• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 
90 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 		      tcp_skb_pcount(skb));
92 }
93 
94 /* SND.NXT, if window was not shrunk.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
tcp_acceptable_seq(const struct sock * sk)100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
tcp_advertise_mss(struct sock * sk)124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism. */
tcp_cwnd_restart(struct sock * sk,const struct dst_entry * dst)144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	s32 delta = tcp_time_stamp - tp->lsndtime;
148 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 	u32 cwnd = tp->snd_cwnd;
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tp->snd_cwnd = max(cwnd, restart_cwnd);
159 	tp->snd_cwnd_stamp = tcp_time_stamp;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_time_stamp;
169 	const struct dst_entry *dst = __sk_dst_get(sk);
170 
171 	if (sysctl_tcp_slow_start_after_idle &&
172 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, enter pingpong mode.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 			icsk->icsk_ack.pingpong = 1;
183 }
184 
185 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 	tcp_dec_quickack_mode(sk, pkts);
189 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191 
192 
tcp_default_init_rwnd(u32 mss)193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 	/* Initial receive window should be twice of TCP_INIT_CWND to
196 	 * enable proper sending of new unsent data during fast recovery
197 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 	 * limit when mss is larger than 1460.
199 	 */
200 	u32 init_rwnd = sysctl_tcp_default_init_rwnd;
201 
202 	if (mss > 1460)
203 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 	return init_rwnd;
205 }
206 
207 /* Determine a window scaling and initial window to offer.
208  * Based on the assumption that the given amount of space
209  * will be offered. Store the results in the tp structure.
210  * NOTE: for smooth operation initial space offering should
211  * be a multiple of mss if possible. We assume here that mss >= 1.
212  * This MUST be enforced by all callers.
213  */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)214 void tcp_select_initial_window(int __space, __u32 mss,
215 			       __u32 *rcv_wnd, __u32 *window_clamp,
216 			       int wscale_ok, __u8 *rcv_wscale,
217 			       __u32 init_rcv_wnd)
218 {
219 	unsigned int space = (__space < 0 ? 0 : __space);
220 
221 	/* If no clamp set the clamp to the max possible scaled window */
222 	if (*window_clamp == 0)
223 		(*window_clamp) = (65535 << 14);
224 	space = min(*window_clamp, space);
225 
226 	/* Quantize space offering to a multiple of mss if possible. */
227 	if (space > mss)
228 		space = (space / mss) * mss;
229 
230 	/* NOTE: offering an initial window larger than 32767
231 	 * will break some buggy TCP stacks. If the admin tells us
232 	 * it is likely we could be speaking with such a buggy stack
233 	 * we will truncate our initial window offering to 32K-1
234 	 * unless the remote has sent us a window scaling option,
235 	 * which we interpret as a sign the remote TCP is not
236 	 * misinterpreting the window field as a signed quantity.
237 	 */
238 	if (sysctl_tcp_workaround_signed_windows)
239 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 	else
241 		(*rcv_wnd) = space;
242 
243 	(*rcv_wscale) = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window
246 		 * See RFC1323 for an explanation of the limit to 14
247 		 */
248 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 		space = min_t(u32, space, *window_clamp);
250 		while (space > 65535 && (*rcv_wscale) < 14) {
251 			space >>= 1;
252 			(*rcv_wscale)++;
253 		}
254 	}
255 
256 	if (mss > (1 << *rcv_wscale)) {
257 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 			init_rcv_wnd = tcp_default_init_rwnd(mss);
259 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 	}
261 
262 	/* Set the clamp no higher than max representable value */
263 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266 
267 /* Chose a new window to advertise, update state in tcp_sock for the
268  * socket, and return result with RFC1323 scaling applied.  The return
269  * value can be stuffed directly into th->window for an outgoing
270  * frame.
271  */
tcp_select_window(struct sock * sk)272 static u16 tcp_select_window(struct sock *sk)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	u32 old_win = tp->rcv_wnd;
276 	u32 cur_win = tcp_receive_window(tp);
277 	u32 new_win = __tcp_select_window(sk);
278 
279 	/* Never shrink the offered window */
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (new_win == 0)
289 			NET_INC_STATS(sock_net(sk),
290 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
291 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 	}
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(sock_net(sk),
312 				      LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
322 {
323 	const struct tcp_sock *tp = tcp_sk(sk);
324 
325 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 	if (!(tp->ecn_flags & TCP_ECN_OK))
327 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 	else if (tcp_ca_needs_ecn(sk))
329 		INET_ECN_xmit(sk);
330 }
331 
332 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 
337 	tp->ecn_flags = 0;
338 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
339 	    tcp_ca_needs_ecn(sk)) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk))
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th,struct sock * sk)348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
349 		    struct sock *sk)
350 {
351 	if (inet_rsk(req)->ecn_ok) {
352 		th->ece = 1;
353 		if (tcp_ca_needs_ecn(sk))
354 			INET_ECN_xmit(sk);
355 	}
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 				int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				tcp_hdr(skb)->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			tcp_hdr(skb)->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	struct skb_shared_info *shinfo = skb_shinfo(skb);
391 
392 	skb->ip_summed = CHECKSUM_PARTIAL;
393 	skb->csum = 0;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 	shinfo->gso_size = 0;
400 	shinfo->gso_type = 0;
401 
402 	TCP_SKB_CB(skb)->seq = seq;
403 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 		seq++;
405 	TCP_SKB_CB(skb)->end_seq = seq;
406 }
407 
tcp_urg_mode(const struct tcp_sock * tp)408 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 {
410 	return tp->snd_una != tp->snd_up;
411 }
412 
413 #define OPTION_SACK_ADVERTISE	(1 << 0)
414 #define OPTION_TS		(1 << 1)
415 #define OPTION_MD5		(1 << 2)
416 #define OPTION_WSCALE		(1 << 3)
417 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
418 
419 struct tcp_out_options {
420 	u16 options;		/* bit field of OPTION_* */
421 	u16 mss;		/* 0 to disable */
422 	u8 ws;			/* window scale, 0 to disable */
423 	u8 num_sack_blocks;	/* number of SACK blocks to include */
424 	u8 hash_size;		/* bytes in hash_location */
425 	__u8 *hash_location;	/* temporary pointer, overloaded */
426 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
427 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
428 };
429 
430 /* Write previously computed TCP options to the packet.
431  *
432  * Beware: Something in the Internet is very sensitive to the ordering of
433  * TCP options, we learned this through the hard way, so be careful here.
434  * Luckily we can at least blame others for their non-compliance but from
435  * inter-operability perspective it seems that we're somewhat stuck with
436  * the ordering which we have been using if we want to keep working with
437  * those broken things (not that it currently hurts anybody as there isn't
438  * particular reason why the ordering would need to be changed).
439  *
440  * At least SACK_PERM as the first option is known to lead to a disaster
441  * (but it may well be that other scenarios fail similarly).
442  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
444 			      struct tcp_out_options *opts)
445 {
446 	u16 options = opts->options;	/* mungable copy */
447 
448 	if (unlikely(OPTION_MD5 & options)) {
449 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
450 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
451 		/* overload cookie hash location */
452 		opts->hash_location = (__u8 *)ptr;
453 		ptr += 4;
454 	}
455 
456 	if (unlikely(opts->mss)) {
457 		*ptr++ = htonl((TCPOPT_MSS << 24) |
458 			       (TCPOLEN_MSS << 16) |
459 			       opts->mss);
460 	}
461 
462 	if (likely(OPTION_TS & options)) {
463 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
464 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
465 				       (TCPOLEN_SACK_PERM << 16) |
466 				       (TCPOPT_TIMESTAMP << 8) |
467 				       TCPOLEN_TIMESTAMP);
468 			options &= ~OPTION_SACK_ADVERTISE;
469 		} else {
470 			*ptr++ = htonl((TCPOPT_NOP << 24) |
471 				       (TCPOPT_NOP << 16) |
472 				       (TCPOPT_TIMESTAMP << 8) |
473 				       TCPOLEN_TIMESTAMP);
474 		}
475 		*ptr++ = htonl(opts->tsval);
476 		*ptr++ = htonl(opts->tsecr);
477 	}
478 
479 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
480 		*ptr++ = htonl((TCPOPT_NOP << 24) |
481 			       (TCPOPT_NOP << 16) |
482 			       (TCPOPT_SACK_PERM << 8) |
483 			       TCPOLEN_SACK_PERM);
484 	}
485 
486 	if (unlikely(OPTION_WSCALE & options)) {
487 		*ptr++ = htonl((TCPOPT_NOP << 24) |
488 			       (TCPOPT_WINDOW << 16) |
489 			       (TCPOLEN_WINDOW << 8) |
490 			       opts->ws);
491 	}
492 
493 	if (unlikely(opts->num_sack_blocks)) {
494 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
495 			tp->duplicate_sack : tp->selective_acks;
496 		int this_sack;
497 
498 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
499 			       (TCPOPT_NOP  << 16) |
500 			       (TCPOPT_SACK <<  8) |
501 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
502 						     TCPOLEN_SACK_PERBLOCK)));
503 
504 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
505 		     ++this_sack) {
506 			*ptr++ = htonl(sp[this_sack].start_seq);
507 			*ptr++ = htonl(sp[this_sack].end_seq);
508 		}
509 
510 		tp->rx_opt.dsack = 0;
511 	}
512 
513 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
514 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
515 
516 		*ptr++ = htonl((TCPOPT_EXP << 24) |
517 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
518 			       TCPOPT_FASTOPEN_MAGIC);
519 
520 		memcpy(ptr, foc->val, foc->len);
521 		if ((foc->len & 3) == 2) {
522 			u8 *align = ((u8 *)ptr) + foc->len;
523 			align[0] = align[1] = TCPOPT_NOP;
524 		}
525 		ptr += (foc->len + 3) >> 2;
526 	}
527 }
528 
529 /* Compute TCP options for SYN packets. This is not the final
530  * network wire format yet.
531  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)532 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
533 				struct tcp_out_options *opts,
534 				struct tcp_md5sig_key **md5)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
538 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
539 
540 #ifdef CONFIG_TCP_MD5SIG
541 	*md5 = tp->af_specific->md5_lookup(sk, sk);
542 	if (*md5) {
543 		opts->options |= OPTION_MD5;
544 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
545 	}
546 #else
547 	*md5 = NULL;
548 #endif
549 
550 	/* We always get an MSS option.  The option bytes which will be seen in
551 	 * normal data packets should timestamps be used, must be in the MSS
552 	 * advertised.  But we subtract them from tp->mss_cache so that
553 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
554 	 * fact here if necessary.  If we don't do this correctly, as a
555 	 * receiver we won't recognize data packets as being full sized when we
556 	 * should, and thus we won't abide by the delayed ACK rules correctly.
557 	 * SACKs don't matter, we never delay an ACK when we have any of those
558 	 * going out.  */
559 	opts->mss = tcp_advertise_mss(sk);
560 	remaining -= TCPOLEN_MSS_ALIGNED;
561 
562 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
563 		opts->options |= OPTION_TS;
564 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
565 		opts->tsecr = tp->rx_opt.ts_recent;
566 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
567 	}
568 	if (likely(sysctl_tcp_window_scaling)) {
569 		opts->ws = tp->rx_opt.rcv_wscale;
570 		opts->options |= OPTION_WSCALE;
571 		remaining -= TCPOLEN_WSCALE_ALIGNED;
572 	}
573 	if (likely(sysctl_tcp_sack)) {
574 		opts->options |= OPTION_SACK_ADVERTISE;
575 		if (unlikely(!(OPTION_TS & opts->options)))
576 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
577 	}
578 
579 	if (fastopen && fastopen->cookie.len >= 0) {
580 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
581 		need = (need + 3) & ~3U;  /* Align to 32 bits */
582 		if (remaining >= need) {
583 			opts->options |= OPTION_FAST_OPEN_COOKIE;
584 			opts->fastopen_cookie = &fastopen->cookie;
585 			remaining -= need;
586 			tp->syn_fastopen = 1;
587 		}
588 	}
589 
590 	return MAX_TCP_OPTION_SPACE - remaining;
591 }
592 
593 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5,struct tcp_fastopen_cookie * foc)594 static unsigned int tcp_synack_options(struct sock *sk,
595 				   struct request_sock *req,
596 				   unsigned int mss, struct sk_buff *skb,
597 				   struct tcp_out_options *opts,
598 				   struct tcp_md5sig_key **md5,
599 				   struct tcp_fastopen_cookie *foc)
600 {
601 	struct inet_request_sock *ireq = inet_rsk(req);
602 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
603 
604 #ifdef CONFIG_TCP_MD5SIG
605 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
606 	if (*md5) {
607 		opts->options |= OPTION_MD5;
608 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
609 
610 		/* We can't fit any SACK blocks in a packet with MD5 + TS
611 		 * options. There was discussion about disabling SACK
612 		 * rather than TS in order to fit in better with old,
613 		 * buggy kernels, but that was deemed to be unnecessary.
