1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ tcp_event_new_data_sent(struct sock * sk,const struct sk_buff * skb)75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct inet_connection_sock *icsk = inet_csk(sk); 78 struct tcp_sock *tp = tcp_sk(sk); 79 unsigned int prior_packets = tp->packets_out; 80 81 tcp_advance_send_head(sk, skb); 82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 87 tcp_rearm_rto(sk); 88 } 89 90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 91 tcp_skb_pcount(skb)); 92 } 93 94 /* SND.NXT, if window was not shrunk. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ tcp_acceptable_seq(const struct sock * sk)100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 105 return tp->snd_nxt; 106 else 107 return tcp_wnd_end(tp); 108 } 109 110 /* Calculate mss to advertise in SYN segment. 111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 112 * 113 * 1. It is independent of path mtu. 114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 116 * attached devices, because some buggy hosts are confused by 117 * large MSS. 118 * 4. We do not make 3, we advertise MSS, calculated from first 119 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 120 * This may be overridden via information stored in routing table. 121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 122 * probably even Jumbo". 123 */ tcp_advertise_mss(struct sock * sk)124 static __u16 tcp_advertise_mss(struct sock *sk) 125 { 126 struct tcp_sock *tp = tcp_sk(sk); 127 const struct dst_entry *dst = __sk_dst_get(sk); 128 int mss = tp->advmss; 129 130 if (dst) { 131 unsigned int metric = dst_metric_advmss(dst); 132 133 if (metric < mss) { 134 mss = metric; 135 tp->advmss = mss; 136 } 137 } 138 139 return (__u16)mss; 140 } 141 142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 143 * This is the first part of cwnd validation mechanism. */ tcp_cwnd_restart(struct sock * sk,const struct dst_entry * dst)144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 s32 delta = tcp_time_stamp - tp->lsndtime; 148 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 149 u32 cwnd = tp->snd_cwnd; 150 151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 152 153 tp->snd_ssthresh = tcp_current_ssthresh(sk); 154 restart_cwnd = min(restart_cwnd, cwnd); 155 156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 157 cwnd >>= 1; 158 tp->snd_cwnd = max(cwnd, restart_cwnd); 159 tp->snd_cwnd_stamp = tcp_time_stamp; 160 tp->snd_cwnd_used = 0; 161 } 162 163 /* Congestion state accounting after a packet has been sent. */ tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)164 static void tcp_event_data_sent(struct tcp_sock *tp, 165 struct sock *sk) 166 { 167 struct inet_connection_sock *icsk = inet_csk(sk); 168 const u32 now = tcp_time_stamp; 169 const struct dst_entry *dst = __sk_dst_get(sk); 170 171 if (sysctl_tcp_slow_start_after_idle && 172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 173 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, enter pingpong mode. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 181 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 182 icsk->icsk_ack.pingpong = 1; 183 } 184 185 /* Account for an ACK we sent. */ tcp_event_ack_sent(struct sock * sk,unsigned int pkts)186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 187 { 188 tcp_dec_quickack_mode(sk, pkts); 189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 190 } 191 192 tcp_default_init_rwnd(u32 mss)193 u32 tcp_default_init_rwnd(u32 mss) 194 { 195 /* Initial receive window should be twice of TCP_INIT_CWND to 196 * enable proper sending of new unsent data during fast recovery 197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 198 * limit when mss is larger than 1460. 199 */ 200 u32 init_rwnd = sysctl_tcp_default_init_rwnd; 201 202 if (mss > 1460) 203 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 204 return init_rwnd; 205 } 206 207 /* Determine a window scaling and initial window to offer. 208 * Based on the assumption that the given amount of space 209 * will be offered. Store the results in the tp structure. 210 * NOTE: for smooth operation initial space offering should 211 * be a multiple of mss if possible. We assume here that mss >= 1. 212 * This MUST be enforced by all callers. 213 */ tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)214 void tcp_select_initial_window(int __space, __u32 mss, 215 __u32 *rcv_wnd, __u32 *window_clamp, 216 int wscale_ok, __u8 *rcv_wscale, 217 __u32 init_rcv_wnd) 218 { 219 unsigned int space = (__space < 0 ? 