1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
tcp_acceptable_seq(const struct sock * sk)100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
tcp_advertise_mss(struct sock * sk)124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
tcp_cwnd_restart(struct sock * sk,const struct dst_entry * dst)144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
tcp_default_init_rwnd(u32 mss)193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = sysctl_tcp_default_init_rwnd;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
tcp_select_window(struct sock * sk)272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
322 {
323 const struct tcp_sock *tp = tcp_sk(sk);
324
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 if (!(tp->ecn_flags & TCP_ECN_OK))
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 else if (tcp_ca_needs_ecn(sk))
329 INET_ECN_xmit(sk);
330 }
331
332 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336
337 tp->ecn_flags = 0;
338 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
339 tcp_ca_needs_ecn(sk)) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th,struct sock * sk)348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
349 struct sock *sk)
350 {
351 if (inet_rsk(req)->ecn_ok) {
352 th->ece = 1;
353 if (tcp_ca_needs_ecn(sk))
354 INET_ECN_xmit(sk);
355 }
356 }
357
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359 * be sent.
360 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 int tcp_header_len)
363 {
364 struct tcp_sock *tp = tcp_sk(sk);
365
366 if (tp->ecn_flags & TCP_ECN_OK) {
367 /* Not-retransmitted data segment: set ECT and inject CWR. */
368 if (skb->len != tcp_header_len &&
369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 INET_ECN_xmit(sk);
371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 tcp_hdr(skb)->cwr = 1;
374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 }
376 } else if (!tcp_ca_needs_ecn(sk)) {
377 /* ACK or retransmitted segment: clear ECT|CE */
378 INET_ECN_dontxmit(sk);
379 }
380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 tcp_hdr(skb)->ece = 1;
382 }
383 }
384
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386 * auto increment end seqno.
387 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 struct skb_shared_info *shinfo = skb_shinfo(skb);
391
392 skb->ip_summed = CHECKSUM_PARTIAL;
393 skb->csum = 0;
394
395 TCP_SKB_CB(skb)->tcp_flags = flags;
396 TCP_SKB_CB(skb)->sacked = 0;
397
398 tcp_skb_pcount_set(skb, 1);
399 shinfo->gso_size = 0;
400 shinfo->gso_type = 0;
401
402 TCP_SKB_CB(skb)->seq = seq;
403 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 seq++;
405 TCP_SKB_CB(skb)->end_seq = seq;
406 }
407
tcp_urg_mode(const struct tcp_sock * tp)408 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 {
410 return tp->snd_una != tp->snd_up;
411 }
412
413 #define OPTION_SACK_ADVERTISE (1 << 0)
414 #define OPTION_TS (1 << 1)
415 #define OPTION_MD5 (1 << 2)
416 #define OPTION_WSCALE (1 << 3)
417 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
418
419 struct tcp_out_options {
420 u16 options; /* bit field of OPTION_* */
421 u16 mss; /* 0 to disable */
422 u8 ws; /* window scale, 0 to disable */
423 u8 num_sack_blocks; /* number of SACK blocks to include */
424 u8 hash_size; /* bytes in hash_location */
425 __u8 *hash_location; /* temporary pointer, overloaded */
426 __u32 tsval, tsecr; /* need to include OPTION_TS */
427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
428 };
429
430 /* Write previously computed TCP options to the packet.
431 *
432 * Beware: Something in the Internet is very sensitive to the ordering of
433 * TCP options, we learned this through the hard way, so be careful here.
434 * Luckily we can at least blame others for their non-compliance but from
435 * inter-operability perspective it seems that we're somewhat stuck with
436 * the ordering which we have been using if we want to keep working with
437 * those broken things (not that it currently hurts anybody as there isn't
438 * particular reason why the ordering would need to be changed).
439 *
440 * At least SACK_PERM as the first option is known to lead to a disaster
441 * (but it may well be that other scenarios fail similarly).
442 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
444 struct tcp_out_options *opts)
445 {
446 u16 options = opts->options; /* mungable copy */
447
448 if (unlikely(OPTION_MD5 & options)) {
449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
451 /* overload cookie hash location */
452 opts->hash_location = (__u8 *)ptr;
453 ptr += 4;
454 }
455
456 if (unlikely(opts->mss)) {
457 *ptr++ = htonl((TCPOPT_MSS << 24) |
458 (TCPOLEN_MSS << 16) |
459 opts->mss);
460 }
461
462 if (likely(OPTION_TS & options)) {
463 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
465 (TCPOLEN_SACK_PERM << 16) |
466 (TCPOPT_TIMESTAMP << 8) |
467 TCPOLEN_TIMESTAMP);
468 options &= ~OPTION_SACK_ADVERTISE;
469 } else {
470 *ptr++ = htonl((TCPOPT_NOP << 24) |
471 (TCPOPT_NOP << 16) |
472 (TCPOPT_TIMESTAMP << 8) |
473 TCPOLEN_TIMESTAMP);
474 }
475 *ptr++ = htonl(opts->tsval);
476 *ptr++ = htonl(opts->tsecr);
477 }
478
479 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
480 *ptr++ = htonl((TCPOPT_NOP << 24) |
481 (TCPOPT_NOP << 16) |
482 (TCPOPT_SACK_PERM << 8) |
483 TCPOLEN_SACK_PERM);
484 }
485
486 if (unlikely(OPTION_WSCALE & options)) {
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_WINDOW << 16) |
489 (TCPOLEN_WINDOW << 8) |
490 opts->ws);
491 }
492
493 if (unlikely(opts->num_sack_blocks)) {
494 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
495 tp->duplicate_sack : tp->selective_acks;
496 int this_sack;
497
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_NOP << 16) |
500 (TCPOPT_SACK << 8) |
501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
502 TCPOLEN_SACK_PERBLOCK)));
503
504 for (this_sack = 0; this_sack < opts->num_sack_blocks;
505 ++this_sack) {
506 *ptr++ = htonl(sp[this_sack].start_seq);
507 *ptr++ = htonl(sp[this_sack].end_seq);
508 }
509
510 tp->rx_opt.dsack = 0;
511 }
512
513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
515
516 *ptr++ = htonl((TCPOPT_EXP << 24) |
517 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
518 TCPOPT_FASTOPEN_MAGIC);
519
520 memcpy(ptr, foc->val, foc->len);
521 if ((foc->len & 3) == 2) {
522 u8 *align = ((u8 *)ptr) + foc->len;
523 align[0] = align[1] = TCPOPT_NOP;
524 }
525 ptr += (foc->len + 3) >> 2;
526 }
527 }
528
529 /* Compute TCP options for SYN packets. This is not the final
530 * network wire format yet.
531 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)532 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
533 struct tcp_out_options *opts,
534 struct tcp_md5sig_key **md5)
535 {
536 struct tcp_sock *tp = tcp_sk(sk);
537 unsigned int remaining = MAX_TCP_OPTION_SPACE;
538 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
539
540 #ifdef CONFIG_TCP_MD5SIG
541 *md5 = tp->af_specific->md5_lookup(sk, sk);
542 if (*md5) {
543 opts->options |= OPTION_MD5;
544 remaining -= TCPOLEN_MD5SIG_ALIGNED;
545 }
546 #else
547 *md5 = NULL;
548 #endif
549
550 /* We always get an MSS option. The option bytes which will be seen in
551 * normal data packets should timestamps be used, must be in the MSS
552 * advertised. But we subtract them from tp->mss_cache so that
553 * calculations in tcp_sendmsg are simpler etc. So account for this
554 * fact here if necessary. If we don't do this correctly, as a
555 * receiver we won't recognize data packets as being full sized when we
556 * should, and thus we won't abide by the delayed ACK rules correctly.
557 * SACKs don't matter, we never delay an ACK when we have any of those
558 * going out. */
559 opts->mss = tcp_advertise_mss(sk);
560 remaining -= TCPOLEN_MSS_ALIGNED;
561
562 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
563 opts->options |= OPTION_TS;
564 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
565 opts->tsecr = tp->rx_opt.ts_recent;
566 remaining -= TCPOLEN_TSTAMP_ALIGNED;
567 }
568 if (likely(sysctl_tcp_window_scaling)) {
569 opts->ws = tp->rx_opt.rcv_wscale;
570 opts->options |= OPTION_WSCALE;
571 remaining -= TCPOLEN_WSCALE_ALIGNED;
572 }
573 if (likely(sysctl_tcp_sack)) {
574 opts->options |= OPTION_SACK_ADVERTISE;
575 if (unlikely(!(OPTION_TS & opts->options)))
576 remaining -= TCPOLEN_SACKPERM_ALIGNED;
577 }
578
579 if (fastopen && fastopen->cookie.len >= 0) {
580 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
581 need = (need + 3) & ~3U; /* Align to 32 bits */
582 if (remaining >= need) {
583 opts->options |= OPTION_FAST_OPEN_COOKIE;
584 opts->fastopen_cookie = &fastopen->cookie;
585 remaining -= need;
586 tp->syn_fastopen = 1;
587 }
588 }
589
590 return MAX_TCP_OPTION_SPACE - remaining;
591 }
592
593 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5,struct tcp_fastopen_cookie * foc)594 static unsigned int tcp_synack_options(struct sock *sk,
595 struct request_sock *req,
596 unsigned int mss, struct sk_buff *skb,
597 struct tcp_out_options *opts,
598 struct tcp_md5sig_key **md5,
599 struct tcp_fastopen_cookie *foc)
600 {
601 struct inet_request_sock *ireq = inet_rsk(req);
602 unsigned int remaining = MAX_TCP_OPTION_SPACE;
603
604 #ifdef CONFIG_TCP_MD5SIG
605 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
606 if (*md5) {
607 opts->options |= OPTION_MD5;
608 remaining -= TCPOLEN_MD5SIG_ALIGNED;
609
610 /* We can't fit any SACK blocks in a packet with MD5 + TS
611 * options. There was discussion about disabling SACK
612 * rather than TS in order to fit in better with old,
613 * buggy kernels, but that was deemed to be unnecessary.
614 */
615 ireq->tstamp_ok &= !ireq->sack_ok;
616 }
617 #else
618 *md5 = NULL;
619 #endif
620
621 /* We always send an MSS option. */
622 opts->mss = mss;
623 remaining -= TCPOLEN_MSS_ALIGNED;
624
625 if (likely(ireq->wscale_ok)) {
626 opts->ws = ireq->rcv_wscale;
627 opts->options |= OPTION_WSCALE;
628 remaining -= TCPOLEN_WSCALE_ALIGNED;
629 }
630 if (likely(ireq->tstamp_ok)) {
631 opts->options |= OPTION_TS;
632 opts->tsval = tcp_skb_timestamp(skb);
633 opts->tsecr = req->ts_recent;
634 remaining -= TCPOLEN_TSTAMP_ALIGNED;
635 }
636 if (likely(ireq->sack_ok)) {
637 opts->options |= OPTION_SACK_ADVERTISE;
638 if (unlikely(!ireq->tstamp_ok))
639 remaining -= TCPOLEN_SACKPERM_ALIGNED;
640 }
641 if (foc != NULL && foc->len >= 0) {
642 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
643 need = (need + 3) & ~3U; /* Align to 32 bits */
644 if (remaining >= need) {
645 opts->options |= OPTION_FAST_OPEN_COOKIE;
646 opts->fastopen_cookie = foc;
647 remaining -= need;
648 }
649 }
650
651 return MAX_TCP_OPTION_SPACE - remaining;
652 }
653
654 /* Compute TCP options for ESTABLISHED sockets. This is not the
655 * final wire format yet.