614 		 */
615 		ireq->tstamp_ok &= !ireq->sack_ok;
616 	}
617 #else
618 	*md5 = NULL;
619 #endif
620 
621 	/* We always send an MSS option. */
622 	opts->mss = mss;
623 	remaining -= TCPOLEN_MSS_ALIGNED;
624 
625 	if (likely(ireq->wscale_ok)) {
626 		opts->ws = ireq->rcv_wscale;
627 		opts->options |= OPTION_WSCALE;
628 		remaining -= TCPOLEN_WSCALE_ALIGNED;
629 	}
630 	if (likely(ireq->tstamp_ok)) {
631 		opts->options |= OPTION_TS;
632 		opts->tsval = tcp_skb_timestamp(skb);
633 		opts->tsecr = req->ts_recent;
634 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
635 	}
636 	if (likely(ireq->sack_ok)) {
637 		opts->options |= OPTION_SACK_ADVERTISE;
638 		if (unlikely(!ireq->tstamp_ok))
639 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
640 	}
641 	if (foc != NULL && foc->len >= 0) {
642 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
643 		need = (need + 3) & ~3U;  /* Align to 32 bits */
644 		if (remaining >= need) {
645 			opts->options |= OPTION_FAST_OPEN_COOKIE;
646 			opts->fastopen_cookie = foc;
647 			remaining -= need;
648 		}
649 	}
650 
651 	return MAX_TCP_OPTION_SPACE - remaining;
652 }
653 
654 /* Compute TCP options for ESTABLISHED sockets. This is not the
655  * final wire format yet.
656  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)657 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
658 					struct tcp_out_options *opts,
659 					struct tcp_md5sig_key **md5)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 	unsigned int size = 0;
663 	unsigned int eff_sacks;
664 
665 	opts->options = 0;
666 
667 #ifdef CONFIG_TCP_MD5SIG
668 	*md5 = tp->af_specific->md5_lookup(sk, sk);
669 	if (unlikely(*md5)) {
670 		opts->options |= OPTION_MD5;
671 		size += TCPOLEN_MD5SIG_ALIGNED;
672 	}
673 #else
674 	*md5 = NULL;
675 #endif
676 
677 	if (likely(tp->rx_opt.tstamp_ok)) {
678 		opts->options |= OPTION_TS;
679 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
680 		opts->tsecr = tp->rx_opt.ts_recent;
681 		size += TCPOLEN_TSTAMP_ALIGNED;
682 	}
683 
684 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
685 	if (unlikely(eff_sacks)) {
686 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
687 		opts->num_sack_blocks =
688 			min_t(unsigned int, eff_sacks,
689 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
690 			      TCPOLEN_SACK_PERBLOCK);
691 		size += TCPOLEN_SACK_BASE_ALIGNED +
692 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
693 	}
694 
695 	return size;
696 }
697 
698 
699 /* TCP SMALL QUEUES (TSQ)
700  *
701  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
702  * to reduce RTT and bufferbloat.
703  * We do this using a special skb destructor (tcp_wfree).
704  *
705  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
706  * needs to be reallocated in a driver.
707  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
708  *
709  * Since transmit from skb destructor is forbidden, we use a tasklet
710  * to process all sockets that eventually need to send more skbs.
711  * We use one tasklet per cpu, with its own queue of sockets.
712  */
713 struct tsq_tasklet {
714 	struct tasklet_struct	tasklet;
715 	struct list_head	head; /* queue of tcp sockets */
716 };
717 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
718 
tcp_tsq_handler(struct sock * sk)719 static void tcp_tsq_handler(struct sock *sk)
720 {
721 	if ((1 << sk->sk_state) &
722 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
723 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
724 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
725 			       0, GFP_ATOMIC);
726 }
727 /*
728  * One tasklet per cpu tries to send more skbs.
729  * We run in tasklet context but need to disable irqs when
730  * transferring tsq->head because tcp_wfree() might
731  * interrupt us (non NAPI drivers)
732  */
tcp_tasklet_func(unsigned long data)733 static void tcp_tasklet_func(unsigned long data)
734 {
735 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
736 	LIST_HEAD(list);
737 	unsigned long flags;
738 	struct list_head *q, *n;
739 	struct tcp_sock *tp;
740 	struct sock *sk;
741 
742 	local_irq_save(flags);
743 	list_splice_init(&tsq->head, &list);
744 	local_irq_restore(flags);
745 
746 	list_for_each_safe(q, n, &list) {
747 		tp = list_entry(q, struct tcp_sock, tsq_node);
748 		list_del(&tp->tsq_node);
749 
750 		sk = (struct sock *)tp;
751 		bh_lock_sock(sk);
752 
753 		if (!sock_owned_by_user(sk)) {
754 			tcp_tsq_handler(sk);
755 		} else {
756 			/* defer the work to tcp_release_cb() */
757 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
758 		}
759 		bh_unlock_sock(sk);
760 
761 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
762 		sk_free(sk);
763 	}
764 }
765 
766 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
767 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
768 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
769 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
770 /**
771  * tcp_release_cb - tcp release_sock() callback
772  * @sk: socket
773  *
774  * called from release_sock() to perform protocol dependent
775  * actions before socket release.
776  */
tcp_release_cb(struct sock * sk)777 void tcp_release_cb(struct sock *sk)
778 {
779 	struct tcp_sock *tp = tcp_sk(sk);
780 	unsigned long flags, nflags;
781 
782 	/* perform an atomic operation only if at least one flag is set */
783 	do {
784 		flags = tp->tsq_flags;
785 		if (!(flags & TCP_DEFERRED_ALL))
786 			return;
787 		nflags = flags & ~TCP_DEFERRED_ALL;
788 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
789 
790 	if (flags & (1UL << TCP_TSQ_DEFERRED))
791 		tcp_tsq_handler(sk);
792 
793 	/* Here begins the tricky part :
794 	 * We are called from release_sock() with :
795 	 * 1) BH disabled
796 	 * 2) sk_lock.slock spinlock held
797 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
798 	 *
799 	 * But following code is meant to be called from BH handlers,
800 	 * so we should keep BH disabled, but early release socket ownership
801 	 */
802 	sock_release_ownership(sk);
803 
804 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
805 		tcp_write_timer_handler(sk);
806 		__sock_put(sk);
807 	}
808 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
809 		tcp_delack_timer_handler(sk);
810 		__sock_put(sk);
811 	}
812 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
813 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
814 		__sock_put(sk);
815 	}
816 }
817 EXPORT_SYMBOL(tcp_release_cb);
818 
tcp_tasklet_init(void)819 void __init tcp_tasklet_init(void)
820 {
821 	int i;
822 
823 	for_each_possible_cpu(i) {
824 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
825 
826 		INIT_LIST_HEAD(&tsq->head);
827 		tasklet_init(&tsq->tasklet,
828 			     tcp_tasklet_func,
829 			     (unsigned long)tsq);
830 	}
831 }
832 
833 /*
834  * Write buffer destructor automatically called from kfree_skb.
835  * We can't xmit new skbs from this context, as we might already
836  * hold qdisc lock.
837  */
tcp_wfree(struct sk_buff * skb)838 void tcp_wfree(struct sk_buff *skb)
839 {
840 	struct sock *sk = skb->sk;
841 	struct tcp_sock *tp = tcp_sk(sk);
842 	int wmem;
843 
844 	/* Keep one reference on sk_wmem_alloc.
845 	 * Will be released by sk_free() from here or tcp_tasklet_func()
846 	 */
847 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
848 
849 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
850 	 * Wait until our queues (qdisc + devices) are drained.
851 	 * This gives :
852 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
853 	 * - chance for incoming ACK (processed by another cpu maybe)
854 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
855 	 */
856 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
857 		goto out;
858 
859 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
860 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
861 		unsigned long flags;
862 		struct tsq_tasklet *tsq;
863 
864 		/* queue this socket to tasklet queue */
865 		local_irq_save(flags);
866 		tsq = this_cpu_ptr(&tsq_tasklet);
867 		list_add(&tp->tsq_node, &tsq->head);
868 		tasklet_schedule(&tsq->tasklet);
869 		local_irq_restore(flags);
870 		return;
871 	}
872 out:
873 	sk_free(sk);
874 }
875 
876 /* This routine actually transmits TCP packets queued in by
877  * tcp_do_sendmsg().  This is used by both the initial
878  * transmission and possible later retransmissions.
879  * All SKB's seen here are completely headerless.  It is our
880  * job to build the TCP header, and pass the packet down to
881  * IP so it can do the same plus pass the packet off to the
882  * device.
883  *
884  * We are working here with either a clone of the original
885  * SKB, or a fresh unique copy made by the retransmit engine.
886  */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)887 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
888 			    gfp_t gfp_mask)
889 {
890 	const struct inet_connection_sock *icsk = inet_csk(sk);
891 	struct inet_sock *inet;
892 	struct tcp_sock *tp;
893 	struct tcp_skb_cb *tcb;
894 	struct tcp_out_options opts;
895 	unsigned int tcp_options_size, tcp_header_size;
896 	struct tcp_md5sig_key *md5;
897 	struct tcphdr *th;
898 	int err;
899 
900 	BUG_ON(!skb || !tcp_skb_pcount(skb));
901 
902 	if (clone_it) {
903 		skb_mstamp_get(&skb->skb_mstamp);
904 
905 		if (unlikely(skb_cloned(skb)))
906 			skb = pskb_copy(skb, gfp_mask);
907 		else
908 			skb = skb_clone(skb, gfp_mask);
909 		if (unlikely(!skb))
910 			return -ENOBUFS;
911 	}
912 
913 	inet = inet_sk(sk);
914 	tp = tcp_sk(sk);
915 	tcb = TCP_SKB_CB(skb);
916 	memset(&opts, 0, sizeof(opts));
917 
918 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
919 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
920 	else
921 		tcp_options_size = tcp_established_options(sk, skb, &opts,
922 							   &md5);
923 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
924 
925 	if (tcp_packets_in_flight(tp) == 0)
926 		tcp_ca_event(sk, CA_EVENT_TX_START);
927 
928 	/* if no packet is in qdisc/device queue, then allow XPS to select
929 	 * another queue. We can be called from tcp_tsq_handler()
930 	 * which holds one reference to sk_wmem_alloc.
931 	 *
932 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
933 	 * One way to get this would be to set skb->truesize = 2 on them.
934 	 */
935 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
936 
937 	skb_push(skb, tcp_header_size);
938 	skb_reset_transport_header(skb);
939 
940 	skb_orphan(skb);
941 	skb->sk = sk;
942 	skb->destructor = tcp_wfree;
943 	skb_set_hash_from_sk(skb, sk);
944 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
945 
946 	/* Build TCP header and checksum it. */
947 	th = tcp_hdr(skb);
948 	th->source		= inet->inet_sport;
949 	th->dest		= inet->inet_dport;
950 	th->seq			= htonl(tcb->seq);
951 	th->ack_seq		= htonl(tp->rcv_nxt);
952 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
953 					tcb->tcp_flags);
954 
955 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
956 		/* RFC1323: The window in SYN & SYN/ACK segments
957 		 * is never scaled.
958 		 */
959 		th->window	= htons(min(tp->rcv_wnd, 65535U));
960 	} else {
961 		th->window	= htons(tcp_select_window(sk));
962 	}
963 	th->check		= 0;
964 	th->urg_ptr		= 0;
965 
966 	/* The urg_mode check is necessary during a below snd_una win probe */
967 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
968 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
969 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
970 			th->urg = 1;
971 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
972 			th->urg_ptr = htons(0xFFFF);
973 			th->urg = 1;
974 		}
975 	}
976 
977 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
978 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
979 		tcp_ecn_send(sk, skb, tcp_header_size);
980 
981 #ifdef CONFIG_TCP_MD5SIG
982 	/* Calculate the MD5 hash, as we have all we need now */
983 	if (md5) {
984 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
985 		tp->af_specific->calc_md5_hash(opts.hash_location,
986 					       md5, sk, NULL, skb);
987 	}
988 #endif
989 
990 	icsk->icsk_af_ops->send_check(sk, skb);
991 
992 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
993 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
994 
995 	if (skb->len != tcp_header_size)
996 		tcp_event_data_sent(tp, sk);
997 
998 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
999 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1000 			      tcp_skb_pcount(skb));
1001 
1002 	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1003 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1004 
1005 	/* Our usage of tstamp should remain private */
1006 	skb->tstamp.tv64 = 0;
1007 
1008 	/* Cleanup our debris for IP stacks */
1009 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1010 			       sizeof(struct inet6_skb_parm)));
1011 
1012 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1013 
1014 	if (likely(err <= 0))
1015 		return err;
1016 
1017 	tcp_enter_cwr(sk);
1018 
1019 	return net_xmit_eval(err);
1020 }
1021 
1022 /* This routine just queues the buffer for sending.
