsigned int rec_argc, i, j;
1024 	const char **rec_argv;
1025 	const char * const *record_args = record_new_args;
1026 	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1027 
1028 #ifdef SUPPORT_OLD_POWER_EVENTS
1029 	if (!is_valid_tracepoint("power:cpu_idle") &&
1030 	    is_valid_tracepoint("power:power_start")) {
1031 		use_old_power_events = 1;
1032 		record_args = record_old_args;
1033 		record_elems = ARRAY_SIZE(record_old_args);
1034 	}
1035 #endif
1036 
1037 	rec_argc = record_elems + argc - 1;
1038 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1039 
1040 	if (rec_argv == NULL)
1041 		return -ENOMEM;
1042 
1043 	for (i = 0; i < record_elems; i++)
1044 		rec_argv[i] = strdup(record_args[i]);
1045 
1046 	for (j = 1; j < (unsigned int)argc; j++, i++)
1047 		rec_argv[i] = argv[j];
1048 
1049 	return cmd_record(i, rec_argv, NULL);
1050 }
1051 
1052 static int
parse_process(const struct option * opt __maybe_unused,const char * arg,int __maybe_unused unset)1053 parse_process(const struct option *opt __maybe_unused, const char *arg,
1054 	      int __maybe_unused unset)
1055 {
1056 	if (arg)
1057 		add_process_filter(arg);
1058 	return 0;
1059 }
1060 
cmd_timechart(int argc,const char ** argv,const char * prefix __maybe_unused)1061 int cmd_timechart(int argc, const char **argv,
1062 		  const char *prefix __maybe_unused)
1063 {
1064 	const char *output_name = "output.svg";
1065 	const struct option options[] = {
1066 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1067 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1068 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1069 	OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1070 	OPT_CALLBACK('p', "process", NULL, "process",
1071 		      "process selector. Pass a pid or process name.",
1072 		       parse_process),
1073 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1074 		    "Look for files with symbols relative to this directory"),
1075 	OPT_END()
1076 	};
1077 	const char * const timechart_usage[] = {
1078 		"perf timechart [<options>] {record}",
1079 		NULL
1080 	};
1081 
1082 	argc = parse_options(argc, argv, options, timechart_usage,
1083 			PARSE_OPT_STOP_AT_NON_OPTION);
1084 
1085 	symbol__init();
1086 
1087 	if (argc && !strncmp(argv[0], "rec", 3))
1088 		return __cmd_record(argc, argv);
1089 	else if (argc)
1090 		usage_with_options(timechart_usage, options);
1091 
1092 	setup_pager();
1093 
1094 	return __cmd_timechart(output_name);
1095 }
1096