656 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)657 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
658 struct tcp_out_options *opts,
659 struct tcp_md5sig_key **md5)
660 {
661 struct tcp_sock *tp = tcp_sk(sk);
662 unsigned int size = 0;
663 unsigned int eff_sacks;
664
665 opts->options = 0;
666
667 #ifdef CONFIG_TCP_MD5SIG
668 *md5 = tp->af_specific->md5_lookup(sk, sk);
669 if (unlikely(*md5)) {
670 opts->options |= OPTION_MD5;
671 size += TCPOLEN_MD5SIG_ALIGNED;
672 }
673 #else
674 *md5 = NULL;
675 #endif
676
677 if (likely(tp->rx_opt.tstamp_ok)) {
678 opts->options |= OPTION_TS;
679 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
680 opts->tsecr = tp->rx_opt.ts_recent;
681 size += TCPOLEN_TSTAMP_ALIGNED;
682 }
683
684 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
685 if (unlikely(eff_sacks)) {
686 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
687 opts->num_sack_blocks =
688 min_t(unsigned int, eff_sacks,
689 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
690 TCPOLEN_SACK_PERBLOCK);
691 size += TCPOLEN_SACK_BASE_ALIGNED +
692 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
693 }
694
695 return size;
696 }
697
698
699 /* TCP SMALL QUEUES (TSQ)
700 *
701 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
702 * to reduce RTT and bufferbloat.
703 * We do this using a special skb destructor (tcp_wfree).
704 *
705 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
706 * needs to be reallocated in a driver.
707 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
708 *
709 * Since transmit from skb destructor is forbidden, we use a tasklet
710 * to process all sockets that eventually need to send more skbs.
711 * We use one tasklet per cpu, with its own queue of sockets.
712 */
713 struct tsq_tasklet {
714 struct tasklet_struct tasklet;
715 struct list_head head; /* queue of tcp sockets */
716 };
717 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
718
tcp_tsq_handler(struct sock * sk)719 static void tcp_tsq_handler(struct sock *sk)
720 {
721 if ((1 << sk->sk_state) &
722 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
723 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
724 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
725 0, GFP_ATOMIC);
726 }
727 /*
728 * One tasklet per cpu tries to send more skbs.
729 * We run in tasklet context but need to disable irqs when
730 * transferring tsq->head because tcp_wfree() might
731 * interrupt us (non NAPI drivers)
732 */
tcp_tasklet_func(unsigned long data)733 static void tcp_tasklet_func(unsigned long data)
734 {
735 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
736 LIST_HEAD(list);
737 unsigned long flags;
738 struct list_head *q, *n;
739 struct tcp_sock *tp;
740 struct sock *sk;
741
742 local_irq_save(flags);
743 list_splice_init(&tsq->head, &list);
744 local_irq_restore(flags);
745
746 list_for_each_safe(q, n, &list) {
747 tp = list_entry(q, struct tcp_sock, tsq_node);
748 list_del(&tp->tsq_node);
749
750 sk = (struct sock *)tp;
751 bh_lock_sock(sk);
752
753 if (!sock_owned_by_user(sk)) {
754 tcp_tsq_handler(sk);
755 } else {
756 /* defer the work to tcp_release_cb() */
757 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
758 }
759 bh_unlock_sock(sk);
760
761 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
762 sk_free(sk);
763 }
764 }
765
766 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
767 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
768 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
769 (1UL << TCP_MTU_REDUCED_DEFERRED))
770 /**
771 * tcp_release_cb - tcp release_sock() callback
772 * @sk: socket
773 *
774 * called from release_sock() to perform protocol dependent
775 * actions before socket release.
776 */
tcp_release_cb(struct sock * sk)777 void tcp_release_cb(struct sock *sk)
778 {
779 struct tcp_sock *tp = tcp_sk(sk);
780 unsigned long flags, nflags;
781
782 /* perform an atomic operation only if at least one flag is set */
783 do {
784 flags = tp->tsq_flags;
785 if (!(flags & TCP_DEFERRED_ALL))
786 return;
787 nflags = flags & ~TCP_DEFERRED_ALL;
788 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
789
790 if (flags & (1UL << TCP_TSQ_DEFERRED))
791 tcp_tsq_handler(sk);
792
793 /* Here begins the tricky part :
794 * We are called from release_sock() with :
795 * 1) BH disabled
796 * 2) sk_lock.slock spinlock held
797 * 3) socket owned by us (sk->sk_lock.owned == 1)
798 *
799 * But following code is meant to be called from BH handlers,
800 * so we should keep BH disabled, but early release socket ownership
801 */
802 sock_release_ownership(sk);
803
804 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
805 tcp_write_timer_handler(sk);
806 __sock_put(sk);
807 }
808 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
809 tcp_delack_timer_handler(sk);
810 __sock_put(sk);
811 }
812 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
813 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
814 __sock_put(sk);
815 }
816 }
817 EXPORT_SYMBOL(tcp_release_cb);
818
tcp_tasklet_init(void)819 void __init tcp_tasklet_init(void)
820 {
821 int i;
822
823 for_each_possible_cpu(i) {
824 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
825
826 INIT_LIST_HEAD(&tsq->head);
827 tasklet_init(&tsq->tasklet,
828 tcp_tasklet_func,
829 (unsigned long)tsq);
830 }
831 }
832
833 /*
834 * Write buffer destructor automatically called from kfree_skb.
835 * We can't xmit new skbs from this context, as we might already
836 * hold qdisc lock.
837 */
tcp_wfree(struct sk_buff * skb)838 void tcp_wfree(struct sk_buff *skb)
839 {
840 struct sock *sk = skb->sk;
841 struct tcp_sock *tp = tcp_sk(sk);
842 int wmem;
843
844 /* Keep one reference on sk_wmem_alloc.
845 * Will be released by sk_free() from here or tcp_tasklet_func()
846 */
847 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
848
849 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
850 * Wait until our queues (qdisc + devices) are drained.
851 * This gives :
852 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
853 * - chance for incoming ACK (processed by another cpu maybe)
854 * to migrate this flow (skb->ooo_okay will be eventually set)
855 */
856 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
857 goto out;
858
859 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
860 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
861 unsigned long flags;
862 struct tsq_tasklet *tsq;
863
864 /* queue this socket to tasklet queue */
865 local_irq_save(flags);
866 tsq = this_cpu_ptr(&tsq_tasklet);
867 list_add(&tp->tsq_node, &tsq->head);
868 tasklet_schedule(&tsq->tasklet);
869 local_irq_restore(flags);
870 return;
871 }
872 out:
873 sk_free(sk);
874 }
875
876 /* This routine actually transmits TCP packets queued in by
877 * tcp_do_sendmsg(). This is used by both the initial
878 * transmission and possible later retransmissions.
879 * All SKB's seen here are completely headerless. It is our
880 * job to build the TCP header, and pass the packet down to
881 * IP so it can do the same plus pass the packet off to the
882 * device.
883 *
884 * We are working here with either a clone of the original
885 * SKB, or a fresh unique copy made by the retransmit engine.
886 */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)887 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
888 gfp_t gfp_mask)
889 {
890 const struct inet_connection_sock *icsk = inet_csk(sk);
891 struct inet_sock *inet;
892 struct tcp_sock *tp;
893 struct tcp_skb_cb *tcb;
894 struct tcp_out_options opts;
895 unsigned int tcp_options_size, tcp_header_size;
896 struct tcp_md5sig_key *md5;
897 struct tcphdr *th;
898 int err;
899
900 BUG_ON(!skb || !tcp_skb_pcount(skb));
901
902 if (clone_it) {
903 skb_mstamp_get(&skb->skb_mstamp);
904
905 if (unlikely(skb_cloned(skb)))
906 skb = pskb_copy(skb, gfp_mask);
907 else
908 skb = skb_clone(skb, gfp_mask);
909 if (unlikely(!skb))
910 return -ENOBUFS;
911 }
912
913 inet = inet_sk(sk);
914 tp = tcp_sk(sk);
915 tcb = TCP_SKB_CB(skb);
916 memset(&opts, 0, sizeof(opts));
917
918 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
919 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
920 else
921 tcp_options_size = tcp_established_options(sk, skb, &opts,
922 &md5);
923 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
924
925 if (tcp_packets_in_flight(tp) == 0)
926 tcp_ca_event(sk, CA_EVENT_TX_START);
927
928 /* if no packet is in qdisc/device queue, then allow XPS to select
929 * another queue. We can be called from tcp_tsq_handler()
930 * which holds one reference to sk_wmem_alloc.
931 *
932 * TODO: Ideally, in-flight pure ACK packets should not matter here.
933 * One way to get this would be to set skb->truesize = 2 on them.
934 */
935 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
936
937 skb_push(skb, tcp_header_size);
938 skb_reset_transport_header(skb);
939
940 skb_orphan(skb);
941 skb->sk = sk;
942 skb->destructor = tcp_wfree;
943 skb_set_hash_from_sk(skb, sk);
944 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
945
946 /* Build TCP header and checksum it. */
947 th = tcp_hdr(skb);
948 th->source = inet->inet_sport;
949 th->dest = inet->inet_dport;
950 th->seq = htonl(tcb->seq);
951 th->ack_seq = htonl(tp->rcv_nxt);
952 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
953 tcb->tcp_flags);
954
955 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
956 /* RFC1323: The window in SYN & SYN/ACK segments
957 * is never scaled.
958 */
959 th->window = htons(min(tp->rcv_wnd, 65535U));
960 } else {
961 th->window = htons(tcp_select_window(sk));
962 }
963 th->check = 0;
964 th->urg_ptr = 0;
965
966 /* The urg_mode check is necessary during a below snd_una win probe */
967 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
968 if (before(tp->snd_up, tcb->seq + 0x10000)) {
969 th->urg_ptr = htons(tp->snd_up - tcb->seq);
970 th->urg = 1;
971 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
972 th->urg_ptr = htons(0xFFFF);
973 th->urg = 1;
974 }
975 }
976
977 tcp_options_write((__be32 *)(th + 1), tp, &opts);
978 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
979 tcp_ecn_send(sk, skb, tcp_header_size);
980
981 #ifdef CONFIG_TCP_MD5SIG
982 /* Calculate the MD5 hash, as we have all we need now */
983 if (md5) {
984 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
985 tp->af_specific->calc_md5_hash(opts.hash_location,
986 md5, sk, NULL, skb);
987 }
988 #endif
989
990 icsk->icsk_af_ops->send_check(sk, skb);
991
992 if (likely(tcb->tcp_flags & TCPHDR_ACK))
993 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
994
995 if (skb->len != tcp_header_size)
996 tcp_event_data_sent(tp, sk);
997
998 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
999 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1000 tcp_skb_pcount(skb));
1001
1002 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1003 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1004
1005 /* Our usage of tstamp should remain private */
1006 skb->tstamp.tv64 = 0;
1007
1008 /* Cleanup our debris for IP stacks */
1009 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1010 sizeof(struct inet6_skb_parm)));
1011
1012 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1013
1014 if (likely(err <= 0))
1015 return err;
1016
1017 tcp_enter_cwr(sk);
1018
1019 return net_xmit_eval(err);
1020 }
1021
1022 /* This routine just queues the buffer for sending.
1023 *
1024 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1025 * otherwise socket can stall.
1026 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1027 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1028 {
1029 struct tcp_sock *tp = tcp_sk(sk);
1030
1031 /* Advance write_seq and place onto the write_queue. */
1032 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1033 __skb_header_release(skb);
1034 tcp_add_write_queue_tail(sk, skb);
1035 sk->sk_wmem_queued += skb->truesize;
1036 sk_mem_charge(sk, skb->truesize);
1037 }
1038
1039 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1040 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1041 unsigned int mss_now)
1042 {
1043 struct skb_shared_info *shinfo = skb_shinfo(skb);
1044
1045 /* Make sure we own this skb before messing gso_size/gso_segs */
1046 WARN_ON_ONCE(skb_cloned(skb));
1047
1048 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1049 /* Avoid the costly divide in the normal
1050 * non-TSO case.
1051 */
1052 tcp_skb_pcount_set(skb, 1);
1053 shinfo->gso_size = 0;
1054 shinfo->gso_type = 0;
1055 } else {
1056 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1057 shinfo->gso_size = mss_now;
1058 shinfo->gso_type = sk->sk_gso_type;
1059 }
1060 }
1061
1062 /* When a modification to fackets out becomes necessary, we need to check
1063 * skb is counted to fackets_out or not.