1023  *
1024  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1025  * otherwise socket can stall.
1026  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1027 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1028 {
1029 	struct tcp_sock *tp = tcp_sk(sk);
1030 
1031 	/* Advance write_seq and place onto the write_queue. */
1032 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1033 	__skb_header_release(skb);
1034 	tcp_add_write_queue_tail(sk, skb);
1035 	sk->sk_wmem_queued += skb->truesize;
1036 	sk_mem_charge(sk, skb->truesize);
1037 }
1038 
1039 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1040 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1041 				 unsigned int mss_now)
1042 {
1043 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1044 
1045 	/* Make sure we own this skb before messing gso_size/gso_segs */
1046 	WARN_ON_ONCE(skb_cloned(skb));
1047 
1048 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1049 		/* Avoid the costly divide in the normal
1050 		 * non-TSO case.
1051 		 */
1052 		tcp_skb_pcount_set(skb, 1);
1053 		shinfo->gso_size = 0;
1054 		shinfo->gso_type = 0;
1055 	} else {
1056 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1057 		shinfo->gso_size = mss_now;
1058 		shinfo->gso_type = sk->sk_gso_type;
1059 	}
1060 }
1061 
1062 /* When a modification to fackets out becomes necessary, we need to check
1063  * skb is counted to fackets_out or not.
1064  */
tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)1065 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1066 				   int decr)
1067 {
1068 	struct tcp_sock *tp = tcp_sk(sk);
1069 
1070 	if (!tp->sacked_out || tcp_is_reno(tp))
1071 		return;
1072 
1073 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1074 		tp->fackets_out -= decr;
1075 }
1076 
1077 /* Pcount in the middle of the write queue got changed, we need to do various
1078  * tweaks to fix counters
1079  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1080 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1081 {
1082 	struct tcp_sock *tp = tcp_sk(sk);
1083 
1084 	tp->packets_out -= decr;
1085 
1086 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1087 		tp->sacked_out -= decr;
1088 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1089 		tp->retrans_out -= decr;
1090 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1091 		tp->lost_out -= decr;
1092 
1093 	/* Reno case is special. Sigh... */
1094 	if (tcp_is_reno(tp) && decr > 0)
1095 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1096 
1097 	tcp_adjust_fackets_out(sk, skb, decr);
1098 
1099 	if (tp->lost_skb_hint &&
1100 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1101 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1102 		tp->lost_cnt_hint -= decr;
1103 
1104 	tcp_verify_left_out(tp);
1105 }
1106 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1107 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1108 {
1109 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1110 
1111 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1112 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1113 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1114 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1115 
1116 		shinfo->tx_flags &= ~tsflags;
1117 		shinfo2->tx_flags |= tsflags;
1118 		swap(shinfo->tskey, shinfo2->tskey);
1119 	}
1120 }
1121 
1122 /* Function to create two new TCP segments.  Shrinks the given segment
1123  * to the specified size and appends a new segment with the rest of the
1124  * packet to the list.  This won't be called frequently, I hope.
1125  * Remember, these are still headerless SKBs at this point.
1126  */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1127 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1128 		 unsigned int mss_now, gfp_t gfp)
1129 {
1130 	struct tcp_sock *tp = tcp_sk(sk);
1131 	struct sk_buff *buff;
1132 	int nsize, old_factor;
1133 	int nlen;
1134 	u8 flags;
1135 
1136 	if (WARN_ON(len > skb->len))
1137 		return -EINVAL;
1138 
1139 	nsize = skb_headlen(skb) - len;
1140 	if (nsize < 0)
1141 		nsize = 0;
1142 
1143 	if (skb_unclone(skb, gfp))
1144 		return -ENOMEM;
1145 
1146 	/* Get a new skb... force flag on. */
1147 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1148 	if (buff == NULL)
1149 		return -ENOMEM; /* We'll just try again later. */
1150 
1151 	sk->sk_wmem_queued += buff->truesize;
1152 	sk_mem_charge(sk, buff->truesize);
1153 	nlen = skb->len - len - nsize;
1154 	buff->truesize += nlen;
1155 	skb->truesize -= nlen;
1156 
1157 	/* Correct the sequence numbers. */
1158 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1159 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1160 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1161 
1162 	/* PSH and FIN should only be set in the second packet. */
1163 	flags = TCP_SKB_CB(skb)->tcp_flags;
1164 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1165 	TCP_SKB_CB(buff)->tcp_flags = flags;
1166 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1167 
1168 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1169 		/* Copy and checksum data tail into the new buffer. */
1170 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1171 						       skb_put(buff, nsize),
1172 						       nsize, 0);
1173 
1174 		skb_trim(skb, len);
1175 
1176 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1177 	} else {
1178 		skb->ip_summed = CHECKSUM_PARTIAL;
1179 		skb_split(skb, buff, len);
1180 	}
1181 
1182 	buff->ip_summed = skb->ip_summed;
1183 
1184 	buff->tstamp = skb->tstamp;
1185 	tcp_fragment_tstamp(skb, buff);
1186 
1187 	old_factor = tcp_skb_pcount(skb);
1188 
1189 	/* Fix up tso_factor for both original and new SKB.  */
1190 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1191 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1192 
1193 	/* If this packet has been sent out already, we must
1194 	 * adjust the various packet counters.
1195 	 */
1196 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1197 		int diff = old_factor - tcp_skb_pcount(skb) -
1198 			tcp_skb_pcount(buff);
1199 
1200 		if (diff)
1201 			tcp_adjust_pcount(sk, skb, diff);
1202 	}
1203 
1204 	/* Link BUFF into the send queue. */
1205 	__skb_header_release(buff);
1206 	tcp_insert_write_queue_after(skb, buff, sk);
1207 
1208 	return 0;
1209 }
1210 
1211 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1212  * eventually). The difference is that pulled data not copied, but
1213  * immediately discarded.
1214  */
__pskb_trim_head(struct sk_buff * skb,int len)1215 static int __pskb_trim_head(struct sk_buff *skb, int len)
1216 {
1217 	struct skb_shared_info *shinfo;
1218 	int i, k, eat;
1219 
1220 	eat = min_t(int, len, skb_headlen(skb));
1221 	if (eat) {
1222 		__skb_pull(skb, eat);
1223 		len -= eat;
1224 		if (!len)
1225 			return 0;
1226 	}
1227 	eat = len;
1228 	k = 0;
1229 	shinfo = skb_shinfo(skb);
1230 	for (i = 0; i < shinfo->nr_frags; i++) {
1231 		int size = skb_frag_size(&shinfo->frags[i]);
1232 
1233 		if (size <= eat) {
1234 			skb_frag_unref(skb, i);
1235 			eat -= size;
1236 		} else {
1237 			shinfo->frags[k] = shinfo->frags[i];
1238 			if (eat) {
1239 				shinfo->frags[k].page_offset += eat;
1240 				skb_frag_size_sub(&shinfo->frags[k], eat);
1241 				eat = 0;
1242 			}
1243 			k++;
1244 		}
1245 	}
1246 	shinfo->nr_frags = k;
1247 
1248 	skb_reset_tail_pointer(skb);
1249 	skb->data_len -= len;
1250 	skb->len = skb->data_len;
1251 	return len;
1252 }
1253 
1254 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1255 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1256 {
1257 	u32 delta_truesize;
1258 
1259 	if (skb_unclone(skb, GFP_ATOMIC))
1260 		return -ENOMEM;
1261 
1262 	delta_truesize = __pskb_trim_head(skb, len);
1263 
1264 	TCP_SKB_CB(skb)->seq += len;
1265 	skb->ip_summed = CHECKSUM_PARTIAL;
1266 
1267 	if (delta_truesize) {
1268 		skb->truesize	   -= delta_truesize;
1269 		sk->sk_wmem_queued -= delta_truesize;
1270 		sk_mem_uncharge(sk, delta_truesize);
1271 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1272 	}
1273 
1274 	/* Any change of skb->len requires recalculation of tso factor. */
1275 	if (tcp_skb_pcount(skb) > 1)
1276 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1277 
1278 	return 0;
1279 }
1280 
1281 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1282 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1283 {
1284 	const struct tcp_sock *tp = tcp_sk(sk);
1285 	const struct inet_connection_sock *icsk = inet_csk(sk);
1286 	int mss_now;
1287 
1288 	/* Calculate base mss without TCP options:
1289 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1290 	 */
1291 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1292 
1293 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1294 	if (icsk->icsk_af_ops->net_frag_header_len) {
1295 		const struct dst_entry *dst = __sk_dst_get(sk);
1296 
1297 		if (dst && dst_allfrag(dst))
1298 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1299 	}
1300 
1301 	/* Clamp it (mss_clamp does not include tcp options) */
1302 	if (mss_now > tp->rx_opt.mss_clamp)
1303 		mss_now = tp->rx_opt.mss_clamp;
1304 
1305 	/* Now subtract optional transport overhead */
1306 	mss_now -= icsk->icsk_ext_hdr_len;
1307 
1308 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1309 	if (mss_now < 48)
1310 		mss_now = 48;
1311 	return mss_now;
1312 }
1313 
1314 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1315 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1316 {
1317 	/* Subtract TCP options size, not including SACKs */
1318 	return __tcp_mtu_to_mss(sk, pmtu) -
1319 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1320 }
1321 
1322 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1323 int tcp_mss_to_mtu(struct sock *sk, int mss)
1324 {
1325 	const struct tcp_sock *tp = tcp_sk(sk);
1326 	const struct inet_connection_sock *icsk = inet_csk(sk);
1327 	int mtu;
1328 
1329 	mtu = mss +
1330 	      tp->tcp_header_len +
1331 	      icsk->icsk_ext_hdr_len +
1332 	      icsk->icsk_af_ops->net_header_len;
1333 
1334 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1335 	if (icsk->icsk_af_ops->net_frag_header_len) {
1336 		const struct dst_entry *dst = __sk_dst_get(sk);
1337 
1338 		if (dst && dst_allfrag(dst))
1339 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1340 	}
1341 	return mtu;
1342 }
1343 
1344 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1345 void tcp_mtup_init(struct sock *sk)
1346 {
1347 	struct tcp_sock *tp = tcp_sk(sk);
1348 	struct inet_connection_sock *icsk = inet_csk(sk);
1349 
1350 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1351 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1352 			       icsk->icsk_af_ops->net_header_len;
1353 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1354 	icsk->icsk_mtup.probe_size = 0;
1355 }
1356 EXPORT_SYMBOL(tcp_mtup_init);
1357 
1358 /* This function synchronize snd mss to current pmtu/exthdr set.
1359 
1360    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1361    for TCP options, but includes only bare TCP header.
1362 
1363    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1364    It is minimum of user_mss and mss received with SYN.
1365    It also does not include TCP options.
1366 
1367    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1368 
1369    tp->mss_cache is current effective sending mss, including
1370    all tcp options except for SACKs. It is evaluated,
1371    taking into account current pmtu, but never exceeds
1372    tp->rx_opt.mss_clamp.
1373 
1374    NOTE1. rfc1122 clearly states that advertised MSS
1375    DOES NOT include either tcp or ip options.
1376 
1377    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1378    are READ ONLY outside this function.		--ANK (980731)
1379  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1380 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	struct inet_connection_sock *icsk = inet_csk(sk);
1384 	int mss_now;
1385 
1386 	if (icsk->icsk_mtup.search_high > pmtu)
1387 		icsk->icsk_mtup.search_high = pmtu;
1388 
1389 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1390 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1391 
1392 	/* And store cached results */
1393 	icsk->icsk_pmtu_cookie = pmtu;
1394 	if (icsk->icsk_mtup.enabled)
1395 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1396 	tp->mss_cache = mss_now;
1397 
1398 	return mss_now;
1399 }
1400 EXPORT_SYMBOL(tcp_sync_mss);
1401 
1402 /* Compute the current effective MSS, taking SACKs and IP options,
1403  * and even PMTU discovery events into account.