0 : __space); 220 221 /* If no clamp set the clamp to the max possible scaled window */ 222 if (*window_clamp == 0) 223 (*window_clamp) = (65535 << 14); 224 space = min(*window_clamp, space); 225 226 /* Quantize space offering to a multiple of mss if possible. */ 227 if (space > mss) 228 space = (space / mss) * mss; 229 230 /* NOTE: offering an initial window larger than 32767 231 * will break some buggy TCP stacks. If the admin tells us 232 * it is likely we could be speaking with such a buggy stack 233 * we will truncate our initial window offering to 32K-1 234 * unless the remote has sent us a window scaling option, 235 * which we interpret as a sign the remote TCP is not 236 * misinterpreting the window field as a signed quantity. 237 */ 238 if (sysctl_tcp_workaround_signed_windows) 239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 240 else 241 (*rcv_wnd) = space; 242 243 (*rcv_wscale) = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window 246 * See RFC1323 for an explanation of the limit to 14 247 */ 248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 249 space = min_t(u32, space, *window_clamp); 250 while (space > 65535 && (*rcv_wscale) < 14) { 251 space >>= 1; 252 (*rcv_wscale)++; 253 } 254 } 255 256 if (mss > (1 << *rcv_wscale)) { 257 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 258 init_rcv_wnd = tcp_default_init_rwnd(mss); 259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 260 } 261 262 /* Set the clamp no higher than max representable value */ 263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 264 } 265 EXPORT_SYMBOL(tcp_select_initial_window); 266 267 /* Chose a new window to advertise, update state in tcp_sock for the 268 * socket, and return result with RFC1323 scaling applied. The return 269 * value can be stuffed directly into th->window for an outgoing 270 * frame. 271 */ tcp_select_window(struct sock * sk)272 static u16 tcp_select_window(struct sock *sk) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 u32 old_win = tp->rcv_wnd; 276 u32 cur_win = tcp_receive_window(tp); 277 u32 new_win = __tcp_select_window(sk); 278 279 /* Never shrink the offered window */ 280 if (new_win < cur_win) { 281 /* Danger Will Robinson! 282 * Don't update rcv_wup/rcv_wnd here or else 283 * we will not be able to advertise a zero 284 * window in time. --DaveM 285 * 286 * Relax Will Robinson. 287 */ 288 if (new_win == 0) 289 NET_INC_STATS(sock_net(sk), 290 LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 tp->rcv_wnd = new_win; 294 tp->rcv_wup = tp->rcv_nxt; 295 296 /* Make sure we do not exceed the maximum possible 297 * scaled window. 298 */ 299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(sock_net(sk), 312 LINUX_MIB_TCPTOZEROWINDOWADV); 313 } else if (old_win == 0) { 314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 315 } 316 317 return new_win; 318 } 319 320 /* Packet ECN state for a SYN-ACK */ tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 322 { 323 const struct tcp_sock *tp = tcp_sk(sk); 324 325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 326 if (!(tp->ecn_flags & TCP_ECN_OK)) 327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 328 else if (tcp_ca_needs_ecn(sk)) 329 INET_ECN_xmit(sk); 330 } 331 332 /* Packet ECN state for a SYN. */ tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 337 tp->ecn_flags = 0; 338 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 339 tcp_ca_needs_ecn(sk)) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th,struct sock * sk)348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 349 struct sock *sk) 350 { 351 if (inet_rsk(req)->ecn_ok) { 352 th->ece = 1; 353 if (tcp_ca_needs_ecn(sk)) 354 INET_ECN_xmit(sk); 355 } 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ tcp_ecn_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 tcp_hdr(skb)->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 tcp_hdr(skb)->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 struct skb_shared_info *shinfo = skb_shinfo(skb); 391 392 skb->ip_summed = CHECKSUM_PARTIAL; 393 skb->csum = 0; 394 395 TCP_SKB_CB(skb)->tcp_flags = flags; 396 TCP_SKB_CB(skb)->sacked = 0; 397 398 tcp_skb_pcount_set(skb, 1); 399 shinfo->gso_size = 0; 400 shinfo->gso_type = 0; 401 402 TCP_SKB_CB(skb)->seq = seq; 403 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 404 seq++; 405 TCP_SKB_CB(skb)->end_seq = seq; 406 } 407 tcp_urg_mode(const struct tcp_sock * tp)408 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 409 { 410 return tp->snd_una != tp->snd_up; 411 } 412 413 #define OPTION_SACK_ADVERTISE (1 << 0) 414 #define OPTION_TS (1 << 1) 415 #define OPTION_MD5 (1 << 2) 416 #define OPTION_WSCALE (1 << 3) 417 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 418 419 struct tcp_out_options { 420 u16 options; /* bit field of OPTION_* */ 421 u16 mss; /* 0 to disable */ 422 u8 ws; /* window scale, 0 to disable */ 423 u8 num_sack_blocks; /* number of SACK blocks to include */ 424 u8 hash_size; /* bytes in hash_location */ 425 __u8 *hash_location; /* temporary pointer, overloaded */ 426 __u32 tsval, tsecr; /* need to include OPTION_TS */ 427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 428 }; 429 430 /* Write previously computed TCP options to the packet. 