1064 */
tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)1065 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1066 int decr)
1067 {
1068 struct tcp_sock *tp = tcp_sk(sk);
1069
1070 if (!tp->sacked_out || tcp_is_reno(tp))
1071 return;
1072
1073 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1074 tp->fackets_out -= decr;
1075 }
1076
1077 /* Pcount in the middle of the write queue got changed, we need to do various
1078 * tweaks to fix counters
1079 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1080 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1081 {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083
1084 tp->packets_out -= decr;
1085
1086 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1087 tp->sacked_out -= decr;
1088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1089 tp->retrans_out -= decr;
1090 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1091 tp->lost_out -= decr;
1092
1093 /* Reno case is special. Sigh... */
1094 if (tcp_is_reno(tp) && decr > 0)
1095 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1096
1097 tcp_adjust_fackets_out(sk, skb, decr);
1098
1099 if (tp->lost_skb_hint &&
1100 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1101 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1102 tp->lost_cnt_hint -= decr;
1103
1104 tcp_verify_left_out(tp);
1105 }
1106
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1107 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1108 {
1109 struct skb_shared_info *shinfo = skb_shinfo(skb);
1110
1111 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1112 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1113 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1114 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1115
1116 shinfo->tx_flags &= ~tsflags;
1117 shinfo2->tx_flags |= tsflags;
1118 swap(shinfo->tskey, shinfo2->tskey);
1119 }
1120 }
1121
1122 /* Function to create two new TCP segments. Shrinks the given segment
1123 * to the specified size and appends a new segment with the rest of the
1124 * packet to the list. This won't be called frequently, I hope.
1125 * Remember, these are still headerless SKBs at this point.
1126 */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1127 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1128 unsigned int mss_now, gfp_t gfp)
1129 {
1130 struct tcp_sock *tp = tcp_sk(sk);
1131 struct sk_buff *buff;
1132 int nsize, old_factor;
1133 int nlen;
1134 u8 flags;
1135
1136 if (WARN_ON(len > skb->len))
1137 return -EINVAL;
1138
1139 nsize = skb_headlen(skb) - len;
1140 if (nsize < 0)
1141 nsize = 0;
1142
1143 if (skb_unclone(skb, gfp))
1144 return -ENOMEM;
1145
1146 /* Get a new skb... force flag on. */
1147 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1148 if (buff == NULL)
1149 return -ENOMEM; /* We'll just try again later. */
1150
1151 sk->sk_wmem_queued += buff->truesize;
1152 sk_mem_charge(sk, buff->truesize);
1153 nlen = skb->len - len - nsize;
1154 buff->truesize += nlen;
1155 skb->truesize -= nlen;
1156
1157 /* Correct the sequence numbers. */
1158 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1159 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1160 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1161
1162 /* PSH and FIN should only be set in the second packet. */
1163 flags = TCP_SKB_CB(skb)->tcp_flags;
1164 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1165 TCP_SKB_CB(buff)->tcp_flags = flags;
1166 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1167
1168 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1169 /* Copy and checksum data tail into the new buffer. */
1170 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1171 skb_put(buff, nsize),
1172 nsize, 0);
1173
1174 skb_trim(skb, len);
1175
1176 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1177 } else {
1178 skb->ip_summed = CHECKSUM_PARTIAL;
1179 skb_split(skb, buff, len);
1180 }
1181
1182 buff->ip_summed = skb->ip_summed;
1183
1184 buff->tstamp = skb->tstamp;
1185 tcp_fragment_tstamp(skb, buff);
1186
1187 old_factor = tcp_skb_pcount(skb);
1188
1189 /* Fix up tso_factor for both original and new SKB. */
1190 tcp_set_skb_tso_segs(sk, skb, mss_now);
1191 tcp_set_skb_tso_segs(sk, buff, mss_now);
1192
1193 /* If this packet has been sent out already, we must
1194 * adjust the various packet counters.
1195 */
1196 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1197 int diff = old_factor - tcp_skb_pcount(skb) -
1198 tcp_skb_pcount(buff);
1199
1200 if (diff)
1201 tcp_adjust_pcount(sk, skb, diff);
1202 }
1203
1204 /* Link BUFF into the send queue. */
1205 __skb_header_release(buff);
1206 tcp_insert_write_queue_after(skb, buff, sk);
1207
1208 return 0;
1209 }
1210
1211 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1212 * eventually). The difference is that pulled data not copied, but
1213 * immediately discarded.
1214 */
__pskb_trim_head(struct sk_buff * skb,int len)1215 static int __pskb_trim_head(struct sk_buff *skb, int len)
1216 {
1217 struct skb_shared_info *shinfo;
1218 int i, k, eat;
1219
1220 eat = min_t(int, len, skb_headlen(skb));
1221 if (eat) {
1222 __skb_pull(skb, eat);
1223 len -= eat;
1224 if (!len)
1225 return 0;
1226 }
1227 eat = len;
1228 k = 0;
1229 shinfo = skb_shinfo(skb);
1230 for (i = 0; i < shinfo->nr_frags; i++) {
1231 int size = skb_frag_size(&shinfo->frags[i]);
1232
1233 if (size <= eat) {
1234 skb_frag_unref(skb, i);
1235 eat -= size;
1236 } else {
1237 shinfo->frags[k] = shinfo->frags[i];
1238 if (eat) {
1239 shinfo->frags[k].page_offset += eat;
1240 skb_frag_size_sub(&shinfo->frags[k], eat);
1241 eat = 0;
1242 }
1243 k++;
1244 }
1245 }
1246 shinfo->nr_frags = k;
1247
1248 skb_reset_tail_pointer(skb);
1249 skb->data_len -= len;
1250 skb->len = skb->data_len;
1251 return len;
1252 }
1253
1254 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1255 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1256 {
1257 u32 delta_truesize;
1258
1259 if (skb_unclone(skb, GFP_ATOMIC))
1260 return -ENOMEM;
1261
1262 delta_truesize = __pskb_trim_head(skb, len);
1263
1264 TCP_SKB_CB(skb)->seq += len;
1265 skb->ip_summed = CHECKSUM_PARTIAL;
1266
1267 if (delta_truesize) {
1268 skb->truesize -= delta_truesize;
1269 sk->sk_wmem_queued -= delta_truesize;
1270 sk_mem_uncharge(sk, delta_truesize);
1271 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1272 }
1273
1274 /* Any change of skb->len requires recalculation of tso factor. */
1275 if (tcp_skb_pcount(skb) > 1)
1276 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1277
1278 return 0;
1279 }
1280
1281 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1282 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1283 {
1284 const struct tcp_sock *tp = tcp_sk(sk);
1285 const struct inet_connection_sock *icsk = inet_csk(sk);
1286 int mss_now;
1287
1288 /* Calculate base mss without TCP options:
1289 It is MMS_S - sizeof(tcphdr) of rfc1122
1290 */
1291 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1292
1293 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1294 if (icsk->icsk_af_ops->net_frag_header_len) {
1295 const struct dst_entry *dst = __sk_dst_get(sk);
1296
1297 if (dst && dst_allfrag(dst))
1298 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1299 }
1300
1301 /* Clamp it (mss_clamp does not include tcp options) */
1302 if (mss_now > tp->rx_opt.mss_clamp)
1303 mss_now = tp->rx_opt.mss_clamp;
1304
1305 /* Now subtract optional transport overhead */
1306 mss_now -= icsk->icsk_ext_hdr_len;
1307
1308 /* Then reserve room for full set of TCP options and 8 bytes of data */
1309 if (mss_now < 48)
1310 mss_now = 48;
1311 return mss_now;
1312 }
1313
1314 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1315 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1316 {
1317 /* Subtract TCP options size, not including SACKs */
1318 return __tcp_mtu_to_mss(sk, pmtu) -
1319 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1320 }
1321
1322 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1323 int tcp_mss_to_mtu(struct sock *sk, int mss)
1324 {
1325 const struct tcp_sock *tp = tcp_sk(sk);
1326 const struct inet_connection_sock *icsk = inet_csk(sk);
1327 int mtu;
1328
1329 mtu = mss +
1330 tp->tcp_header_len +
1331 icsk->icsk_ext_hdr_len +
1332 icsk->icsk_af_ops->net_header_len;
1333
1334 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1335 if (icsk->icsk_af_ops->net_frag_header_len) {
1336 const struct dst_entry *dst = __sk_dst_get(sk);
1337
1338 if (dst && dst_allfrag(dst))
1339 mtu += icsk->icsk_af_ops->net_frag_header_len;
1340 }
1341 return mtu;
1342 }
1343
1344 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1345 void tcp_mtup_init(struct sock *sk)
1346 {
1347 struct tcp_sock *tp = tcp_sk(sk);
1348 struct inet_connection_sock *icsk = inet_csk(sk);
1349
1350 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1351 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1352 icsk->icsk_af_ops->net_header_len;
1353 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1354 icsk->icsk_mtup.probe_size = 0;
1355 }
1356 EXPORT_SYMBOL(tcp_mtup_init);
1357
1358 /* This function synchronize snd mss to current pmtu/exthdr set.
1359
1360 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1361 for TCP options, but includes only bare TCP header.
1362
1363 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1364 It is minimum of user_mss and mss received with SYN.
1365 It also does not include TCP options.
1366
1367 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1368
1369 tp->mss_cache is current effective sending mss, including
1370 all tcp options except for SACKs. It is evaluated,
1371 taking into account current pmtu, but never exceeds
1372 tp->rx_opt.mss_clamp.
1373
1374 NOTE1. rfc1122 clearly states that advertised MSS
1375 DOES NOT include either tcp or ip options.
1376
1377 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1378 are READ ONLY outside this function. --ANK (980731)
1379 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1380 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1381 {
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct inet_connection_sock *icsk = inet_csk(sk);
1384 int mss_now;
1385
1386 if (icsk->icsk_mtup.search_high > pmtu)
1387 icsk->icsk_mtup.search_high = pmtu;
1388
1389 mss_now = tcp_mtu_to_mss(sk, pmtu);
1390 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1391
1392 /* And store cached results */
1393 icsk->icsk_pmtu_cookie = pmtu;
1394 if (icsk->icsk_mtup.enabled)
1395 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1396 tp->mss_cache = mss_now;
1397
1398 return mss_now;
1399 }
1400 EXPORT_SYMBOL(tcp_sync_mss);
1401
1402 /* Compute the current effective MSS, taking SACKs and IP options,
1403 * and even PMTU discovery events into account.
1404 */
tcp_current_mss(struct sock * sk)1405 unsigned int tcp_current_mss(struct sock *sk)
1406 {
1407 const struct tcp_sock *tp = tcp_sk(sk);
1408 const struct dst_entry *dst = __sk_dst_get(sk);
1409 u32 mss_now;
1410 unsigned int header_len;
1411 struct tcp_out_options opts;
1412 struct tcp_md5sig_key *md5;
1413
1414 mss_now = tp->mss_cache;
1415
1416 if (dst) {
1417 u32 mtu = dst_mtu(dst);
1418 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1419 mss_now = tcp_sync_mss(sk, mtu);
1420 }
1421
1422 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1423 sizeof(struct tcphdr);
1424 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1425 * some common options. If this is an odd packet (because we have SACK
1426 * blocks etc) then our calculated header_len will be different, and
1427 * we have to adjust mss_now correspondingly */
1428 if (header_len != tp->tcp_header_len) {
1429 int delta = (int) header_len - tp->tcp_header_len;
1430 mss_now -= delta;
1431 }
1432
1433 return mss_now;
1434 }
1435
1436 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1437 * As additional protections, we do not touch cwnd in retransmission phases,
1438 * and if application hit its sndbuf limit recently.
1439 */
tcp_cwnd_application_limited(struct sock * sk)1440 static void tcp_cwnd_application_limited(struct sock *sk)
1441 {
1442 struct tcp_sock *tp = tcp_sk(sk);
1443
1444 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1445 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1446 /* Limited by application or receiver window. */
1447 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1448 u32 win_used = max(tp->snd_cwnd_used, init_win);
1449 if (win_used < tp->snd_cwnd) {
1450 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1451 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1452 }
1453 tp->snd_cwnd_used = 0;
1454 }
1455 tp->snd_cwnd_stamp = tcp_time_stamp;
1456 }
1457
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1458 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461
1462 /* Track the maximum number of outstanding packets in each
1463 * window, and remember whether we were cwnd-limited then.