1404  */
tcp_current_mss(struct sock * sk)1405 unsigned int tcp_current_mss(struct sock *sk)
1406 {
1407 	const struct tcp_sock *tp = tcp_sk(sk);
1408 	const struct dst_entry *dst = __sk_dst_get(sk);
1409 	u32 mss_now;
1410 	unsigned int header_len;
1411 	struct tcp_out_options opts;
1412 	struct tcp_md5sig_key *md5;
1413 
1414 	mss_now = tp->mss_cache;
1415 
1416 	if (dst) {
1417 		u32 mtu = dst_mtu(dst);
1418 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1419 			mss_now = tcp_sync_mss(sk, mtu);
1420 	}
1421 
1422 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1423 		     sizeof(struct tcphdr);
1424 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1425 	 * some common options. If this is an odd packet (because we have SACK
1426 	 * blocks etc) then our calculated header_len will be different, and
1427 	 * we have to adjust mss_now correspondingly */
1428 	if (header_len != tp->tcp_header_len) {
1429 		int delta = (int) header_len - tp->tcp_header_len;
1430 		mss_now -= delta;
1431 	}
1432 
1433 	return mss_now;
1434 }
1435 
1436 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1437  * As additional protections, we do not touch cwnd in retransmission phases,
1438  * and if application hit its sndbuf limit recently.
1439  */
tcp_cwnd_application_limited(struct sock * sk)1440 static void tcp_cwnd_application_limited(struct sock *sk)
1441 {
1442 	struct tcp_sock *tp = tcp_sk(sk);
1443 
1444 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1445 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1446 		/* Limited by application or receiver window. */
1447 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1448 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1449 		if (win_used < tp->snd_cwnd) {
1450 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1451 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1452 		}
1453 		tp->snd_cwnd_used = 0;
1454 	}
1455 	tp->snd_cwnd_stamp = tcp_time_stamp;
1456 }
1457 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1458 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	/* Track the maximum number of outstanding packets in each
1463 	 * window, and remember whether we were cwnd-limited then.
1464 	 */
1465 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1466 	    tp->packets_out > tp->max_packets_out) {
1467 		tp->max_packets_out = tp->packets_out;
1468 		tp->max_packets_seq = tp->snd_nxt;
1469 		tp->is_cwnd_limited = is_cwnd_limited;
1470 	}
1471 
1472 	if (tcp_is_cwnd_limited(sk)) {
1473 		/* Network is feed fully. */
1474 		tp->snd_cwnd_used = 0;
1475 		tp->snd_cwnd_stamp = tcp_time_stamp;
1476 	} else {
1477 		/* Network starves. */
1478 		if (tp->packets_out > tp->snd_cwnd_used)
1479 			tp->snd_cwnd_used = tp->packets_out;
1480 
1481 		if (sysctl_tcp_slow_start_after_idle &&
1482 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1483 			tcp_cwnd_application_limited(sk);
1484 	}
1485 }
1486 
1487 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1488 static bool tcp_minshall_check(const struct tcp_sock *tp)
1489 {
1490 	return after(tp->snd_sml, tp->snd_una) &&
1491 		!after(tp->snd_sml, tp->snd_nxt);
1492 }
1493 
1494 /* Update snd_sml if this skb is under mss
1495  * Note that a TSO packet might end with a sub-mss segment
1496  * The test is really :
1497  * if ((skb->len % mss) != 0)
1498  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1499  * But we can avoid doing the divide again given we already have
1500  *  skb_pcount = skb->len / mss_now
1501  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1502 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1503 				const struct sk_buff *skb)
1504 {
1505 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1506 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1507 }
1508 
1509 /* Return false, if packet can be sent now without violation Nagle's rules:
1510  * 1. It is full sized. (provided by caller in %partial bool)
1511  * 2. Or it contains FIN. (already checked by caller)
1512  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1513  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1514  *    With Minshall's modification: all sent small packets are ACKed.
1515  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1516 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1517 			    int nonagle)
1518 {
1519 	return partial &&
1520 		((nonagle & TCP_NAGLE_CORK) ||
1521 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1522 }
1523 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1524 static unsigned int tcp_mss_split_point(const struct sock *sk,
1525 					const struct sk_buff *skb,
1526 					unsigned int mss_now,
1527 					unsigned int max_segs,
1528 					int nonagle)
1529 {
1530 	const struct tcp_sock *tp = tcp_sk(sk);
1531 	u32 partial, needed, window, max_len;
1532 
1533 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1534 	max_len = mss_now * max_segs;
1535 
1536 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1537 		return max_len;
1538 
1539 	needed = min(skb->len, window);
1540 
1541 	if (max_len <= needed)
1542 		return max_len;
1543 
1544 	partial = needed % mss_now;
1545 	/* If last segment is not a full MSS, check if Nagle rules allow us
1546 	 * to include this last segment in this skb.
1547 	 * Otherwise, we'll split the skb at last MSS boundary
1548 	 */
1549 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1550 		return needed - partial;
1551 
1552 	return needed;
1553 }
1554 
1555 /* Can at least one segment of SKB be sent right now, according to the
1556  * congestion window rules?  If so, return how many segments are allowed.
1557  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1558 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1559 					 const struct sk_buff *skb)
1560 {
1561 	u32 in_flight, cwnd;
1562 
1563 	/* Don't be strict about the congestion window for the final FIN.  */
1564 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1565 	    tcp_skb_pcount(skb) == 1)
1566 		return 1;
1567 
1568 	in_flight = tcp_packets_in_flight(tp);
1569 	cwnd = tp->snd_cwnd;
1570 	if (in_flight < cwnd)
1571 		return (cwnd - in_flight);
1572 
1573 	return 0;
1574 }
1575 
1576 /* Initialize TSO state of a skb.
1577  * This must be invoked the first time we consider transmitting
1578  * SKB onto the wire.
1579  */
tcp_init_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1580 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1581 			     unsigned int mss_now)
1582 {
1583 	int tso_segs = tcp_skb_pcount(skb);
1584 
1585 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1586 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1587 		tso_segs = tcp_skb_pcount(skb);
1588 	}
1589 	return tso_segs;
1590 }
1591 
1592 
1593 /* Return true if the Nagle test allows this packet to be
1594  * sent now.
1595  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1596 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1597 				  unsigned int cur_mss, int nonagle)
1598 {
1599 	/* Nagle rule does not apply to frames, which sit in the middle of the
1600 	 * write_queue (they have no chances to get new data).
1601 	 *
1602 	 * This is implemented in the callers, where they modify the 'nonagle'
1603 	 * argument based upon the location of SKB in the send queue.
1604 	 */
1605 	if (nonagle & TCP_NAGLE_PUSH)
1606 		return true;
1607 
1608 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1609 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1610 		return true;
1611 
1612 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1613 		return true;
1614 
1615 	return false;
1616 }
1617 
1618 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1619 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1620 			     const struct sk_buff *skb,
1621 			     unsigned int cur_mss)
1622 {
1623 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1624 
1625 	if (skb->len > cur_mss)
1626 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1627 
1628 	return !after(end_seq, tcp_wnd_end(tp));
1629 }
1630 
1631 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1632  * should be put on the wire right now.  If so, it returns the number of
1633  * packets allowed by the congestion window.
1634  */
tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1635 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1636 				 unsigned int cur_mss, int nonagle)
1637 {
1638 	const struct tcp_sock *tp = tcp_sk(sk);
1639 	unsigned int cwnd_quota;
1640 
1641 	tcp_init_tso_segs(sk, skb, cur_mss);
1642 
1643 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1644 		return 0;
1645 
1646 	cwnd_quota = tcp_cwnd_test(tp, skb);
1647 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1648 		cwnd_quota = 0;
1649 
1650 	return cwnd_quota;
1651 }
1652 
1653 /* Test if sending is allowed right now. */
tcp_may_send_now(struct sock * sk)1654 bool tcp_may_send_now(struct sock *sk)
1655 {
1656 	const struct tcp_sock *tp = tcp_sk(sk);
1657 	struct sk_buff *skb = tcp_send_head(sk);
1658 
1659 	return skb &&
1660 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1661 			     (tcp_skb_is_last(sk, skb) ?
1662 			      tp->nonagle : TCP_NAGLE_PUSH));
1663 }
1664 
1665 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1666  * which is put after SKB on the list.  It is very much like
1667  * tcp_fragment() except that it may make several kinds of assumptions
1668  * in order to speed up the splitting operation.  In particular, we
1669  * know that all the data is in scatter-gather pages, and that the
1670  * packet has never been sent out before (and thus is not cloned).
1671  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1672 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1673 			unsigned int mss_now, gfp_t gfp)
1674 {
1675 	struct sk_buff *buff;
1676 	int nlen = skb->len - len;
1677 	u8 flags;
1678 
1679 	/* All of a TSO frame must be composed of paged data.  */
1680 	if (skb->len != skb->data_len)
1681 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1682 
1683 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1684 	if (unlikely(buff == NULL))
1685 		return -ENOMEM;
1686 
1687 	sk->sk_wmem_queued += buff->truesize;
1688 	sk_mem_charge(sk, buff->truesize);
1689 	buff->truesize += nlen;
1690 	skb->truesize -= nlen;
1691 
1692 	/* Correct the sequence numbers. */
1693 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1694 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1695 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1696 
1697 	/* PSH and FIN should only be set in the second packet. */
1698 	flags = TCP_SKB_CB(skb)->tcp_flags;
1699 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1700 	TCP_SKB_CB(buff)->tcp_flags = flags;
1701 
1702 	/* This packet was never sent out yet, so no SACK bits. */
1703 	TCP_SKB_CB(buff)->sacked = 0;
1704 
1705 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1706 	skb_split(skb, buff, len);
1707 	tcp_fragment_tstamp(skb, buff);
1708 
1709 	/* Fix up tso_factor for both original and new SKB.  */
1710 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1711 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1712 
1713 	/* Link BUFF into the send queue. */
1714 	__skb_header_release(buff);
1715 	tcp_insert_write_queue_after(skb, buff, sk);
1716 
1717 	return 0;
1718 }
1719 
1720 /* Try to defer sending, if possible, in order to minimize the amount
1721  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1722  *
1723  * This algorithm is from John Heffner.
1724  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited)1725 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1726 				 bool *is_cwnd_limited)
1727 {
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	const struct inet_connection_sock *icsk = inet_csk(sk);
1730 	u32 send_win, cong_win, limit, in_flight;
1731 	int win_divisor;
1732 
1733 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1734 		goto send_now;
1735 
1736 	if (icsk->icsk_ca_state != TCP_CA_Open)
1737 		goto send_now;
1738 
1739 	/* Defer for less than two clock ticks. */
1740 	if (tp->tso_deferred &&
1741 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1742 		goto send_now;
1743 
1744 	in_flight = tcp_packets_in_flight(tp);
1745 
1746 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1747 
1748 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1749 
1750 	/* From in_flight test above, we know that cwnd > in_flight.  */
1751 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1752 
1753 	limit = min(send_win, cong_win);
1754 
1755 	/* If a full-sized TSO skb can be sent, do it. */
1756 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1757 			   tp->xmit_size_goal_segs * tp->mss_cache))
1758 		goto send_now;
1759 
1760 	/* Middle in queue won't get any more data, full sendable already? */
1761 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1762 		goto send_now;
1763 
1764 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1765 	if (win_divisor) {
1766 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1767 
1768 		/* If at least some fraction of a window is available,
1769 		 * just use it.
1770 		 */
1771 		chunk /= win_divisor;
1772 		if (limit >= chunk)
1773 			goto send_now;
1774 	} else {
1775 		/* Different approach, try not to defer past a single
1776 		 * ACK.  Receiver should ACK every other full sized
1777 		 * frame, so if we have space for more than 3 frames
1778 		 * then send now.
1779 		 */
1780 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1781 			goto send_now;
1782 	}
1783 
1784 	/* Ok, it looks like it is advisable to defer.
1785 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1786 	 */
1787 	if (!tp->tso_deferred)
1788 		tp->tso_deferred = 1 | (jiffies << 1);
1789 
1790 	if (cong_win < send_win && cong_win < skb->len)
1791 		*is_cwnd_limited = true;
1792 
1793 	return true;
1794 
1795 send_now:
1796 	tp->tso_deferred = 0;
1797 	return false;
1798 }
1799 
1800 /* Create a new MTU probe if we are ready.
1801  * MTU probe is regularly attempting to increase the path MTU by
1802  * deliberately sending larger packets.  This discovers routing
1803  * changes resulting in larger path MTUs.
1804  *
1805  * Returns 0 if we should wait to probe (no cwnd available),
1806  *         1 if a probe was sent,
1807  *         -1 otherwise
1808  */
tcp_mtu_probe(struct sock * sk)1809 static int tcp_mtu_probe(struct sock *sk)
1810 {
1811 	struct tcp_sock *tp = tcp_sk(sk);
1812 	struct inet_connection_sock *icsk = inet_csk(sk);
1813 	struct sk_buff *skb, *nskb, *next;
1814 	int len;
1815 	int probe_size;
1816 	int size_needed;
1817 	int copy;
1818 	int mss_now;
1819 
1820 	/* Not currently probing/verifying,
1821 	 * not in recovery,
1822 	 * have enough cwnd, and
1823 	 * not SACKing (the variable headers throw things off) */
1824 	if (!icsk->icsk_mtup.enabled ||
1825 	    icsk->icsk_mtup.probe_size ||
1826 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1827 	    tp->snd_cwnd < 11 ||
1828 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1829 		return -1;
1830 
1831 	/* Very simple search strategy: just double the MSS. */
1832 	mss_now = tcp_current_mss(sk);
1833 	probe_size = 2 * tp->mss_cache;
1834 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1835 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1836 		/* TODO: set timer for probe_converge_event */
1837 		return -1;
1838 	}
1839 
1840 	/* Have enough data in the send queue to probe? */
1841 	if (tp->write_seq - tp->snd_nxt < size_needed)
1842 		return -1;
1843 
1844 	if (tp->snd_wnd < size_needed)
1845 		return -1;
1846 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1847 		return 0;
1848 
1849 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1850 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1851 		if (!tcp_packets_in_flight(tp))
1852 			return -1;
1853 		else
1854 			return 0;
1855 	}
1856 
1857 	/* We're allowed to probe.  Build it now. */
1858 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1859 		return -1;
1860 	sk->sk_wmem_queued += nskb->truesize;
1861 	sk_mem_charge(sk, nskb->truesize);
1862 
1863 	skb = tcp_send_head(sk);
1864 
1865 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1866 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1867 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1868 	TCP_SKB_CB(nskb)->sacked = 0;
1869 	nskb->csum = 0;
1870 	nskb->ip_summed = skb->ip_summed;
1871 
1872 	tcp_insert_write_queue_before(nskb, skb, sk);
1873 	tcp_highest_sack_replace(sk, skb, nskb);
1874 
1875 	len = 0;
1876 	tcp_for_write_queue_from_safe(skb, next, sk) {
1877 		copy = min_t(int, skb->len, probe_size - len);
1878 		if (nskb->ip_summed) {
1879 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1880 		} else {
1881 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
1882 							     skb_put(nskb, copy),
1883 							     copy, 0);
1884 			nskb->csum = csum_block_add(nskb->csum, csum, len);
1885 		}
1886 
1887 		if (skb->len <= copy) {
1888 			/* We've eaten all the data from this skb.
1889 			 * Throw it away. */
1890 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1891 			tcp_unlink_write_queue(skb, sk);
1892 			sk_wmem_free_skb(sk, skb);
1893 		} else {
1894 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1895 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1896 			if (!skb_shinfo(skb)->nr_frags) {
1897 				skb_pull(skb, copy);
1898 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1899 					skb->csum = csum_partial(skb->data,
1900 								 skb->len, 0);
1901 			} else {
1902 				__pskb_trim_head(skb, copy);
1903 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1904 			}
1905 			TCP_SKB_CB(skb)->seq += copy;
1906 		}
1907 
1908 		len += copy;
1909 
1910 		if (len >= probe_size)
1911 			break;
1912 	}
1913 	tcp_init_tso_segs(sk, nskb, nskb->len);
1914 
1915 	/* We're ready to send.  If this fails, the probe will
1916 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1917 	 */
1918 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1919 		/* Decrement cwnd here because we are sending
1920 		 * effectively two packets. */
1921 		tp->snd_cwnd--;
1922 		tcp_event_new_data_sent(sk, nskb);
1923 
1924 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1925 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1926 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1927 
1928 		return 1;
1929 	}
1930 
1931 	return -1;
1932 }
1933 
1934 /* This routine writes packets to the network.  It advances the
1935  * send_head.  This happens as incoming acks open up the remote
1936  * window for us.
1937  *
1938  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1939  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1940  * account rare use of URG, this is not a big flaw.
1941  *
1942  * Send at most one packet when push_one > 0. Temporarily ignore
1943  * cwnd limit to force at most one packet out when push_one == 2.
1944 
1945  * Returns true, if no segments are in flight and we have queued segments,
1946  * but cannot send anything now because of SWS or another problem.
1947  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1948 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1949 			   int push_one, gfp_t gfp)
1950 {
1951 	struct tcp_sock *tp = tcp_sk(sk);
1952 	struct sk_buff *skb;
1953 	unsigned int tso_segs, sent_pkts;
1954 	int cwnd_quota;
1955 	int result;
1956 	bool is_cwnd_limited = false;
1957 
1958 	sent_pkts = 0;
1959 
1960 	if (!push_one) {
1961 		/* Do MTU probing. */
1962 		result = tcp_mtu_probe(sk);
1963 		if (!result) {
1964 			return false;
1965 		} else if (result > 0) {
1966 			sent_pkts = 1;
1967 		}
1968 	}
1969 
1970 	while ((skb = tcp_send_head(sk))) {
1971 		unsigned int limit;
1972 
1973 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1974 		BUG_ON(!tso_segs);
1975 
1976 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
1977 			/* "skb_mstamp" is used as a start point for the retransmit timer */
1978 			skb_mstamp_get(&skb->skb_mstamp);
1979 			goto repair; /* Skip network transmission */
1980 		}
1981 
1982 		cwnd_quota = tcp_cwnd_test(tp, skb);
1983 		if (!cwnd_quota) {
1984 			is_cwnd_limited = true;
1985 			if (push_one == 2)
1986 				/* Force out a loss probe pkt. */
1987 				cwnd_quota = 1;
1988 			else
1989 				break;
1990 		}
1991 
1992 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1993 			break;
1994 
1995 		if (tso_segs == 1 || !sk->sk_gso_max_segs) {
1996 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1997 						     (tcp_skb_is_last(sk, skb) ?
1998 						      nonagle : TCP_NAGLE_PUSH))))
1999 				break;
2000 		} else {
2001 			if (!push_one &&
2002 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
2003 				break;
2004 		}
2005 
2006 		/* TCP Small Queues :
2007 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2008 		 * This allows for :
2009 		 *  - better RTT estimation and ACK scheduling
2010 		 *  - faster recovery
2011 		 *  - high rates
2012 		 * Alas, some drivers / subsystems require a fair amount
2013 		 * of queued bytes to ensure line rate.
2014 		 * One example is wifi aggregation (802.11 AMPDU)
2015 		 */
2016 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
2017 			      sk->sk_pacing_rate >> 10);
2018 
2019 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2020 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2021 			/* It is possible TX completion already happened
2022 			 * before we set TSQ_THROTTLED, so we must
2023 			 * test again the condition.
2024 			 */
2025 			smp_mb__after_atomic();
2026 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2027 				break;
2028 		}
2029 
2030 		limit = mss_now;
2031 		if (tso_segs > 1 && sk->sk_gso_max_segs && !tcp_urg_mode(tp))
2032 			limit = tcp_mss_split_point(sk, skb, mss_now,
2033 						    min_t(unsigned int,
2034 							  cwnd_quota,
2035 							  sk->sk_gso_max_segs),
2036 						    nonagle);
2037 
2038 		if (skb->len > limit &&
2039 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2040 			break;
2041 
2042 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2043 			break;
2044 
2045 repair:
2046 		/* Advance the send_head.  This one is sent out.
2047 		 * This call will increment packets_out.
2048 		 */
2049 		tcp_event_new_data_sent(sk, skb);
2050 
2051 		tcp_minshall_update(tp, mss_now, skb);
2052 		sent_pkts += tcp_skb_pcount(skb);
2053 
2054 		if (push_one)
2055 			break;
2056 	}
2057 
2058 	if (likely(sent_pkts)) {
2059 		if (tcp_in_cwnd_reduction(sk))
2060 			tp->prr_out += sent_pkts;
2061 
2062 		/* Send one loss probe per tail loss episode. */
2063 		if (push_one != 2)
2064 			tcp_schedule_loss_probe(sk);
2065 		tcp_cwnd_validate(sk, is_cwnd_limited);
2066 		return false;
2067 	}
2068 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2069 }
2070 
tcp_schedule_loss_probe(struct sock * sk)2071 bool tcp_schedule_loss_probe(struct sock *sk)
2072 {
2073 	struct inet_connection_sock *icsk = inet_csk(sk);
2074 	struct tcp_sock *tp = tcp_sk(sk);
2075 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2076 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2077 
2078 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2079 		return false;
2080 	/* No consecutive loss probes. */
2081 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2082 		tcp_rearm_rto(sk);
2083 		return false;
2084 	}
2085 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2086 	 * finishes.
2087 	 */
2088 	if (sk->sk_state == TCP_SYN_RECV)
2089 		return false;
2090 
2091 	/* TLP is only scheduled when next timer event is RTO. */
2092 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2093 		return false;
2094 
2095 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2096 	 * in Open state, that are either limited by cwnd or application.
2097 	 */
2098 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2099 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2100 		return false;
2101 
2102 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2103 	     tcp_send_head(sk))
2104 		return false;
2105 
2106 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2107 	 * for delayed ack when there's one outstanding packet.
2108 	 */
2109 	timeout = rtt << 1;
2110 	if (tp->packets_out == 1)
2111 		timeout = max_t(u32, timeout,
2112 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2113 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2114 
2115 	/* If RTO is shorter, just schedule TLP in its place. */
2116 	tlp_time_stamp = tcp_time_stamp + timeout;
2117 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2118 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2119 		s32 delta = rto_time_stamp - tcp_time_stamp;
2120 		if (delta > 0)
2121 			timeout = delta;
2122 	}
2123 
2124 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2125 				  TCP_RTO_MAX);
2126 	return true;
2127 }
2128 
2129 /* Thanks to skb fast clones, we can detect if a prior transmit of
2130  * a packet is still in a qdisc or driver queue.
2131  * In this case, there is very little point doing a retransmit !
2132  * Note: This is called from BH context only.
2133  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2134 static bool skb_still_in_host_queue(const struct sock *sk,
2135 				    const struct sk_buff *skb)
2136 {
2137 	if (unlikely(skb_fclone_busy(sk, skb))) {
2138 		NET_INC_STATS_BH(sock_net(sk),
2139 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2140 		return true;
2141 	}
2142 	return false;
2143 }
2144 
2145 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2146  * retransmit the last segment.
2147  */
tcp_send_loss_probe(struct sock * sk)2148 void tcp_send_loss_probe(struct sock *sk)
2149 {
2150 	struct tcp_sock *tp = tcp_sk(sk);
2151 	struct sk_buff *skb;
2152 	int pcount;
2153 	int mss = tcp_current_mss(sk);
2154 	int err = -1;
2155 
2156 	if (tcp_send_head(sk) != NULL) {
2157 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2158 		goto rearm_timer;
2159 	}
2160 
2161 	/* At most one outstanding TLP retransmission. */
2162 	if (tp->tlp_high_seq)
2163 		goto rearm_timer;
2164 
2165 	/* Retransmit last segment. */
2166 	skb = tcp_write_queue_tail(sk);
2167 	if (WARN_ON(!skb))
2168 		goto rearm_timer;
2169 
2170 	if (skb_still_in_host_queue(sk, skb))
2171 		goto rearm_timer;
2172 
2173 	pcount = tcp_skb_pcount(skb);
2174 	if (WARN_ON(!pcount))
2175 		goto rearm_timer;
2176 
2177 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2178 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2179 					  GFP_ATOMIC)))
2180 			goto rearm_timer;
2181 		skb = tcp_write_queue_tail(sk);
2182 	}
2183 
2184 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2185 		goto rearm_timer;
2186 
2187 	err = __tcp_retransmit_skb(sk, skb);
2188 
2189 	/* Record snd_nxt for loss detection. */
2190 	if (likely(!err))
2191 		tp->tlp_high_seq = tp->snd_nxt;
2192 
2193 rearm_timer:
2194 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2195 				  inet_csk(sk)->icsk_rto,
2196 				  TCP_RTO_MAX);
2197 
2198 	if (likely(!err))
2199 		NET_INC_STATS_BH(sock_net(sk),
2200 				 LINUX_MIB_TCPLOSSPROBES);
2201 }
2202 
2203 /* Push out any pending frames which were held back due to
2204  * TCP_CORK or attempt at coalescing tiny packets.
2205  * The socket must be locked by the caller.
2206  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2207 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2208 			       int nonagle)
2209 {
2210 	/* If we are closed, the bytes will have to remain here.
2211 	 * In time closedown will finish, we empty the write queue and
2212 	 * all will be happy.
2213 	 */
2214 	if (unlikely(sk->sk_state == TCP_CLOSE))
2215 		return;
2216 
2217 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2218 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2219 		tcp_check_probe_timer(sk);
2220 }
2221 
2222 /* Send _single_ skb sitting at the send head. This function requires
2223  * true push pending frames to setup probe timer etc.