1464 */
1465 if (!before(tp->snd_una, tp->max_packets_seq) ||
1466 tp->packets_out > tp->max_packets_out) {
1467 tp->max_packets_out = tp->packets_out;
1468 tp->max_packets_seq = tp->snd_nxt;
1469 tp->is_cwnd_limited = is_cwnd_limited;
1470 }
1471
1472 if (tcp_is_cwnd_limited(sk)) {
1473 /* Network is feed fully. */
1474 tp->snd_cwnd_used = 0;
1475 tp->snd_cwnd_stamp = tcp_time_stamp;
1476 } else {
1477 /* Network starves. */
1478 if (tp->packets_out > tp->snd_cwnd_used)
1479 tp->snd_cwnd_used = tp->packets_out;
1480
1481 if (sysctl_tcp_slow_start_after_idle &&
1482 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1483 tcp_cwnd_application_limited(sk);
1484 }
1485 }
1486
1487 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1488 static bool tcp_minshall_check(const struct tcp_sock *tp)
1489 {
1490 return after(tp->snd_sml, tp->snd_una) &&
1491 !after(tp->snd_sml, tp->snd_nxt);
1492 }
1493
1494 /* Update snd_sml if this skb is under mss
1495 * Note that a TSO packet might end with a sub-mss segment
1496 * The test is really :
1497 * if ((skb->len % mss) != 0)
1498 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1499 * But we can avoid doing the divide again given we already have
1500 * skb_pcount = skb->len / mss_now
1501 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1502 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1503 const struct sk_buff *skb)
1504 {
1505 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1506 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1507 }
1508
1509 /* Return false, if packet can be sent now without violation Nagle's rules:
1510 * 1. It is full sized. (provided by caller in %partial bool)
1511 * 2. Or it contains FIN. (already checked by caller)
1512 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1513 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1514 * With Minshall's modification: all sent small packets are ACKed.
1515 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1516 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1517 int nonagle)
1518 {
1519 return partial &&
1520 ((nonagle & TCP_NAGLE_CORK) ||
1521 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1522 }
1523 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1524 static unsigned int tcp_mss_split_point(const struct sock *sk,
1525 const struct sk_buff *skb,
1526 unsigned int mss_now,
1527 unsigned int max_segs,
1528 int nonagle)
1529 {
1530 const struct tcp_sock *tp = tcp_sk(sk);
1531 u32 partial, needed, window, max_len;
1532
1533 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1534 max_len = mss_now * max_segs;
1535
1536 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1537 return max_len;
1538
1539 needed = min(skb->len, window);
1540
1541 if (max_len <= needed)
1542 return max_len;
1543
1544 partial = needed % mss_now;
1545 /* If last segment is not a full MSS, check if Nagle rules allow us
1546 * to include this last segment in this skb.
1547 * Otherwise, we'll split the skb at last MSS boundary
1548 */
1549 if (tcp_nagle_check(partial != 0, tp, nonagle))
1550 return needed - partial;
1551
1552 return needed;
1553 }
1554
1555 /* Can at least one segment of SKB be sent right now, according to the
1556 * congestion window rules? If so, return how many segments are allowed.
1557 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1558 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1559 const struct sk_buff *skb)
1560 {
1561 u32 in_flight, cwnd;
1562
1563 /* Don't be strict about the congestion window for the final FIN. */
1564 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1565 tcp_skb_pcount(skb) == 1)
1566 return 1;
1567
1568 in_flight = tcp_packets_in_flight(tp);
1569 cwnd = tp->snd_cwnd;
1570 if (in_flight < cwnd)
1571 return (cwnd - in_flight);
1572
1573 return 0;
1574 }
1575
1576 /* Initialize TSO state of a skb.
1577 * This must be invoked the first time we consider transmitting
1578 * SKB onto the wire.
1579 */
tcp_init_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1580 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1581 unsigned int mss_now)
1582 {
1583 int tso_segs = tcp_skb_pcount(skb);
1584
1585 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1586 tcp_set_skb_tso_segs(sk, skb, mss_now);
1587 tso_segs = tcp_skb_pcount(skb);
1588 }
1589 return tso_segs;
1590 }
1591
1592
1593 /* Return true if the Nagle test allows this packet to be
1594 * sent now.
1595 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1596 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1597 unsigned int cur_mss, int nonagle)
1598 {
1599 /* Nagle rule does not apply to frames, which sit in the middle of the
1600 * write_queue (they have no chances to get new data).
1601 *
1602 * This is implemented in the callers, where they modify the 'nonagle'
1603 * argument based upon the location of SKB in the send queue.
1604 */
1605 if (nonagle & TCP_NAGLE_PUSH)
1606 return true;
1607
1608 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1609 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1610 return true;
1611
1612 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1613 return true;
1614
1615 return false;
1616 }
1617
1618 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1619 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1620 const struct sk_buff *skb,
1621 unsigned int cur_mss)
1622 {
1623 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1624
1625 if (skb->len > cur_mss)
1626 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1627
1628 return !after(end_seq, tcp_wnd_end(tp));
1629 }
1630
1631 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1632 * should be put on the wire right now. If so, it returns the number of
1633 * packets allowed by the congestion window.
1634 */
tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1635 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1636 unsigned int cur_mss, int nonagle)
1637 {
1638 const struct tcp_sock *tp = tcp_sk(sk);
1639 unsigned int cwnd_quota;
1640
1641 tcp_init_tso_segs(sk, skb, cur_mss);
1642
1643 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1644 return 0;
1645
1646 cwnd_quota = tcp_cwnd_test(tp, skb);
1647 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1648 cwnd_quota = 0;
1649
1650 return cwnd_quota;
1651 }
1652
1653 /* Test if sending is allowed right now. */
tcp_may_send_now(struct sock * sk)1654 bool tcp_may_send_now(struct sock *sk)
1655 {
1656 const struct tcp_sock *tp = tcp_sk(sk);
1657 struct sk_buff *skb = tcp_send_head(sk);
1658
1659 return skb &&
1660 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1661 (tcp_skb_is_last(sk, skb) ?
1662 tp->nonagle : TCP_NAGLE_PUSH));
1663 }
1664
1665 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1666 * which is put after SKB on the list. It is very much like
1667 * tcp_fragment() except that it may make several kinds of assumptions
1668 * in order to speed up the splitting operation. In particular, we
1669 * know that all the data is in scatter-gather pages, and that the
1670 * packet has never been sent out before (and thus is not cloned).
1671 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1672 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1673 unsigned int mss_now, gfp_t gfp)
1674 {
1675 struct sk_buff *buff;
1676 int nlen = skb->len - len;
1677 u8 flags;
1678
1679 /* All of a TSO frame must be composed of paged data. */
1680 if (skb->len != skb->data_len)
1681 return tcp_fragment(sk, skb, len, mss_now, gfp);
1682
1683 buff = sk_stream_alloc_skb(sk, 0, gfp);
1684 if (unlikely(buff == NULL))
1685 return -ENOMEM;
1686
1687 sk->sk_wmem_queued += buff->truesize;
1688 sk_mem_charge(sk, buff->truesize);
1689 buff->truesize += nlen;
1690 skb->truesize -= nlen;
1691
1692 /* Correct the sequence numbers. */
1693 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1694 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1695 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1696
1697 /* PSH and FIN should only be set in the second packet. */
1698 flags = TCP_SKB_CB(skb)->tcp_flags;
1699 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1700 TCP_SKB_CB(buff)->tcp_flags = flags;
1701
1702 /* This packet was never sent out yet, so no SACK bits. */
1703 TCP_SKB_CB(buff)->sacked = 0;
1704
1705 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1706 skb_split(skb, buff, len);
1707 tcp_fragment_tstamp(skb, buff);
1708
1709 /* Fix up tso_factor for both original and new SKB. */
1710 tcp_set_skb_tso_segs(sk, skb, mss_now);
1711 tcp_set_skb_tso_segs(sk, buff, mss_now);
1712
1713 /* Link BUFF into the send queue. */
1714 __skb_header_release(buff);
1715 tcp_insert_write_queue_after(skb, buff, sk);
1716
1717 return 0;
1718 }
1719
1720 /* Try to defer sending, if possible, in order to minimize the amount
1721 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1722 *
1723 * This algorithm is from John Heffner.
1724 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited)1725 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1726 bool *is_cwnd_limited)
1727 {
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 const struct inet_connection_sock *icsk = inet_csk(sk);
1730 u32 send_win, cong_win, limit, in_flight;
1731 int win_divisor;
1732
1733 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1734 goto send_now;
1735
1736 if (icsk->icsk_ca_state != TCP_CA_Open)
1737 goto send_now;
1738
1739 /* Defer for less than two clock ticks. */
1740 if (tp->tso_deferred &&
1741 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1742 goto send_now;
1743
1744 in_flight = tcp_packets_in_flight(tp);
1745
1746 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1747
1748 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1749
1750 /* From in_flight test above, we know that cwnd > in_flight. */
1751 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1752
1753 limit = min(send_win, cong_win);
1754
1755 /* If a full-sized TSO skb can be sent, do it. */
1756 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1757 tp->xmit_size_goal_segs * tp->mss_cache))
1758 goto send_now;
1759
1760 /* Middle in queue won't get any more data, full sendable already? */
1761 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1762 goto send_now;
1763
1764 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1765 if (win_divisor) {
1766 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1767
1768 /* If at least some fraction of a window is available,
1769 * just use it.
1770 */
1771 chunk /= win_divisor;
1772 if (limit >= chunk)
1773 goto send_now;
1774 } else {
1775 /* Different approach, try not to defer past a single
1776 * ACK. Receiver should ACK every other full sized
1777 * frame, so if we have space for more than 3 frames
1778 * then send now.
1779 */
1780 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1781 goto send_now;
1782 }
1783
1784 /* Ok, it looks like it is advisable to defer.
1785 * Do not rearm the timer if already set to not break TCP ACK clocking.
1786 */
1787 if (!tp->tso_deferred)
1788 tp->tso_deferred = 1 | (jiffies << 1);
1789
1790 if (cong_win < send_win && cong_win < skb->len)
1791 *is_cwnd_limited = true;
1792
1793 return true;
1794
1795 send_now:
1796 tp->tso_deferred = 0;
1797 return false;
1798 }
1799
1800 /* Create a new MTU probe if we are ready.
1801 * MTU probe is regularly attempting to increase the path MTU by
1802 * deliberately sending larger packets. This discovers routing
1803 * changes resulting in larger path MTUs.
1804 *
1805 * Returns 0 if we should wait to probe (no cwnd available),
1806 * 1 if a probe was sent,
1807 * -1 otherwise
1808 */
tcp_mtu_probe(struct sock * sk)1809 static int tcp_mtu_probe(struct sock *sk)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812 struct inet_connection_sock *icsk = inet_csk(sk);
1813 struct sk_buff *skb, *nskb, *next;
1814 int len;
1815 int probe_size;
1816 int size_needed;
1817 int copy;
1818 int mss_now;
1819
1820 /* Not currently probing/verifying,
1821 * not in recovery,
1822 * have enough cwnd, and
1823 * not SACKing (the variable headers throw things off) */
1824 if (!icsk->icsk_mtup.enabled ||
1825 icsk->icsk_mtup.probe_size ||
1826 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1827 tp->snd_cwnd < 11 ||
1828 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1829 return -1;
1830
1831 /* Very simple search strategy: just double the MSS. */
1832 mss_now = tcp_current_mss(sk);
1833 probe_size = 2 * tp->mss_cache;
1834 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1835 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1836 /* TODO: set timer for probe_converge_event */
1837 return -1;
1838 }
1839
1840 /* Have enough data in the send queue to probe? */
1841 if (tp->write_seq - tp->snd_nxt < size_needed)
1842 return -1;
1843
1844 if (tp->snd_wnd < size_needed)
1845 return -1;
1846 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1847 return 0;
1848
1849 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1850 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1851 if (!tcp_packets_in_flight(tp))
1852 return -1;
1853 else
1854 return 0;
1855 }
1856
1857 /* We're allowed to probe. Build it now. */
1858 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1859 return -1;
1860 sk->sk_wmem_queued += nskb->truesize;
1861 sk_mem_charge(sk, nskb->truesize);
1862
1863 skb = tcp_send_head(sk);
1864
1865 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1866 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1867 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1868 TCP_SKB_CB(nskb)->sacked = 0;
1869 nskb->csum = 0;
1870 nskb->ip_summed = skb->ip_summed;
1871
1872 tcp_insert_write_queue_before(nskb, skb, sk);
1873 tcp_highest_sack_replace(sk, skb, nskb);
1874
1875 len = 0;
1876 tcp_for_write_queue_from_safe(skb, next, sk) {
1877 copy = min_t(int, skb->len, probe_size - len);
1878 if (nskb->ip_summed) {
1879 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1880 } else {
1881 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1882 skb_put(nskb, copy),
1883 copy, 0);
1884 nskb->csum = csum_block_add(nskb->csum, csum, len);
1885 }
1886
1887 if (skb->len <= copy) {
1888 /* We've eaten all the data from this skb.