2224  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2225 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2226 {
2227 	struct sk_buff *skb = tcp_send_head(sk);
2228 
2229 	BUG_ON(!skb || skb->len < mss_now);
2230 
2231 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2232 }
2233 
2234 /* This function returns the amount that we can raise the
2235  * usable window based on the following constraints
2236  *
2237  * 1. The window can never be shrunk once it is offered (RFC 793)
2238  * 2. We limit memory per socket
2239  *
2240  * RFC 1122:
2241  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2242  *  RECV.NEXT + RCV.WIN fixed until:
2243  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2244  *
2245  * i.e. don't raise the right edge of the window until you can raise
2246  * it at least MSS bytes.
2247  *
2248  * Unfortunately, the recommended algorithm breaks header prediction,
2249  * since header prediction assumes th->window stays fixed.
2250  *
2251  * Strictly speaking, keeping th->window fixed violates the receiver
2252  * side SWS prevention criteria. The problem is that under this rule
2253  * a stream of single byte packets will cause the right side of the
2254  * window to always advance by a single byte.
2255  *
2256  * Of course, if the sender implements sender side SWS prevention
2257  * then this will not be a problem.
2258  *
2259  * BSD seems to make the following compromise:
2260  *
2261  *	If the free space is less than the 1/4 of the maximum
2262  *	space available and the free space is less than 1/2 mss,
2263  *	then set the window to 0.
2264  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2265  *	Otherwise, just prevent the window from shrinking
2266  *	and from being larger than the largest representable value.
2267  *
2268  * This prevents incremental opening of the window in the regime
2269  * where TCP is limited by the speed of the reader side taking
2270  * data out of the TCP receive queue. It does nothing about
2271  * those cases where the window is constrained on the sender side
2272  * because the pipeline is full.
2273  *
2274  * BSD also seems to "accidentally" limit itself to windows that are a
2275  * multiple of MSS, at least until the free space gets quite small.
2276  * This would appear to be a side effect of the mbuf implementation.
2277  * Combining these two algorithms results in the observed behavior
2278  * of having a fixed window size at almost all times.
2279  *
2280  * Below we obtain similar behavior by forcing the offered window to
2281  * a multiple of the mss when it is feasible to do so.
2282  *
2283  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2284  * Regular options like TIMESTAMP are taken into account.
2285  */
__tcp_select_window(struct sock * sk)2286 u32 __tcp_select_window(struct sock *sk)
2287 {
2288 	struct inet_connection_sock *icsk = inet_csk(sk);
2289 	struct tcp_sock *tp = tcp_sk(sk);
2290 	/* MSS for the peer's data.  Previous versions used mss_clamp
2291 	 * here.  I don't know if the value based on our guesses
2292 	 * of peer's MSS is better for the performance.  It's more correct
2293 	 * but may be worse for the performance because of rcv_mss
2294 	 * fluctuations.  --SAW  1998/11/1
2295 	 */
2296 	int mss = icsk->icsk_ack.rcv_mss;
2297 	int free_space = tcp_space(sk);
2298 	int allowed_space = tcp_full_space(sk);
2299 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2300 	int window;
2301 
2302 	if (unlikely(mss > full_space)) {
2303 		mss = full_space;
2304 		if (mss <= 0)
2305 			return 0;
2306 	}
2307 	if (free_space < (full_space >> 1)) {
2308 		icsk->icsk_ack.quick = 0;
2309 
2310 		if (sk_under_memory_pressure(sk))
2311 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2312 					       4U * tp->advmss);
2313 
2314 		/* free_space might become our new window, make sure we don't
2315 		 * increase it due to wscale.
2316 		 */
2317 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2318 
2319 		/* if free space is less than mss estimate, or is below 1/16th
2320 		 * of the maximum allowed, try to move to zero-window, else
2321 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2322 		 * new incoming data is dropped due to memory limits.
2323 		 * With large window, mss test triggers way too late in order
2324 		 * to announce zero window in time before rmem limit kicks in.
2325 		 */
2326 		if (free_space < (allowed_space >> 4) || free_space < mss)
2327 			return 0;
2328 	}
2329 
2330 	if (free_space > tp->rcv_ssthresh)
2331 		free_space = tp->rcv_ssthresh;
2332 
2333 	/* Don't do rounding if we are using window scaling, since the
2334 	 * scaled window will not line up with the MSS boundary anyway.
2335 	 */
2336 	window = tp->rcv_wnd;
2337 	if (tp->rx_opt.rcv_wscale) {
2338 		window = free_space;
2339 
2340 		/* Advertise enough space so that it won't get scaled away.
2341 		 * Import case: prevent zero window announcement if
2342 		 * 1<<rcv_wscale > mss.
2343 		 */
2344 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2345 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2346 				  << tp->rx_opt.rcv_wscale);
2347 	} else {
2348 		/* Get the largest window that is a nice multiple of mss.
2349 		 * Window clamp already applied above.
2350 		 * If our current window offering is within 1 mss of the
2351 		 * free space we just keep it. This prevents the divide
2352 		 * and multiply from happening most of the time.
2353 		 * We also don't do any window rounding when the free space
2354 		 * is too small.
2355 		 */
2356 		if (window <= free_space - mss || window > free_space)
2357 			window = (free_space / mss) * mss;
2358 		else if (mss == full_space &&
2359 			 free_space > window + (full_space >> 1))
2360 			window = free_space;
2361 	}
2362 
2363 	return window;
2364 }
2365 
2366 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2367 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2368 {
2369 	struct tcp_sock *tp = tcp_sk(sk);
2370 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2371 	int skb_size, next_skb_size;
2372 
2373 	skb_size = skb->len;
2374 	next_skb_size = next_skb->len;
2375 
2376 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2377 
2378 	tcp_highest_sack_replace(sk, next_skb, skb);
2379 
2380 	tcp_unlink_write_queue(next_skb, sk);
2381 
2382 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2383 				  next_skb_size);
2384 
2385 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2386 		skb->ip_summed = CHECKSUM_PARTIAL;
2387 
2388 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2389 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2390 
2391 	/* Update sequence range on original skb. */
2392 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2393 
2394 	/* Merge over control information. This moves PSH/FIN etc. over */
2395 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2396 
2397 	/* All done, get rid of second SKB and account for it so
2398 	 * packet counting does not break.
2399 	 */
2400 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2401 
2402 	/* changed transmit queue under us so clear hints */
2403 	tcp_clear_retrans_hints_partial(tp);
2404 	if (next_skb == tp->retransmit_skb_hint)
2405 		tp->retransmit_skb_hint = skb;
2406 
2407 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2408 
2409 	sk_wmem_free_skb(sk, next_skb);
2410 }
2411 
2412 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2413 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2414 {
2415 	if (tcp_skb_pcount(skb) > 1)
2416 		return false;
2417 	/* TODO: SACK collapsing could be used to remove this condition */
2418 	if (skb_shinfo(skb)->nr_frags != 0)
2419 		return false;
2420 	if (skb_cloned(skb))
2421 		return false;
2422 	if (skb == tcp_send_head(sk))
2423 		return false;
2424 	/* Some heurestics for collapsing over SACK'd could be invented */
2425 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2426 		return false;
2427 
2428 	return true;
2429 }
2430 
2431 /* Collapse packets in the retransmit queue to make to create
2432  * less packets on the wire. This is only done on retransmission.
2433  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2434 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2435 				     int space)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 	struct sk_buff *skb = to, *tmp;
2439 	bool first = true;
2440 
2441 	if (!sysctl_tcp_retrans_collapse)
2442 		return;
2443 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2444 		return;
2445 
2446 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2447 		if (!tcp_can_collapse(sk, skb))
2448 			break;
2449 
2450 		space -= skb->len;
2451 
2452 		if (first) {
2453 			first = false;
2454 			continue;
2455 		}
2456 
2457 		if (space < 0)
2458 			break;
2459 		/* Punt if not enough space exists in the first SKB for
2460 		 * the data in the second
2461 		 */
2462 		if (skb->len > skb_availroom(to))
2463 			break;
2464 
2465 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2466 			break;
2467 
2468 		tcp_collapse_retrans(sk, to);
2469 	}
2470 }
2471 
2472 /* This retransmits one SKB.  Policy decisions and retransmit queue
2473  * state updates are done by the caller.  Returns non-zero if an
2474  * error occurred which prevented the send.
2475  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2476 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 	struct inet_connection_sock *icsk = inet_csk(sk);
2480 	unsigned int cur_mss;
2481 	int err;
2482 
2483 	/* Inconslusive MTU probe */
2484 	if (icsk->icsk_mtup.probe_size) {
2485 		icsk->icsk_mtup.probe_size = 0;
2486 	}
2487 
2488 	/* Do not sent more than we queued. 1/4 is reserved for possible
2489 	 * copying overhead: fragmentation, tunneling, mangling etc.
2490 	 */
2491 	if (atomic_read(&sk->sk_wmem_alloc) >
2492 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2493 		  sk->sk_sndbuf))
2494 		return -EAGAIN;
2495 
2496 	if (skb_still_in_host_queue(sk, skb))
2497 		return -EBUSY;
2498 
2499 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2500 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2501 			BUG();
2502 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2503 			return -ENOMEM;
2504 	}
2505 
2506 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2507 		return -EHOSTUNREACH; /* Routing failure or similar. */
2508 
2509 	cur_mss = tcp_current_mss(sk);
2510 
2511 	/* If receiver has shrunk his window, and skb is out of
2512 	 * new window, do not retransmit it. The exception is the
2513 	 * case, when window is shrunk to zero. In this case
2514 	 * our retransmit serves as a zero window probe.
2515 	 */
2516 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2517 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2518 		return -EAGAIN;
2519 
2520 	if (skb->len > cur_mss) {
2521 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2522 			return -ENOMEM; /* We'll try again later. */
2523 	} else {
2524 		int oldpcount = tcp_skb_pcount(skb);
2525 
2526 		if (unlikely(oldpcount > 1)) {
2527 			if (skb_unclone(skb, GFP_ATOMIC))
2528 				return -ENOMEM;
2529 			tcp_init_tso_segs(sk, skb, cur_mss);
2530 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2531 		}
2532 	}
2533 
2534 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2535 
2536 	/* Make a copy, if the first transmission SKB clone we made
2537 	 * is still in somebody's hands, else make a clone.
2538 	 */
2539 
2540 	/* make sure skb->data is aligned on arches that require it
2541 	 * and check if ack-trimming & collapsing extended the headroom
2542 	 * beyond what csum_start can cover.
2543 	 */
2544 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2545 		     skb_headroom(skb) >= 0xFFFF)) {
2546 		struct sk_buff *nskb;
2547 
2548 		skb_mstamp_get(&skb->skb_mstamp);
2549 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2550 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2551 			     -ENOBUFS;
2552 	} else {
2553 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2554 	}
2555 
2556 	if (likely(!err)) {
2557 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2558 		/* Update global TCP statistics. */
2559 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2560 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2561 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2562 		tp->total_retrans++;
2563 	}
2564 	return err;
2565 }
2566 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2567 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 	int err = __tcp_retransmit_skb(sk, skb);
2571 
2572 	if (err == 0) {
2573 #if FASTRETRANS_DEBUG > 0
2574 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2575 			net_dbg_ratelimited("retrans_out leaked\n");
2576 		}
2577 #endif
2578 		if (!tp->retrans_out)
2579 			tp->lost_retrans_low = tp->snd_nxt;
2580 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2581 		tp->retrans_out += tcp_skb_pcount(skb);
2582 
2583 		/* Save stamp of the first retransmit. */
2584 		if (!tp->retrans_stamp)
2585 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2586 
2587 		/* snd_nxt is stored to detect loss of retransmitted segment,
2588 		 * see tcp_input.c tcp_sacktag_write_queue().
2589 		 */
2590 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2591 	} else if (err != -EBUSY) {
2592 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2593 	}
2594 
2595 	if (tp->undo_retrans < 0)
2596 		tp->undo_retrans = 0;
2597 	tp->undo_retrans += tcp_skb_pcount(skb);
2598 	return err;
2599 }
2600 
2601 /* Check if we forward retransmits are possible in the current
2602  * window/congestion state.
2603  */
tcp_can_forward_retransmit(struct sock * sk)2604 static bool tcp_can_forward_retransmit(struct sock *sk)
2605 {
2606 	const struct inet_connection_sock *icsk = inet_csk(sk);
2607 	const struct tcp_sock *tp = tcp_sk(sk);
2608 
2609 	/* Forward retransmissions are possible only during Recovery. */
2610 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2611 		return false;
2612 
2613 	/* No forward retransmissions in Reno are possible. */
2614 	if (tcp_is_reno(tp))
2615 		return false;
2616 
2617 	/* Yeah, we have to make difficult choice between forward transmission
2618 	 * and retransmission... Both ways have their merits...
2619 	 *
2620 	 * For now we do not retransmit anything, while we have some new
2621 	 * segments to send. In the other cases, follow rule 3 for
2622 	 * NextSeg() specified in RFC3517.