1889 * Throw it away. */
1890 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1891 tcp_unlink_write_queue(skb, sk);
1892 sk_wmem_free_skb(sk, skb);
1893 } else {
1894 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1895 ~(TCPHDR_FIN|TCPHDR_PSH);
1896 if (!skb_shinfo(skb)->nr_frags) {
1897 skb_pull(skb, copy);
1898 if (skb->ip_summed != CHECKSUM_PARTIAL)
1899 skb->csum = csum_partial(skb->data,
1900 skb->len, 0);
1901 } else {
1902 __pskb_trim_head(skb, copy);
1903 tcp_set_skb_tso_segs(sk, skb, mss_now);
1904 }
1905 TCP_SKB_CB(skb)->seq += copy;
1906 }
1907
1908 len += copy;
1909
1910 if (len >= probe_size)
1911 break;
1912 }
1913 tcp_init_tso_segs(sk, nskb, nskb->len);
1914
1915 /* We're ready to send. If this fails, the probe will
1916 * be resegmented into mss-sized pieces by tcp_write_xmit().
1917 */
1918 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1919 /* Decrement cwnd here because we are sending
1920 * effectively two packets. */
1921 tp->snd_cwnd--;
1922 tcp_event_new_data_sent(sk, nskb);
1923
1924 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1925 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1926 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1927
1928 return 1;
1929 }
1930
1931 return -1;
1932 }
1933
1934 /* This routine writes packets to the network. It advances the
1935 * send_head. This happens as incoming acks open up the remote
1936 * window for us.
1937 *
1938 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1939 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1940 * account rare use of URG, this is not a big flaw.
1941 *
1942 * Send at most one packet when push_one > 0. Temporarily ignore
1943 * cwnd limit to force at most one packet out when push_one == 2.
1944
1945 * Returns true, if no segments are in flight and we have queued segments,
1946 * but cannot send anything now because of SWS or another problem.
1947 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1948 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1949 int push_one, gfp_t gfp)
1950 {
1951 struct tcp_sock *tp = tcp_sk(sk);
1952 struct sk_buff *skb;
1953 unsigned int tso_segs, sent_pkts;
1954 int cwnd_quota;
1955 int result;
1956 bool is_cwnd_limited = false;
1957
1958 sent_pkts = 0;
1959
1960 if (!push_one) {
1961 /* Do MTU probing. */
1962 result = tcp_mtu_probe(sk);
1963 if (!result) {
1964 return false;
1965 } else if (result > 0) {
1966 sent_pkts = 1;
1967 }
1968 }
1969
1970 while ((skb = tcp_send_head(sk))) {
1971 unsigned int limit;
1972
1973 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1974 BUG_ON(!tso_segs);
1975
1976 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
1977 /* "skb_mstamp" is used as a start point for the retransmit timer */
1978 skb_mstamp_get(&skb->skb_mstamp);
1979 goto repair; /* Skip network transmission */
1980 }
1981
1982 cwnd_quota = tcp_cwnd_test(tp, skb);
1983 if (!cwnd_quota) {
1984 is_cwnd_limited = true;
1985 if (push_one == 2)
1986 /* Force out a loss probe pkt. */
1987 cwnd_quota = 1;
1988 else
1989 break;
1990 }
1991
1992 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1993 break;
1994
1995 if (tso_segs == 1 || !sk->sk_gso_max_segs) {
1996 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1997 (tcp_skb_is_last(sk, skb) ?
1998 nonagle : TCP_NAGLE_PUSH))))
1999 break;
2000 } else {
2001 if (!push_one &&
2002 tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
2003 break;
2004 }
2005
2006 /* TCP Small Queues :
2007 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2008 * This allows for :
2009 * - better RTT estimation and ACK scheduling
2010 * - faster recovery
2011 * - high rates
2012 * Alas, some drivers / subsystems require a fair amount
2013 * of queued bytes to ensure line rate.
2014 * One example is wifi aggregation (802.11 AMPDU)
2015 */
2016 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
2017 sk->sk_pacing_rate >> 10);
2018
2019 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2020 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2021 /* It is possible TX completion already happened
2022 * before we set TSQ_THROTTLED, so we must
2023 * test again the condition.
2024 */
2025 smp_mb__after_atomic();
2026 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2027 break;
2028 }
2029
2030 limit = mss_now;
2031 if (tso_segs > 1 && sk->sk_gso_max_segs && !tcp_urg_mode(tp))
2032 limit = tcp_mss_split_point(sk, skb, mss_now,
2033 min_t(unsigned int,
2034 cwnd_quota,
2035 sk->sk_gso_max_segs),
2036 nonagle);
2037
2038 if (skb->len > limit &&
2039 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2040 break;
2041
2042 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2043 break;
2044
2045 repair:
2046 /* Advance the send_head. This one is sent out.
2047 * This call will increment packets_out.
2048 */
2049 tcp_event_new_data_sent(sk, skb);
2050
2051 tcp_minshall_update(tp, mss_now, skb);
2052 sent_pkts += tcp_skb_pcount(skb);
2053
2054 if (push_one)
2055 break;
2056 }
2057
2058 if (likely(sent_pkts)) {
2059 if (tcp_in_cwnd_reduction(sk))
2060 tp->prr_out += sent_pkts;
2061
2062 /* Send one loss probe per tail loss episode. */
2063 if (push_one != 2)
2064 tcp_schedule_loss_probe(sk);
2065 tcp_cwnd_validate(sk, is_cwnd_limited);
2066 return false;
2067 }
2068 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2069 }
2070
tcp_schedule_loss_probe(struct sock * sk)2071 bool tcp_schedule_loss_probe(struct sock *sk)
2072 {
2073 struct inet_connection_sock *icsk = inet_csk(sk);
2074 struct tcp_sock *tp = tcp_sk(sk);
2075 u32 timeout, tlp_time_stamp, rto_time_stamp;
2076 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2077
2078 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2079 return false;
2080 /* No consecutive loss probes. */
2081 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2082 tcp_rearm_rto(sk);
2083 return false;
2084 }
2085 /* Don't do any loss probe on a Fast Open connection before 3WHS
2086 * finishes.
2087 */
2088 if (sk->sk_state == TCP_SYN_RECV)
2089 return false;
2090
2091 /* TLP is only scheduled when next timer event is RTO. */
2092 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2093 return false;
2094
2095 /* Schedule a loss probe in 2*RTT for SACK capable connections
2096 * in Open state, that are either limited by cwnd or application.
2097 */
2098 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2099 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2100 return false;
2101
2102 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2103 tcp_send_head(sk))
2104 return false;
2105
2106 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2107 * for delayed ack when there's one outstanding packet.
2108 */
2109 timeout = rtt << 1;
2110 if (tp->packets_out == 1)
2111 timeout = max_t(u32, timeout,
2112 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2113 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2114
2115 /* If RTO is shorter, just schedule TLP in its place. */
2116 tlp_time_stamp = tcp_time_stamp + timeout;
2117 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2118 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2119 s32 delta = rto_time_stamp - tcp_time_stamp;
2120 if (delta > 0)
2121 timeout = delta;
2122 }
2123
2124 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2125 TCP_RTO_MAX);
2126 return true;
2127 }
2128
2129 /* Thanks to skb fast clones, we can detect if a prior transmit of
2130 * a packet is still in a qdisc or driver queue.
2131 * In this case, there is very little point doing a retransmit !
2132 * Note: This is called from BH context only.
2133 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2134 static bool skb_still_in_host_queue(const struct sock *sk,
2135 const struct sk_buff *skb)
2136 {
2137 if (unlikely(skb_fclone_busy(sk, skb))) {
2138 NET_INC_STATS_BH(sock_net(sk),
2139 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2140 return true;
2141 }
2142 return false;
2143 }
2144
2145 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2146 * retransmit the last segment.
2147 */
tcp_send_loss_probe(struct sock * sk)2148 void tcp_send_loss_probe(struct sock *sk)
2149 {
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 struct sk_buff *skb;
2152 int pcount;
2153 int mss = tcp_current_mss(sk);
2154 int err = -1;
2155
2156 if (tcp_send_head(sk) != NULL) {
2157 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2158 goto rearm_timer;
2159 }
2160
2161 /* At most one outstanding TLP retransmission. */
2162 if (tp->tlp_high_seq)
2163 goto rearm_timer;
2164
2165 /* Retransmit last segment. */
2166 skb = tcp_write_queue_tail(sk);
2167 if (WARN_ON(!skb))
2168 goto rearm_timer;
2169
2170 if (skb_still_in_host_queue(sk, skb))
2171 goto rearm_timer;
2172
2173 pcount = tcp_skb_pcount(skb);
2174 if (WARN_ON(!pcount))
2175 goto rearm_timer;
2176
2177 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2178 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2179 GFP_ATOMIC)))
2180 goto rearm_timer;
2181 skb = tcp_write_queue_tail(sk);
2182 }
2183
2184 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2185 goto rearm_timer;
2186
2187 err = __tcp_retransmit_skb(sk, skb);
2188
2189 /* Record snd_nxt for loss detection. */
2190 if (likely(!err))
2191 tp->tlp_high_seq = tp->snd_nxt;
2192
2193 rearm_timer:
2194 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2195 inet_csk(sk)->icsk_rto,
2196 TCP_RTO_MAX);
2197
2198 if (likely(!err))
2199 NET_INC_STATS_BH(sock_net(sk),
2200 LINUX_MIB_TCPLOSSPROBES);
2201 }
2202
2203 /* Push out any pending frames which were held back due to
2204 * TCP_CORK or attempt at coalescing tiny packets.
2205 * The socket must be locked by the caller.
2206 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2207 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2208 int nonagle)
2209 {
2210 /* If we are closed, the bytes will have to remain here.
2211 * In time closedown will finish, we empty the write queue and
2212 * all will be happy.
2213 */
2214 if (unlikely(sk->sk_state == TCP_CLOSE))
2215 return;
2216
2217 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2218 sk_gfp_atomic(sk, GFP_ATOMIC)))
2219 tcp_check_probe_timer(sk);
2220 }
2221
2222 /* Send _single_ skb sitting at the send head. This function requires
2223 * true push pending frames to setup probe timer etc.
2224 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2225 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2226 {
2227 struct sk_buff *skb = tcp_send_head(sk);
2228
2229 BUG_ON(!skb || skb->len < mss_now);
2230
2231 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2232 }
2233
2234 /* This function returns the amount that we can raise the
2235 * usable window based on the following constraints
2236 *
2237 * 1. The window can never be shrunk once it is offered (RFC 793)
2238 * 2. We limit memory per socket
2239 *
2240 * RFC 1122:
2241 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2242 * RECV.NEXT + RCV.WIN fixed until:
2243 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2244 *
2245 * i.e. don't raise the right edge of the window until you can raise
2246 * it at least MSS bytes.
2247 *
2248 * Unfortunately, the recommended algorithm breaks header prediction,
2249 * since header prediction assumes th->window stays fixed.