2623 	 */
2624 
2625 	if (tcp_may_send_now(sk))
2626 		return false;
2627 
2628 	return true;
2629 }
2630 
2631 /* This gets called after a retransmit timeout, and the initially
2632  * retransmitted data is acknowledged.  It tries to continue
2633  * resending the rest of the retransmit queue, until either
2634  * we've sent it all or the congestion window limit is reached.
2635  * If doing SACK, the first ACK which comes back for a timeout
2636  * based retransmit packet might feed us FACK information again.
2637  * If so, we use it to avoid unnecessarily retransmissions.
2638  */
tcp_xmit_retransmit_queue(struct sock * sk)2639 void tcp_xmit_retransmit_queue(struct sock *sk)
2640 {
2641 	const struct inet_connection_sock *icsk = inet_csk(sk);
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 	struct sk_buff *skb;
2644 	struct sk_buff *hole = NULL;
2645 	u32 last_lost;
2646 	int mib_idx;
2647 	int fwd_rexmitting = 0;
2648 
2649 	if (!tp->packets_out)
2650 		return;
2651 
2652 	if (!tp->lost_out)
2653 		tp->retransmit_high = tp->snd_una;
2654 
2655 	if (tp->retransmit_skb_hint) {
2656 		skb = tp->retransmit_skb_hint;
2657 		last_lost = TCP_SKB_CB(skb)->end_seq;
2658 		if (after(last_lost, tp->retransmit_high))
2659 			last_lost = tp->retransmit_high;
2660 	} else {
2661 		skb = tcp_write_queue_head(sk);
2662 		last_lost = tp->snd_una;
2663 	}
2664 
2665 	tcp_for_write_queue_from(skb, sk) {
2666 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2667 
2668 		if (skb == tcp_send_head(sk))
2669 			break;
2670 		/* we could do better than to assign each time */
2671 		if (hole == NULL)
2672 			tp->retransmit_skb_hint = skb;
2673 
2674 		/* Assume this retransmit will generate
2675 		 * only one packet for congestion window
2676 		 * calculation purposes.  This works because
2677 		 * tcp_retransmit_skb() will chop up the
2678 		 * packet to be MSS sized and all the
2679 		 * packet counting works out.
2680 		 */
2681 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2682 			return;
2683 
2684 		if (fwd_rexmitting) {
2685 begin_fwd:
2686 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2687 				break;
2688 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2689 
2690 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2691 			tp->retransmit_high = last_lost;
2692 			if (!tcp_can_forward_retransmit(sk))
2693 				break;
2694 			/* Backtrack if necessary to non-L'ed skb */
2695 			if (hole != NULL) {
2696 				skb = hole;
2697 				hole = NULL;
2698 			}
2699 			fwd_rexmitting = 1;
2700 			goto begin_fwd;
2701 
2702 		} else if (!(sacked & TCPCB_LOST)) {
2703 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2704 				hole = skb;
2705 			continue;
2706 
2707 		} else {
2708 			last_lost = TCP_SKB_CB(skb)->end_seq;
2709 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2710 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2711 			else
2712 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2713 		}
2714 
2715 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2716 			continue;
2717 
2718 		if (tcp_retransmit_skb(sk, skb))
2719 			return;
2720 
2721 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2722 
2723 		if (tcp_in_cwnd_reduction(sk))
2724 			tp->prr_out += tcp_skb_pcount(skb);
2725 
2726 		if (skb == tcp_write_queue_head(sk))
2727 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2728 						  inet_csk(sk)->icsk_rto,
2729 						  TCP_RTO_MAX);
2730 	}
2731 }
2732 
2733 /* We allow to exceed memory limits for FIN packets to expedite
2734  * connection tear down and (memory) recovery.
2735  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2736  * or even be forced to close flow without any FIN.
2737  */
sk_forced_wmem_schedule(struct sock * sk,int size)2738 static void sk_forced_wmem_schedule(struct sock *sk, int size)
2739 {
2740 	int amt, status;
2741 
2742 	if (size <= sk->sk_forward_alloc)
2743 		return;
2744 	amt = sk_mem_pages(size);
2745 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2746 	sk_memory_allocated_add(sk, amt, &status);
2747 }
2748 
2749 /* Send a FIN. The caller locks the socket for us.
2750  * We should try to send a FIN packet really hard, but eventually give up.
2751  */
tcp_send_fin(struct sock * sk)2752 void tcp_send_fin(struct sock *sk)
2753 {
2754 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	/* Optimization, tack on the FIN if we have one skb in write queue and
2758 	 * this skb was not yet sent, or we are under memory pressure.
2759 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2760 	 * as TCP stack thinks it has already been transmitted.
2761 	 */
2762 	if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2763 coalesce:
2764 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2765 		TCP_SKB_CB(tskb)->end_seq++;
2766 		tp->write_seq++;
2767 		if (!tcp_send_head(sk)) {
2768 			/* This means tskb was already sent.
2769 			 * Pretend we included the FIN on previous transmit.
2770 			 * We need to set tp->snd_nxt to the value it would have
2771 			 * if FIN had been sent. This is because retransmit path
2772 			 * does not change tp->snd_nxt.
2773 			 */
2774 			tp->snd_nxt++;
2775 			return;
2776 		}
2777 	} else {
2778 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2779 		if (unlikely(!skb)) {
2780 			if (tskb)
2781 				goto coalesce;
2782 			return;
2783 		}
2784 		skb_reserve(skb, MAX_TCP_HEADER);
2785 		sk_forced_wmem_schedule(sk, skb->truesize);
2786 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2787 		tcp_init_nondata_skb(skb, tp->write_seq,
2788 				     TCPHDR_ACK | TCPHDR_FIN);
2789 		tcp_queue_skb(sk, skb);
2790 	}
2791 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2792 }
2793 
2794 /* We get here when a process closes a file descriptor (either due to
2795  * an explicit close() or as a byproduct of exit()'ing) and there
2796  * was unread data in the receive queue.  This behavior is recommended
2797  * by RFC 2525, section 2.17.  -DaveM
2798  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)2799 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2800 {
2801 	struct sk_buff *skb;
2802 
2803 	/* NOTE: No TCP options attached and we never retransmit this. */
2804 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2805 	if (!skb) {
2806 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2807 		return;
2808 	}
2809 
2810 	/* Reserve space for headers and prepare control bits. */
2811 	skb_reserve(skb, MAX_TCP_HEADER);
2812 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2813 			     TCPHDR_ACK | TCPHDR_RST);
2814 	skb_mstamp_get(&skb->skb_mstamp);
2815 	/* Send it off. */
2816 	if (tcp_transmit_skb(sk, skb, 0, priority))
2817 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2818 
2819 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2820 }
2821 
2822 /* Send a crossed SYN-ACK during socket establishment.
2823  * WARNING: This routine must only be called when we have already sent
2824  * a SYN packet that crossed the incoming SYN that caused this routine
2825  * to get called. If this assumption fails then the initial rcv_wnd
2826  * and rcv_wscale values will not be correct.
2827  */
tcp_send_synack(struct sock * sk)2828 int tcp_send_synack(struct sock *sk)
2829 {
2830 	struct sk_buff *skb;
2831 
2832 	skb = tcp_write_queue_head(sk);
2833 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2834 		pr_debug("%s: wrong queue state\n", __func__);
2835 		return -EFAULT;
2836 	}
2837 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2838 		if (skb_cloned(skb)) {
2839 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2840 			if (nskb == NULL)
2841 				return -ENOMEM;
2842 			tcp_unlink_write_queue(skb, sk);
2843 			__skb_header_release(nskb);
2844 			__tcp_add_write_queue_head(sk, nskb);
2845 			sk_wmem_free_skb(sk, skb);
2846 			sk->sk_wmem_queued += nskb->truesize;
2847 			sk_mem_charge(sk, nskb->truesize);
2848 			skb = nskb;
2849 		}
2850 
2851 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2852 		tcp_ecn_send_synack(sk, skb);
2853 	}
2854 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2855 }
2856 
2857 /**
2858  * tcp_make_synack - Prepare a SYN-ACK.
2859  * sk: listener socket
2860  * dst: dst entry attached to the SYNACK
2861  * req: request_sock pointer
2862  *
2863  * Allocate one skb and build a SYNACK packet.
2864  * @dst is consumed : Caller should not use it again.
2865  */
tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc)2866 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2867 				struct request_sock *req,
2868 				struct tcp_fastopen_cookie *foc)
2869 {
2870 	struct tcp_out_options opts;
2871 	struct inet_request_sock *ireq = inet_rsk(req);
2872 	struct tcp_sock *tp = tcp_sk(sk);
2873 	struct tcphdr *th;
2874 	struct sk_buff *skb;
2875 	struct tcp_md5sig_key *md5;
2876 	int tcp_header_size;
2877 	int mss;
2878 
2879 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2880 	if (unlikely(!skb)) {
2881 		dst_release(dst);
2882 		return NULL;
2883 	}
2884 	/* Reserve space for headers. */
2885 	skb_reserve(skb, MAX_TCP_HEADER);
2886 
2887 	skb_dst_set(skb, dst);
2888 	security_skb_owned_by(skb, sk);
2889 
2890 	mss = dst_metric_advmss(dst);
2891 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2892 		mss = tp->rx_opt.user_mss;
2893 
2894 	memset(&opts, 0, sizeof(opts));
2895 #ifdef CONFIG_SYN_COOKIES
2896 	if (unlikely(req->cookie_ts))
2897 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2898 	else
2899 #endif
2900 	skb_mstamp_get(&skb->skb_mstamp);
2901 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2902 					     foc) + sizeof(*th);
2903 
2904 	skb_push(skb, tcp_header_size);
2905 	skb_reset_transport_header(skb);
2906 
2907 	th = tcp_hdr(skb);
2908 	memset(th, 0, sizeof(struct tcphdr));
2909 	th->syn = 1;
2910 	th->ack = 1;
2911 	tcp_ecn_make_synack(req, th, sk);
2912 	th->source = htons(ireq->ir_num);
2913 	th->dest = ireq->ir_rmt_port;
2914 	skb->ip_summed = CHECKSUM_PARTIAL;
2915 	th->seq = htonl(tcp_rsk(req)->snt_isn);
2916 	/* XXX data is queued and acked as is. No buffer/window check */
2917 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2918 
2919 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2920 	th->window = htons(min(req->rcv_wnd, 65535U));
2921 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2922 	th->doff = (tcp_header_size >> 2);
2923 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2924 
2925 #ifdef CONFIG_TCP_MD5SIG
2926 	/* Okay, we have all we need - do the md5 hash if needed */
2927 	if (md5) {
2928 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2929 					       md5, NULL, req, skb);
2930 	}
2931 #endif
2932 
2933 	/* Do not fool tcpdump (if any), clean our debris */
2934 	skb->tstamp.tv64 = 0;
2935 	return skb;
2936 }
2937 EXPORT_SYMBOL(tcp_make_synack);
2938 
2939 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)2940 static void tcp_connect_init(struct sock *sk)
2941 {
2942 	const struct dst_entry *dst = __sk_dst_get(sk);
2943 	struct tcp_sock *tp = tcp_sk(sk);
2944 	__u8 rcv_wscale;
2945 
2946 	/* We'll fix this up when we get a response from the other end.