2250 *
2251 * Strictly speaking, keeping th->window fixed violates the receiver
2252 * side SWS prevention criteria. The problem is that under this rule
2253 * a stream of single byte packets will cause the right side of the
2254 * window to always advance by a single byte.
2255 *
2256 * Of course, if the sender implements sender side SWS prevention
2257 * then this will not be a problem.
2258 *
2259 * BSD seems to make the following compromise:
2260 *
2261 * If the free space is less than the 1/4 of the maximum
2262 * space available and the free space is less than 1/2 mss,
2263 * then set the window to 0.
2264 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2265 * Otherwise, just prevent the window from shrinking
2266 * and from being larger than the largest representable value.
2267 *
2268 * This prevents incremental opening of the window in the regime
2269 * where TCP is limited by the speed of the reader side taking
2270 * data out of the TCP receive queue. It does nothing about
2271 * those cases where the window is constrained on the sender side
2272 * because the pipeline is full.
2273 *
2274 * BSD also seems to "accidentally" limit itself to windows that are a
2275 * multiple of MSS, at least until the free space gets quite small.
2276 * This would appear to be a side effect of the mbuf implementation.
2277 * Combining these two algorithms results in the observed behavior
2278 * of having a fixed window size at almost all times.
2279 *
2280 * Below we obtain similar behavior by forcing the offered window to
2281 * a multiple of the mss when it is feasible to do so.
2282 *
2283 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2284 * Regular options like TIMESTAMP are taken into account.
2285 */
__tcp_select_window(struct sock * sk)2286 u32 __tcp_select_window(struct sock *sk)
2287 {
2288 struct inet_connection_sock *icsk = inet_csk(sk);
2289 struct tcp_sock *tp = tcp_sk(sk);
2290 /* MSS for the peer's data. Previous versions used mss_clamp
2291 * here. I don't know if the value based on our guesses
2292 * of peer's MSS is better for the performance. It's more correct
2293 * but may be worse for the performance because of rcv_mss
2294 * fluctuations. --SAW 1998/11/1
2295 */
2296 int mss = icsk->icsk_ack.rcv_mss;
2297 int free_space = tcp_space(sk);
2298 int allowed_space = tcp_full_space(sk);
2299 int full_space = min_t(int, tp->window_clamp, allowed_space);
2300 int window;
2301
2302 if (unlikely(mss > full_space)) {
2303 mss = full_space;
2304 if (mss <= 0)
2305 return 0;
2306 }
2307 if (free_space < (full_space >> 1)) {
2308 icsk->icsk_ack.quick = 0;
2309
2310 if (sk_under_memory_pressure(sk))
2311 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2312 4U * tp->advmss);
2313
2314 /* free_space might become our new window, make sure we don't
2315 * increase it due to wscale.
2316 */
2317 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2318
2319 /* if free space is less than mss estimate, or is below 1/16th
2320 * of the maximum allowed, try to move to zero-window, else
2321 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2322 * new incoming data is dropped due to memory limits.
2323 * With large window, mss test triggers way too late in order
2324 * to announce zero window in time before rmem limit kicks in.
2325 */
2326 if (free_space < (allowed_space >> 4) || free_space < mss)
2327 return 0;
2328 }
2329
2330 if (free_space > tp->rcv_ssthresh)
2331 free_space = tp->rcv_ssthresh;
2332
2333 /* Don't do rounding if we are using window scaling, since the
2334 * scaled window will not line up with the MSS boundary anyway.
2335 */
2336 window = tp->rcv_wnd;
2337 if (tp->rx_opt.rcv_wscale) {
2338 window = free_space;
2339
2340 /* Advertise enough space so that it won't get scaled away.
2341 * Import case: prevent zero window announcement if
2342 * 1<<rcv_wscale > mss.
2343 */
2344 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2345 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2346 << tp->rx_opt.rcv_wscale);
2347 } else {
2348 /* Get the largest window that is a nice multiple of mss.
2349 * Window clamp already applied above.
2350 * If our current window offering is within 1 mss of the
2351 * free space we just keep it. This prevents the divide
2352 * and multiply from happening most of the time.
2353 * We also don't do any window rounding when the free space
2354 * is too small.
2355 */
2356 if (window <= free_space - mss || window > free_space)
2357 window = (free_space / mss) * mss;
2358 else if (mss == full_space &&
2359 free_space > window + (full_space >> 1))
2360 window = free_space;
2361 }
2362
2363 return window;
2364 }
2365
2366 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2367 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2368 {
2369 struct tcp_sock *tp = tcp_sk(sk);
2370 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2371 int skb_size, next_skb_size;
2372
2373 skb_size = skb->len;
2374 next_skb_size = next_skb->len;
2375
2376 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2377
2378 tcp_highest_sack_replace(sk, next_skb, skb);
2379
2380 tcp_unlink_write_queue(next_skb, sk);
2381
2382 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2383 next_skb_size);
2384
2385 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2386 skb->ip_summed = CHECKSUM_PARTIAL;
2387
2388 if (skb->ip_summed != CHECKSUM_PARTIAL)
2389 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2390
2391 /* Update sequence range on original skb. */
2392 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2393
2394 /* Merge over control information. This moves PSH/FIN etc. over */
2395 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2396
2397 /* All done, get rid of second SKB and account for it so
2398 * packet counting does not break.
2399 */
2400 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2401
2402 /* changed transmit queue under us so clear hints */
2403 tcp_clear_retrans_hints_partial(tp);
2404 if (next_skb == tp->retransmit_skb_hint)
2405 tp->retransmit_skb_hint = skb;
2406
2407 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2408
2409 sk_wmem_free_skb(sk, next_skb);
2410 }
2411
2412 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2413 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2414 {
2415 if (tcp_skb_pcount(skb) > 1)
2416 return false;
2417 /* TODO: SACK collapsing could be used to remove this condition */
2418 if (skb_shinfo(skb)->nr_frags != 0)
2419 return false;
2420 if (skb_cloned(skb))
2421 return false;
2422 if (skb == tcp_send_head(sk))
2423 return false;
2424 /* Some heurestics for collapsing over SACK'd could be invented */
2425 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2426 return false;
2427
2428 return true;
2429 }
2430
2431 /* Collapse packets in the retransmit queue to make to create
2432 * less packets on the wire. This is only done on retransmission.
2433 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2434 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2435 int space)
2436 {
2437 struct tcp_sock *tp = tcp_sk(sk);
2438 struct sk_buff *skb = to, *tmp;
2439 bool first = true;
2440
2441 if (!sysctl_tcp_retrans_collapse)
2442 return;
2443 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2444 return;
2445
2446 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2447 if (!tcp_can_collapse(sk, skb))
2448 break;
2449
2450 space -= skb->len;
2451
2452 if (first) {
2453 first = false;
2454 continue;
2455 }
2456
2457 if (space < 0)
2458 break;
2459 /* Punt if not enough space exists in the first SKB for
2460 * the data in the second
2461 */
2462 if (skb->len > skb_availroom(to))
2463 break;
2464
2465 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2466 break;
2467
2468 tcp_collapse_retrans(sk, to);
2469 }
2470 }
2471
2472 /* This retransmits one SKB. Policy decisions and retransmit queue
2473 * state updates are done by the caller. Returns non-zero if an
2474 * error occurred which prevented the send.
2475 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2476 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct inet_connection_sock *icsk = inet_csk(sk);
2480 unsigned int cur_mss;
2481 int err;
2482
2483 /* Inconslusive MTU probe */
2484 if (icsk->icsk_mtup.probe_size) {
2485 icsk->icsk_mtup.probe_size = 0;
2486 }
2487
2488 /* Do not sent more than we queued. 1/4 is reserved for possible
2489 * copying overhead: fragmentation, tunneling, mangling etc.
2490 */
2491 if (atomic_read(&sk->sk_wmem_alloc) >
2492 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2493 sk->sk_sndbuf))
2494 return -EAGAIN;
2495
2496 if (skb_still_in_host_queue(sk, skb))
2497 return -EBUSY;
2498
2499 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2500 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2501 BUG();
2502 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2503 return -ENOMEM;
2504 }
2505
2506 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2507 return -EHOSTUNREACH; /* Routing failure or similar. */
2508
2509 cur_mss = tcp_current_mss(sk);
2510
2511 /* If receiver has shrunk his window, and skb is out of
2512 * new window, do not retransmit it. The exception is the
2513 * case, when window is shrunk to zero. In this case
2514 * our retransmit serves as a zero window probe.
2515 */
2516 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2517 TCP_SKB_CB(skb)->seq != tp->snd_una)
2518 return -EAGAIN;
2519
2520 if (skb->len > cur_mss) {
2521 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2522 return -ENOMEM; /* We'll try again later. */
2523 } else {
2524 int oldpcount = tcp_skb_pcount(skb);
2525
2526 if (unlikely(oldpcount > 1)) {
2527 if (skb_unclone(skb, GFP_ATOMIC))
2528 return -ENOMEM;
2529 tcp_init_tso_segs(sk, skb, cur_mss);
2530 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2531 }
2532 }
2533
2534 tcp_retrans_try_collapse(sk, skb, cur_mss);
2535
2536 /* Make a copy, if the first transmission SKB clone we made
2537 * is still in somebody's hands, else make a clone.
2538 */
2539
2540 /* make sure skb->data is aligned on arches that require it
2541 * and check if ack-trimming & collapsing extended the headroom
2542 * beyond what csum_start can cover.
2543 */
2544 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2545 skb_headroom(skb) >= 0xFFFF)) {
2546 struct sk_buff *nskb;
2547
2548 skb_mstamp_get(&skb->skb_mstamp);
2549 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2550 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2551 -ENOBUFS;
2552 } else {
2553 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2554 }
2555
2556 if (likely(!err)) {
2557 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2558 /* Update global TCP statistics. */
2559 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2560 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2561 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2562 tp->total_retrans++;
2563 }
2564 return err;
2565 }
2566
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2567 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570 int err = __tcp_retransmit_skb(sk, skb);
2571
2572 if (err == 0) {
2573 #if FASTRETRANS_DEBUG > 0
2574 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2575 net_dbg_ratelimited("retrans_out leaked\n");
2576 }
2577 #endif
2578 if (!tp->retrans_out)
2579 tp->lost_retrans_low = tp->snd_nxt;
2580 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2581 tp->retrans_out += tcp_skb_pcount(skb);
2582
2583 /* Save stamp of the first retransmit. */
2584 if (!tp->retrans_stamp)
2585 tp->retrans_stamp = tcp_skb_timestamp(skb);
2586
2587 /* snd_nxt is stored to detect loss of retransmitted segment,
2588 * see tcp_input.c tcp_sacktag_write_queue().
2589 */
2590 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2591 } else if (err != -EBUSY) {
2592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2593 }
2594
2595 if (tp->undo_retrans < 0)
2596 tp->undo_retrans = 0;
2597 tp->undo_retrans += tcp_skb_pcount(skb);
2598 return err;
2599 }
2600
2601 /* Check if we forward retransmits are possible in the current
2602 * window/congestion state.
2603 */
tcp_can_forward_retransmit(struct sock * sk)2604 static bool tcp_can_forward_retransmit(struct sock *sk)
2605 {
2606 const struct inet_connection_sock *icsk = inet_csk(sk);
2607 const struct tcp_sock *tp = tcp_sk(sk);
2608
2609 /* Forward retransmissions are possible only during Recovery. */
2610 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2611 return false;
2612
2613 /* No forward retransmissions in Reno are possible. */
2614 if (tcp_is_reno(tp))
2615 return false;
2616
2617 /* Yeah, we have to make difficult choice between forward transmission
2618 * and retransmission... Both ways have their merits...
2619 *
2620 * For now we do not retransmit anything, while we have some new
2621 * segments to send. In the other cases, follow rule 3 for
2622 * NextSeg() specified in RFC3517.
2623 */
2624
2625 if (tcp_may_send_now(sk))
2626 return false;
2627
2628 return true;
2629 }
2630
2631 /* This gets called after a retransmit timeout, and the initially
2632 * retransmitted data is acknowledged. It tries to continue
2633 * resending the rest of the retransmit queue, until either
2634 * we've sent it all or the congestion window limit is reached.
2635 * If doing SACK, the first ACK which comes back for a timeout
2636 * based retransmit packet might feed us FACK information again.
2637 * If so, we use it to avoid unnecessarily retransmissions.
2638 */
tcp_xmit_retransmit_queue(struct sock * sk)2639 void tcp_xmit_retransmit_queue(struct sock *sk)
2640 {
2641 const struct inet_connection_sock *icsk = inet_csk(sk);
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 struct sk_buff *skb;
2644 struct sk_buff *hole = NULL;
2645 u32 last_lost;
2646 int mib_idx;
2647 int fwd_rexmitting = 0;
2648
2649 if (!tp->packets_out)
2650 return;
2651
2652 if (!tp->lost_out)
2653 tp->retransmit_high = tp->snd_una;
2654
2655 if (tp->retransmit_skb_hint) {
2656 skb = tp->retransmit_skb_hint;
2657 last_lost = TCP_SKB_CB(skb)->end_seq;
2658 if (after(last_lost, tp->retransmit_high))
2659 last_lost = tp->retransmit_high;
2660 } else {
2661 skb = tcp_write_queue_head(sk);
2662 last_lost = tp->snd_una;
2663 }
2664
2665 tcp_for_write_queue_from(skb, sk) {
2666 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2667
2668 if (skb == tcp_send_head(sk))
2669 break;
2670 /* we could do better than to assign each time */
2671 if (hole == NULL)
2672 tp->retransmit_skb_hint = skb;
2673
2674 /* Assume this retransmit will generate
2675 * only one packet for congestion window
2676 * calculation purposes. This works because
2677 * tcp_retransmit_skb() will chop up the
2678 * packet to be MSS sized and all the
2679 * packet counting works out.
2680 */
2681 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2682 return;
2683
2684 if (fwd_rexmitting) {
2685 begin_fwd:
2686 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2687 break;
2688 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2689
2690 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2691 tp->retransmit_high = last_lost;
2692 if (!tcp_can_forward_retransmit(sk))
2693 break;
2694 /* Backtrack if necessary to non-L'ed skb */
2695 if (hole != NULL) {
2696 skb = hole;
2697 hole = NULL;
2698 }
2699 fwd_rexmitting = 1;
2700 goto begin_fwd;
2701
2702 } else if (!(sacked & TCPCB_LOST)) {
2703 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2704 hole = skb;
2705 continue;
2706
2707 } else {
2708 last_lost = TCP_SKB_CB(skb)->end_seq;
2709 if (icsk->icsk_ca_state != TCP_CA_Loss)
2710 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2711 else
2712 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2713 }
2714
2715 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2716 continue;
2717
2718 if (tcp_retransmit_skb(sk, skb))
2719 return;
2720
2721 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2722
2723 if (tcp_in_cwnd_reduction(sk))
2724 tp->prr_out += tcp_skb_pcount(skb);
2725
2726 if (skb == tcp_write_queue_head(sk))
2727 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2728 inet_csk(sk)->icsk_rto,
2729 TCP_RTO_MAX);
2730 }
2731 }
2732
2733 /* We allow to exceed memory limits for FIN packets to expedite
2734 * connection tear down and (memory) recovery.
2735 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2736 * or even be forced to close flow without any FIN.
2737 */
sk_forced_wmem_schedule(struct sock * sk,int size)2738 static void sk_forced_wmem_schedule(struct sock *sk, int size)
2739 {
2740 int amt, status;
2741
2742 if (size <= sk->sk_forward_alloc)
2743 return;
2744 amt = sk_mem_pages(size);
2745 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2746 sk_memory_allocated_add(sk, amt, &status);
2747 }
2748
2749 /* Send a FIN. The caller locks the socket for us.
2750 * We should try to send a FIN packet really hard, but eventually give up.
2751 */
tcp_send_fin(struct sock * sk)2752 void tcp_send_fin(struct sock *sk)
2753 {
2754 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 /* Optimization, tack on the FIN if we have one skb in write queue and
2758 * this skb was not yet sent, or we are under memory pressure.
2759 * Note: in the latter case, FIN packet will be sent after a timeout,
2760 * as TCP stack thinks it has already been transmitted.
2761 */
2762 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2763 coalesce:
2764 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2765 TCP_SKB_CB(tskb)->end_seq++;
2766 tp->write_seq++;
2767 if (!tcp_send_head(sk)) {
2768 /* This means tskb was already sent.
2769 * Pretend we included the FIN on previous transmit.
2770 * We need to set tp->snd_nxt to the value it would have
2771 * if FIN had been sent. This is because retransmit path
2772 * does not change tp->snd_nxt.
2773 */
2774 tp->snd_nxt++;
2775 return;
2776 }
2777 } else {
2778 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2779 if (unlikely(!skb)) {
2780 if (tskb)
2781 goto coalesce;
2782 return;
2783 }
2784 skb_reserve(skb, MAX_TCP_HEADER);
2785 sk_forced_wmem_schedule(sk, skb->truesize);
2786 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2787 tcp_init_nondata_skb(skb, tp->write_seq,
2788 TCPHDR_ACK | TCPHDR_FIN);
2789 tcp_queue_skb(sk, skb);
2790 }
2791 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2792 }
2793
2794 /* We get here when a process closes a file descriptor (either due to
2795 * an explicit close() or as a byproduct of exit()'ing) and there
2796 * was unread data in the receive queue. This behavior is recommended
2797 * by RFC 2525, section 2.17. -DaveM
2798 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)2799 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2800 {
2801 struct sk_buff *skb;
2802
2803 /* NOTE: No TCP options attached and we never retransmit this. */
2804 skb = alloc_skb(MAX_TCP_HEADER, priority);
2805 if (!skb) {
2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2807 return;
2808 }
2809
2810 /* Reserve space for headers and prepare control bits. */
2811 skb_reserve(skb, MAX_TCP_HEADER);
2812 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2813 TCPHDR_ACK | TCPHDR_RST);
2814 skb_mstamp_get(&skb->skb_mstamp);
2815 /* Send it off. */
2816 if (tcp_transmit_skb(sk, skb, 0, priority))
2817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2818
2819 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2820 }
2821
2822 /* Send a crossed SYN-ACK during socket establishment.
2823 * WARNING: This routine must only be called when we have already sent
2824 * a SYN packet that crossed the incoming SYN that caused this routine
2825 * to get called. If this assumption fails then the initial rcv_wnd
2826 * and rcv_wscale values will not be correct.
2827 */
tcp_send_synack(struct sock * sk)2828 int tcp_send_synack(struct sock *sk)
2829 {
2830 struct sk_buff *skb;
2831
2832 skb = tcp_write_queue_head(sk);
2833 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2834 pr_debug("%s: wrong queue state\n", __func__);
2835 return -EFAULT;
2836 }
2837 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2838 if (skb_cloned(skb)) {
2839 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2840 if (nskb == NULL)
2841 return -ENOMEM;
2842 tcp_unlink_write_queue(skb, sk);
2843 __skb_header_release(nskb);
2844 __tcp_add_write_queue_head(sk, nskb);
2845 sk_wmem_free_skb(sk, skb);
2846 sk->sk_wmem_queued += nskb->truesize;
2847 sk_mem_charge(sk, nskb->truesize);
2848 skb = nskb;
2849 }
2850
2851 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2852 tcp_ecn_send_synack(sk, skb);
2853 }
2854 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2855 }
2856
2857 /**
2858 * tcp_make_synack - Prepare a SYN-ACK.
2859 * sk: listener socket
2860 * dst: dst entry attached to the SYNACK
2861 * req: request_sock pointer
2862 *
2863 * Allocate one skb and build a SYNACK packet.
2864 * @dst is consumed : Caller should not use it again.
2865 */
tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc)2866 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2867 struct request_sock *req,
2868 struct tcp_fastopen_cookie *foc)
2869 {
2870 struct tcp_out_options opts;
2871 struct inet_request_sock *ireq = inet_rsk(req);
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 struct tcphdr *th;
2874 struct sk_buff *skb;
2875 struct tcp_md5sig_key *md5;
2876 int tcp_header_size;
2877 int mss;
2878
2879 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2880 if (unlikely(!skb)) {
2881 dst_release(dst);
2882 return NULL;
2883 }
2884 /* Reserve space for headers. */
2885 skb_reserve(skb, MAX_TCP_HEADER);
2886
2887 skb_dst_set(skb, dst);
2888 security_skb_owned_by(skb, sk);
2889
2890 mss = dst_metric_advmss(dst);
2891 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2892 mss = tp->rx_opt.user_mss;
2893
2894 memset(&opts, 0, sizeof(opts));
2895 #ifdef CONFIG_SYN_COOKIES
2896 if (unlikely(req->cookie_ts))
2897 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2898 else
2899 #endif
2900 skb_mstamp_get(&skb->skb_mstamp);
2901 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2902 foc) + sizeof(*th);
2903
2904 skb_push(skb, tcp_header_size);
2905 skb_reset_transport_header(skb);
2906
2907 th = tcp_hdr(skb);
2908 memset(th, 0, sizeof(struct tcphdr));
2909 th->syn = 1;
2910 th->ack = 1;
2911 tcp_ecn_make_synack(req, th, sk);
2912 th->source = htons(ireq->ir_num);
2913 th->dest = ireq->ir_rmt_port;
2914 skb->ip_summed = CHECKSUM_PARTIAL;
2915 th->seq = htonl(tcp_rsk(req)->snt_isn);
2916 /* XXX data is queued and acked as is. No buffer/window check */
2917 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2918
2919 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2920 th->window = htons(min(req->rcv_wnd, 65535U));
2921 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2922 th->doff = (tcp_header_size >> 2);
2923 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2924
2925 #ifdef CONFIG_TCP_MD5SIG
2926 /* Okay, we have all we need - do the md5 hash if needed */
2927 if (md5) {
2928 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2929 md5, NULL, req, skb);
2930 }
2931 #endif
2932
2933 /* Do not fool tcpdump (if any), clean our debris */
2934 skb->tstamp.tv64 = 0;
2935 return skb;
2936 }
2937 EXPORT_SYMBOL(tcp_make_synack);
2938
2939 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)2940 static void tcp_connect_init(struct sock *sk)
2941 {
2942 const struct dst_entry *dst = __sk_dst_get(sk);
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 __u8 rcv_wscale;
2945
2946 /* We'll fix this up when we get a response from the other end.
2947 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2948 */
2949 tp->tcp_header_len = sizeof(struct tcphdr) +
2950 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2951
2952 #ifdef CONFIG_TCP_MD5SIG
2953 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2954 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2955 #endif
2956
2957 /* If user gave his TCP_MAXSEG, record it to clamp */
2958 if (tp->rx_opt.user_mss)
2959 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2960 tp->max_window = 0;
2961 tcp_mtup_init(sk);
2962 tcp_sync_mss(sk, dst_mtu(dst));
2963
2964 if (!tp->window_clamp)
2965 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2966 tp->advmss = dst_metric_advmss(dst);
2967 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2968 tp->advmss = tp->rx_opt.user_mss;
2969
2970 tcp_initialize_rcv_mss(sk);
2971
2972 /* limit the window selection if the user enforce a smaller rx buffer */
2973 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2974 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2975 tp->window_clamp = tcp_full_space(sk);
2976
2977 tcp_select_initial_window(tcp_full_space(sk),
2978 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2979 &tp->rcv_wnd,
2980 &tp->window_clamp,
2981 sysctl_tcp_window_scaling,
2982 &rcv_wscale,
2983 dst_metric(dst, RTAX_INITRWND));
2984
2985 tp->rx_opt.rcv_wscale = rcv_wscale;
2986 tp->rcv_ssthresh = tp->rcv_wnd;
2987
2988 sk->sk_err = 0;
2989 sock_reset_flag(sk, SOCK_DONE);
2990 tp->snd_wnd = 0;
2991 tcp_init_wl(tp, 0);
2992 tp->snd_una = tp->write_seq;
2993 tp->snd_sml = tp->write_seq;
2994 tp->snd_up = tp->write_seq;
2995 tp->snd_nxt = tp->write_seq;
2996
2997 if (likely(!tp->repair))
2998 tp->rcv_nxt = 0;
2999 else
3000 tp->rcv_tstamp = tcp_time_stamp;
3001 tp->rcv_wup = tp->rcv_nxt;
3002 tp->copied_seq = tp->rcv_nxt;
3003
3004 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3005 inet_csk(sk)->icsk_retransmits = 0;
3006 tcp_clear_retrans(tp);
3007 }
3008
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3009 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3010 {
3011 struct tcp_sock *tp = tcp_sk(sk);
3012 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3013
3014 tcb->end_seq += skb->len;
3015 __skb_header_release(skb);
3016 __tcp_add_write_queue_tail(sk, skb);
3017 sk->sk_wmem_queued += skb->truesize;
3018 sk_mem_charge(sk, skb->truesize);
3019 tp->write_seq = tcb->end_seq;
3020 tp->packets_out += tcp_skb_pcount(skb);
3021 }
3022
3023 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3024 * queue a data-only packet after the regular SYN, such that regular SYNs
3025 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3026 * only the SYN sequence, the data are retransmitted in the first ACK.