2947 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2948 	 */
2949 	tp->tcp_header_len = sizeof(struct tcphdr) +
2950 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2951 
2952 #ifdef CONFIG_TCP_MD5SIG
2953 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2954 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2955 #endif
2956 
2957 	/* If user gave his TCP_MAXSEG, record it to clamp */
2958 	if (tp->rx_opt.user_mss)
2959 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2960 	tp->max_window = 0;
2961 	tcp_mtup_init(sk);
2962 	tcp_sync_mss(sk, dst_mtu(dst));
2963 
2964 	if (!tp->window_clamp)
2965 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2966 	tp->advmss = dst_metric_advmss(dst);
2967 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2968 		tp->advmss = tp->rx_opt.user_mss;
2969 
2970 	tcp_initialize_rcv_mss(sk);
2971 
2972 	/* limit the window selection if the user enforce a smaller rx buffer */
2973 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2974 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2975 		tp->window_clamp = tcp_full_space(sk);
2976 
2977 	tcp_select_initial_window(tcp_full_space(sk),
2978 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2979 				  &tp->rcv_wnd,
2980 				  &tp->window_clamp,
2981 				  sysctl_tcp_window_scaling,
2982 				  &rcv_wscale,
2983 				  dst_metric(dst, RTAX_INITRWND));
2984 
2985 	tp->rx_opt.rcv_wscale = rcv_wscale;
2986 	tp->rcv_ssthresh = tp->rcv_wnd;
2987 
2988 	sk->sk_err = 0;
2989 	sock_reset_flag(sk, SOCK_DONE);
2990 	tp->snd_wnd = 0;
2991 	tcp_init_wl(tp, 0);
2992 	tp->snd_una = tp->write_seq;
2993 	tp->snd_sml = tp->write_seq;
2994 	tp->snd_up = tp->write_seq;
2995 	tp->snd_nxt = tp->write_seq;
2996 
2997 	if (likely(!tp->repair))
2998 		tp->rcv_nxt = 0;
2999 	else
3000 		tp->rcv_tstamp = tcp_time_stamp;
3001 	tp->rcv_wup = tp->rcv_nxt;
3002 	tp->copied_seq = tp->rcv_nxt;
3003 
3004 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3005 	inet_csk(sk)->icsk_retransmits = 0;
3006 	tcp_clear_retrans(tp);
3007 }
3008 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3009 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3010 {
3011 	struct tcp_sock *tp = tcp_sk(sk);
3012 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3013 
3014 	tcb->end_seq += skb->len;
3015 	__skb_header_release(skb);
3016 	__tcp_add_write_queue_tail(sk, skb);
3017 	sk->sk_wmem_queued += skb->truesize;
3018 	sk_mem_charge(sk, skb->truesize);
3019 	tp->write_seq = tcb->end_seq;
3020 	tp->packets_out += tcp_skb_pcount(skb);
3021 }
3022 
3023 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3024  * queue a data-only packet after the regular SYN, such that regular SYNs
3025  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3026  * only the SYN sequence, the data are retransmitted in the first ACK.
3027  * If cookie is not cached or other error occurs, falls back to send a
3028  * regular SYN with Fast Open cookie request option.
3029  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3030 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3031 {
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3034 	int syn_loss = 0, space, err = 0;
3035 	unsigned long last_syn_loss = 0;
3036 	struct sk_buff *syn_data;
3037 
3038 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3039 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3040 			       &syn_loss, &last_syn_loss);
3041 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3042 	if (syn_loss > 1 &&
3043 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3044 		fo->cookie.len = -1;
3045 		goto fallback;
3046 	}
3047 
3048 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3049 		fo->cookie.len = -1;
3050 	else if (fo->cookie.len <= 0)
3051 		goto fallback;
3052 
3053 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3054 	 * user-MSS. Reserve maximum option space for middleboxes that add
3055 	 * private TCP options. The cost is reduced data space in SYN :(
3056 	 */
3057 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3058 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3059 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3060 		MAX_TCP_OPTION_SPACE;
3061 
3062 	space = min_t(size_t, space, fo->size);
3063 
3064 	/* limit to order-0 allocations */
3065 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3066 
3067 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3068 	if (!syn_data)
3069 		goto fallback;
3070 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3071 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3072 	if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space),
3073 					 fo->data->msg_iov, 0, space))) {
3074 		kfree_skb(syn_data);
3075 		goto fallback;
3076 	}
3077 
3078 	/* No more data pending in inet_wait_for_connect() */
3079 	if (space == fo->size)
3080 		fo->data = NULL;
3081 	fo->copied = space;
3082 
3083 	tcp_connect_queue_skb(sk, syn_data);
3084 
3085 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3086 
3087 	syn->skb_mstamp = syn_data->skb_mstamp;
3088 
3089 	/* Now full SYN+DATA was cloned and sent (or not),
3090 	 * remove the SYN from the original skb (syn_data)
3091 	 * we keep in write queue in case of a retransmit, as we
3092 	 * also have the SYN packet (with no data) in the same queue.
3093 	 */
3094 	TCP_SKB_CB(syn_data)->seq++;
3095 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3096 	if (!err) {
3097 		tp->syn_data = (fo->copied > 0);
3098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3099 		goto done;
3100 	}
3101 
3102 fallback:
3103 	/* Send a regular SYN with Fast Open cookie request option */
3104 	if (fo->cookie.len > 0)
3105 		fo->cookie.len = 0;
3106 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3107 	if (err)
3108 		tp->syn_fastopen = 0;
3109 done:
3110 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3111 	return err;
3112 }
3113 
3114 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3115 int tcp_connect(struct sock *sk)
3116 {
3117 	struct tcp_sock *tp = tcp_sk(sk);
3118 	struct sk_buff *buff;
3119 	int err;
3120 
3121 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3122 		return -EHOSTUNREACH; /* Routing failure or similar. */
3123 
3124 	tcp_connect_init(sk);
3125 
3126 	if (unlikely(tp->repair)) {
3127 		tcp_finish_connect(sk, NULL);
3128 		return 0;
3129 	}
3130 
3131 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3132 	if (unlikely(!buff))
3133 		return -ENOBUFS;
3134 
3135 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3136 	tp->retrans_stamp = tcp_time_stamp;
3137 	tcp_connect_queue_skb(sk, buff);
3138 	tcp_ecn_send_syn(sk, buff);
3139 
3140 	/* Send off SYN; include data in Fast Open. */
3141 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3142 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3143 	if (err == -ECONNREFUSED)
3144 		return err;
3145 
3146 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3147 	 * in order to make this packet get counted in tcpOutSegs.
3148 	 */
3149 	tp->snd_nxt = tp->write_seq;
3150 	tp->pushed_seq = tp->write_seq;
3151 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3152 
3153 	/* Timer for repeating the SYN until an answer. */
3154 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3155 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3156 	return 0;
3157 }
3158 EXPORT_SYMBOL(tcp_connect);
3159 
3160 /* Send out a delayed ack, the caller does the policy checking
3161  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3162  * for details.
3163  */
tcp_send_delayed_ack(struct sock * sk)3164 void tcp_send_delayed_ack(struct sock *sk)
3165 {
3166 	struct inet_connection_sock *icsk = inet_csk(sk);
3167 	int ato = icsk->icsk_ack.ato;
3168 	unsigned long timeout;
3169 
3170 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3171 
3172 	if (ato > TCP_DELACK_MIN) {
3173 		const struct tcp_sock *tp = tcp_sk(sk);
3174 		int max_ato = HZ / 2;
3175 
3176 		if (icsk->icsk_ack.pingpong ||
3177 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3178 			max_ato = TCP_DELACK_MAX;
3179 
3180 		/* Slow path, intersegment interval is "high". */
3181 
3182 		/* If some rtt estimate is known, use it to bound delayed ack.
3183 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3184 		 * directly.
3185 		 */
3186 		if (tp->srtt_us) {
3187 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3188 					TCP_DELACK_MIN);
3189 
3190 			if (rtt < max_ato)
3191 				max_ato = rtt;
3192 		}
3193 
3194 		ato = min(ato, max_ato);
3195 	}
3196 
3197 	/* Stay within the limit we were given */
3198 	timeout = jiffies + ato;
3199 
3200 	/* Use new timeout only if there wasn't a older one earlier. */
3201 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3202 		/* If delack timer was blocked or is about to expire,
3203 		 * send ACK now.
3204 		 */
3205 		if (icsk->icsk_ack.blocked ||
3206 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3207 			tcp_send_ack(sk);
3208 			return;
3209 		}
3210 
3211 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3212 			timeout = icsk->icsk_ack.timeout;
3213 	}
3214 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3215 	icsk->icsk_ack.timeout = timeout;
3216 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3217 }
3218 
3219 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)3220 void tcp_send_ack(struct sock *sk)
3221 {
3222 	struct sk_buff *buff;
3223 
3224 	/* If we have been reset, we may not send again. */
3225 	if (sk->sk_state == TCP_CLOSE)
3226 		return;
3227 
3228 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3229 
3230 	/* We are not putting this on the write queue, so
3231 	 * tcp_transmit_skb() will set the ownership to this
3232 	 * sock.
3233 	 */
3234 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3235 	if (buff == NULL) {
3236 		inet_csk_schedule_ack(sk);
3237 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3238 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3239 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3240 		return;
3241 	}
3242 
3243 	/* Reserve space for headers and prepare control bits. */
3244 	skb_reserve(buff, MAX_TCP_HEADER);
3245 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3246 
3247 	/* Send it off, this clears delayed acks for us. */
3248 	skb_mstamp_get(&buff->skb_mstamp);
3249 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3250 }
3251 EXPORT_SYMBOL_GPL(tcp_send_ack);
3252 
3253 /* This routine sends a packet with an out of date sequence
3254  * number. It assumes the other end will try to ack it.
3255  *
3256  * Question: what should we make while urgent mode?
3257  * 4.4BSD forces sending single byte of data. We cannot send
3258  * out of window data, because we have SND.NXT==SND.MAX...
3259  *
3260  * Current solution: to send TWO zero-length segments in urgent mode:
3261  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3262  * out-of-date with SND.UNA-1 to probe window.
3263  */
tcp_xmit_probe_skb(struct sock * sk,int urgent)3264 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3265 {
3266 	struct tcp_sock *tp = tcp_sk(sk);
3267 	struct sk_buff *skb;
3268 
3269 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3270 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3271 	if (skb == NULL)
3272 		return -1;
3273 
3274 	/* Reserve space for headers and set control bits. */
3275 	skb_reserve(skb, MAX_TCP_HEADER);
3276 	/* Use a previous sequence.  This should cause the other
3277 	 * end to send an ack.  Don't queue or clone SKB, just
3278 	 * send it.
3279 	 */
3280 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3281 	skb_mstamp_get(&skb->skb_mstamp);
3282 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3283 }
3284 
tcp_send_window_probe(struct sock * sk)3285 void tcp_send_window_probe(struct sock *sk)
3286 {
3287 	if (sk->sk_state == TCP_ESTABLISHED) {
3288 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3289 		tcp_xmit_probe_skb(sk, 0);
3290 	}
3291 }
3292 
3293 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk)3294 int tcp_write_wakeup(struct sock *sk)
3295 {
3296 	struct tcp_sock *tp = tcp_sk(sk);
3297 	struct sk_buff *skb;
3298 
3299 	if (sk->sk_state == TCP_CLOSE)
3300 		return -1;
3301 
3302 	if ((skb = tcp_send_head(sk)) != NULL &&
3303 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3304 		int err;
3305 		unsigned int mss = tcp_current_mss(sk);
3306 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3307 
3308 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3309 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3310 
3311 		/* We are probing the opening of a window
3312 		 * but the window size is != 0
3313 		 * must have been a result SWS avoidance ( sender )
3314 		 */
3315 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3316 		    skb->len > mss) {
3317 			seg_size = min(seg_size, mss);
3318 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3319 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3320 				return -1;
3321 		} else if (!tcp_skb_pcount(skb))
3322 			tcp_set_skb_tso_segs(sk, skb, mss);
3323 
3324 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3325 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3326 		if (!err)
3327 			tcp_event_new_data_sent(sk, skb);
3328 		return err;
3329 	} else {
3330 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3331 			tcp_xmit_probe_skb(sk, 1);
3332 		return tcp_xmit_probe_skb(sk, 0);
3333 	}
3334 }
3335 
3336 /* A window probe timeout has occurred.  If window is not closed send
3337  * a partial packet else a zero probe.
3338  */
tcp_send_probe0(struct sock * sk)3339 void tcp_send_probe0(struct sock *sk)
3340 {
3341 	struct inet_connection_sock *icsk = inet_csk(sk);
3342 	struct tcp_sock *tp = tcp_sk(sk);
3343 	unsigned long probe_max;
3344 	int err;
3345 
3346 	err = tcp_write_wakeup(sk);
3347 
3348 	if (tp->packets_out || !tcp_send_head(sk)) {
3349 		/* Cancel probe timer, if it is not required. */
3350 		icsk->icsk_probes_out = 0;
3351 		icsk->icsk_backoff = 0;
3352 		return;
3353 	}
3354 
3355 	if (err <= 0) {
3356 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3357 			icsk->icsk_backoff++;
3358 		icsk->icsk_probes_out++;
3359 		probe_max = TCP_RTO_MAX;
3360 	} else {
3361 		/* If packet was not sent due to local congestion,
3362 		 * do not backoff and do not remember icsk_probes_out.
3363 		 * Let local senders to fight for local resources.
3364 		 *
3365 		 * Use accumulated backoff yet.
3366 		 */
3367 		if (!icsk->icsk_probes_out)
3368 			icsk->icsk_probes_out = 1;
3369 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3370 	}
3371 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3372 				  inet_csk_rto_backoff(icsk, probe_max),
3373 				  TCP_RTO_MAX);
3374 }
3375 
tcp_rtx_synack(struct sock * sk,struct request_sock * req)3376 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3377 {
3378 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3379 	struct flowi fl;
3380 	int res;
3381 
3382 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3383 	if (!res) {
3384 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3385 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3386 	}
3387 	return res;
3388 }
3389 EXPORT_SYMBOL(tcp_rtx_synack);
3390