3027 * If cookie is not cached or other error occurs, falls back to send a
3028 * regular SYN with Fast Open cookie request option.
3029 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3030 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3031 {
3032 struct tcp_sock *tp = tcp_sk(sk);
3033 struct tcp_fastopen_request *fo = tp->fastopen_req;
3034 int syn_loss = 0, space, err = 0;
3035 unsigned long last_syn_loss = 0;
3036 struct sk_buff *syn_data;
3037
3038 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3039 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3040 &syn_loss, &last_syn_loss);
3041 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3042 if (syn_loss > 1 &&
3043 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3044 fo->cookie.len = -1;
3045 goto fallback;
3046 }
3047
3048 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3049 fo->cookie.len = -1;
3050 else if (fo->cookie.len <= 0)
3051 goto fallback;
3052
3053 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3054 * user-MSS. Reserve maximum option space for middleboxes that add
3055 * private TCP options. The cost is reduced data space in SYN :(
3056 */
3057 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3058 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3059 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3060 MAX_TCP_OPTION_SPACE;
3061
3062 space = min_t(size_t, space, fo->size);
3063
3064 /* limit to order-0 allocations */
3065 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3066
3067 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3068 if (!syn_data)
3069 goto fallback;
3070 syn_data->ip_summed = CHECKSUM_PARTIAL;
3071 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3072 if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space),
3073 fo->data->msg_iov, 0, space))) {
3074 kfree_skb(syn_data);
3075 goto fallback;
3076 }
3077
3078 /* No more data pending in inet_wait_for_connect() */
3079 if (space == fo->size)
3080 fo->data = NULL;
3081 fo->copied = space;
3082
3083 tcp_connect_queue_skb(sk, syn_data);
3084
3085 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3086
3087 syn->skb_mstamp = syn_data->skb_mstamp;
3088
3089 /* Now full SYN+DATA was cloned and sent (or not),
3090 * remove the SYN from the original skb (syn_data)
3091 * we keep in write queue in case of a retransmit, as we
3092 * also have the SYN packet (with no data) in the same queue.
3093 */
3094 TCP_SKB_CB(syn_data)->seq++;
3095 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3096 if (!err) {
3097 tp->syn_data = (fo->copied > 0);
3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3099 goto done;
3100 }
3101
3102 fallback:
3103 /* Send a regular SYN with Fast Open cookie request option */
3104 if (fo->cookie.len > 0)
3105 fo->cookie.len = 0;
3106 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3107 if (err)
3108 tp->syn_fastopen = 0;
3109 done:
3110 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3111 return err;
3112 }
3113
3114 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3115 int tcp_connect(struct sock *sk)
3116 {
3117 struct tcp_sock *tp = tcp_sk(sk);
3118 struct sk_buff *buff;
3119 int err;
3120
3121 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3122 return -EHOSTUNREACH; /* Routing failure or similar. */
3123
3124 tcp_connect_init(sk);
3125
3126 if (unlikely(tp->repair)) {
3127 tcp_finish_connect(sk, NULL);
3128 return 0;
3129 }
3130
3131 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3132 if (unlikely(!buff))
3133 return -ENOBUFS;
3134
3135 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3136 tp->retrans_stamp = tcp_time_stamp;
3137 tcp_connect_queue_skb(sk, buff);
3138 tcp_ecn_send_syn(sk, buff);
3139
3140 /* Send off SYN; include data in Fast Open. */
3141 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3142 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3143 if (err == -ECONNREFUSED)
3144 return err;
3145
3146 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3147 * in order to make this packet get counted in tcpOutSegs.
3148 */
3149 tp->snd_nxt = tp->write_seq;
3150 tp->pushed_seq = tp->write_seq;
3151 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3152
3153 /* Timer for repeating the SYN until an answer. */
3154 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3155 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3156 return 0;
3157 }
3158 EXPORT_SYMBOL(tcp_connect);
3159
3160 /* Send out a delayed ack, the caller does the policy checking
3161 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3162 * for details.
3163 */
tcp_send_delayed_ack(struct sock * sk)3164 void tcp_send_delayed_ack(struct sock *sk)
3165 {
3166 struct inet_connection_sock *icsk = inet_csk(sk);
3167 int ato = icsk->icsk_ack.ato;
3168 unsigned long timeout;
3169
3170 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3171
3172 if (ato > TCP_DELACK_MIN) {
3173 const struct tcp_sock *tp = tcp_sk(sk);
3174 int max_ato = HZ / 2;
3175
3176 if (icsk->icsk_ack.pingpong ||
3177 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3178 max_ato = TCP_DELACK_MAX;
3179
3180 /* Slow path, intersegment interval is "high". */
3181
3182 /* If some rtt estimate is known, use it to bound delayed ack.
3183 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3184 * directly.
3185 */
3186 if (tp->srtt_us) {
3187 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3188 TCP_DELACK_MIN);
3189
3190 if (rtt < max_ato)
3191 max_ato = rtt;
3192 }
3193
3194 ato = min(ato, max_ato);
3195 }
3196
3197 /* Stay within the limit we were given */
3198 timeout = jiffies + ato;
3199
3200 /* Use new timeout only if there wasn't a older one earlier. */
3201 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3202 /* If delack timer was blocked or is about to expire,
3203 * send ACK now.
3204 */
3205 if (icsk->icsk_ack.blocked ||
3206 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3207 tcp_send_ack(sk);
3208 return;
3209 }
3210
3211 if (!time_before(timeout, icsk->icsk_ack.timeout))
3212 timeout = icsk->icsk_ack.timeout;
3213 }
3214 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3215 icsk->icsk_ack.timeout = timeout;
3216 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3217 }
3218
3219 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)3220 void tcp_send_ack(struct sock *sk)
3221 {
3222 struct sk_buff *buff;
3223
3224 /* If we have been reset, we may not send again. */
3225 if (sk->sk_state == TCP_CLOSE)
3226 return;
3227
3228 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3229
3230 /* We are not putting this on the write queue, so
3231 * tcp_transmit_skb() will set the ownership to this
3232 * sock.
3233 */
3234 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3235 if (buff == NULL) {
3236 inet_csk_schedule_ack(sk);
3237 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3239 TCP_DELACK_MAX, TCP_RTO_MAX);
3240 return;
3241 }
3242
3243 /* Reserve space for headers and prepare control bits. */
3244 skb_reserve(buff, MAX_TCP_HEADER);
3245 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3246
3247 /* Send it off, this clears delayed acks for us. */
3248 skb_mstamp_get(&buff->skb_mstamp);
3249 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3250 }
3251 EXPORT_SYMBOL_GPL(tcp_send_ack);
3252
3253 /* This routine sends a packet with an out of date sequence
3254 * number. It assumes the other end will try to ack it.
3255 *
3256 * Question: what should we make while urgent mode?
3257 * 4.4BSD forces sending single byte of data. We cannot send
3258 * out of window data, because we have SND.NXT==SND.MAX...
3259 *
3260 * Current solution: to send TWO zero-length segments in urgent mode:
3261 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3262 * out-of-date with SND.UNA-1 to probe window.
3263 */
tcp_xmit_probe_skb(struct sock * sk,int urgent)3264 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3265 {
3266 struct tcp_sock *tp = tcp_sk(sk);
3267 struct sk_buff *skb;
3268
3269 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3270 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3271 if (skb == NULL)
3272 return -1;
3273
3274 /* Reserve space for headers and set control bits. */
3275 skb_reserve(skb, MAX_TCP_HEADER);
3276 /* Use a previous sequence. This should cause the other
3277 * end to send an ack. Don't queue or clone SKB, just
3278 * send it.
3279 */
3280 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3281 skb_mstamp_get(&skb->skb_mstamp);
3282 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3283 }
3284
tcp_send_window_probe(struct sock * sk)3285 void tcp_send_window_probe(struct sock *sk)
3286 {
3287 if (sk->sk_state == TCP_ESTABLISHED) {
3288 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3289 tcp_xmit_probe_skb(sk, 0);
3290 }
3291 }
3292
3293 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk)3294 int tcp_write_wakeup(struct sock *sk)
3295 {
3296 struct tcp_sock *tp = tcp_sk(sk);
3297 struct sk_buff *skb;
3298
3299 if (sk->sk_state == TCP_CLOSE)
3300 return -1;
3301
3302 if ((skb = tcp_send_head(sk)) != NULL &&
3303 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3304 int err;
3305 unsigned int mss = tcp_current_mss(sk);
3306 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3307
3308 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3309 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3310
3311 /* We are probing the opening of a window
3312 * but the window size is != 0
3313 * must have been a result SWS avoidance ( sender )
3314 */
3315 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3316 skb->len > mss) {
3317 seg_size = min(seg_size, mss);
3318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3319 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3320 return -1;
3321 } else if (!tcp_skb_pcount(skb))
3322 tcp_set_skb_tso_segs(sk, skb, mss);
3323
3324 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3325 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3326 if (!err)
3327 tcp_event_new_data_sent(sk, skb);
3328 return err;
3329 } else {
3330 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3331 tcp_xmit_probe_skb(sk, 1);
3332 return tcp_xmit_probe_skb(sk, 0);
3333 }
3334 }
3335
3336 /* A window probe timeout has occurred. If window is not closed send
3337 * a partial packet else a zero probe.
3338 */
tcp_send_probe0(struct sock * sk)3339 void tcp_send_probe0(struct sock *sk)
3340 {
3341 struct inet_connection_sock *icsk = inet_csk(sk);
3342 struct tcp_sock *tp = tcp_sk(sk);
3343 unsigned long probe_max;
3344 int err;
3345
3346 err = tcp_write_wakeup(sk);
3347
3348 if (tp->packets_out || !tcp_send_head(sk)) {
3349 /* Cancel probe timer, if it is not required. */
3350 icsk->icsk_probes_out = 0;
3351 icsk->icsk_backoff = 0;
3352 return;
3353 }
3354
3355 if (err <= 0) {
3356 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3357 icsk->icsk_backoff++;
3358 icsk->icsk_probes_out++;
3359 probe_max = TCP_RTO_MAX;
3360 } else {
3361 /* If packet was not sent due to local congestion,
3362 * do not backoff and do not remember icsk_probes_out.
3363 * Let local senders to fight for local resources.
3364 *
3365 * Use accumulated backoff yet.
3366 */
3367 if (!icsk->icsk_probes_out)
3368 icsk->icsk_probes_out = 1;
3369 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3370 }
3371 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3372 inet_csk_rto_backoff(icsk, probe_max),
3373 TCP_RTO_MAX);
3374 }
3375
tcp_rtx_synack(struct sock * sk,struct request_sock * req)3376 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3377 {
3378 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3379 struct flowi fl;
3380 int res;
3381
3382 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3383 if (!res) {
3384 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3386 }
3387 return res;
3388 }
3389 EXPORT_SYMBOL(tcp_rtx_synack);
3390