431 * 432 * Beware: Something in the Internet is very sensitive to the ordering of 433 * TCP options, we learned this through the hard way, so be careful here. 434 * Luckily we can at least blame others for their non-compliance but from 435 * inter-operability perspective it seems that we're somewhat stuck with 436 * the ordering which we have been using if we want to keep working with 437 * those broken things (not that it currently hurts anybody as there isn't 438 * particular reason why the ordering would need to be changed). 439 * 440 * At least SACK_PERM as the first option is known to lead to a disaster 441 * (but it may well be that other scenarios fail similarly). 442 */ tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 444 struct tcp_out_options *opts) 445 { 446 u16 options = opts->options; /* mungable copy */ 447 448 if (unlikely(OPTION_MD5 & options)) { 449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 451 /* overload cookie hash location */ 452 opts->hash_location = (__u8 *)ptr; 453 ptr += 4; 454 } 455 456 if (unlikely(opts->mss)) { 457 *ptr++ = htonl((TCPOPT_MSS << 24) | 458 (TCPOLEN_MSS << 16) | 459 opts->mss); 460 } 461 462 if (likely(OPTION_TS & options)) { 463 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 465 (TCPOLEN_SACK_PERM << 16) | 466 (TCPOPT_TIMESTAMP << 8) | 467 TCPOLEN_TIMESTAMP); 468 options &= ~OPTION_SACK_ADVERTISE; 469 } else { 470 *ptr++ = htonl((TCPOPT_NOP << 24) | 471 (TCPOPT_NOP << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 } 475 *ptr++ = htonl(opts->tsval); 476 *ptr++ = htonl(opts->tsecr); 477 } 478 479 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 480 *ptr++ = htonl((TCPOPT_NOP << 24) | 481 (TCPOPT_NOP << 16) | 482 (TCPOPT_SACK_PERM << 8) | 483 TCPOLEN_SACK_PERM); 484 } 485 486 if (unlikely(OPTION_WSCALE & options)) { 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_WINDOW << 16) | 489 (TCPOLEN_WINDOW << 8) | 490 opts->ws); 491 } 492 493 if (unlikely(opts->num_sack_blocks)) { 494 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 495 tp->duplicate_sack : tp->selective_acks; 496 int this_sack; 497 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_NOP << 16) | 500 (TCPOPT_SACK << 8) | 501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 502 TCPOLEN_SACK_PERBLOCK))); 503 504 for (this_sack = 0; this_sack < opts->num_sack_blocks; 505 ++this_sack) { 506 *ptr++ = htonl(sp[this_sack].start_seq); 507 *ptr++ = htonl(sp[this_sack].end_seq); 508 } 509 510 tp->rx_opt.dsack = 0; 511 } 512 513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 515 516 *ptr++ = htonl((TCPOPT_EXP << 24) | 517 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 518 TCPOPT_FASTOPEN_MAGIC); 519 520 memcpy(ptr, foc->val, foc->len); 521 if ((foc->len & 3) == 2) { 522 u8 *align = ((u8 *)ptr) + foc->len; 523 align[0] = align[1] = TCPOPT_NOP; 524 } 525 ptr += (foc->len + 3) >> 2; 526 } 527 } 528 529 /* Compute TCP options for SYN packets. This is not the final 530 * network wire format yet. 531 */ tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)532 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 533 struct tcp_out_options *opts, 534 struct tcp_md5sig_key **md5) 535 { 536 struct tcp_sock *tp = tcp_sk(sk); 537 unsigned int remaining = MAX_TCP_OPTION_SPACE; 538 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 539 540 #ifdef CONFIG_TCP_MD5SIG 541 *md5 = tp->af_specific->md5_lookup(sk, sk); 542 if (*md5) { 543 opts->options |= OPTION_MD5; 544 remaining -= TCPOLEN_MD5SIG_ALIGNED; 545 } 546 #else 547 *md5 = NULL; 548 #endif 549 550 /* We always get an MSS option. The option bytes which will be seen in 551 * normal data packets should timestamps be used, must be in the MSS 552 * advertised. But we subtract them from tp->mss_cache so that 553 * calculations in tcp_sendmsg are simpler etc. So account for this 554 * fact here if necessary. If we don't do this correctly, as a 555 * receiver we won't recognize data packets as being full sized when we 556 * should, and thus we won't abide by the delayed ACK rules correctly. 557 * SACKs don't matter, we never delay an ACK when we have any of those 558 * going out. */ 559 opts->mss = tcp_advertise_mss(sk); 560 remaining -= TCPOLEN_MSS_ALIGNED; 561 562 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 563 opts->options |= OPTION_TS; 564 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 565 opts->tsecr = tp->rx_opt.ts_recent; 566 remaining -= TCPOLEN_TSTAMP_ALIGNED; 567 } 568 if (likely(sysctl_tcp_window_scaling)) { 569 opts->ws = tp->rx_opt.rcv_wscale; 570 opts->options |= OPTION_WSCALE; 571 remaining -= TCPOLEN_WSCALE_ALIGNED; 572 } 573 if (likely(sysctl_tcp_sack)) { 574 opts->options |= OPTION_SACK_ADVERTISE; 575 if (unlikely(!(OPTION_TS & opts->options))) 576 remaining -= TCPOLEN_SACKPERM_ALIGNED; 577 } 578 579 if (fastopen && fastopen->cookie.len >= 0) { 580 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 581 need = (need + 3) & ~3U; /* Align to 32 bits */ 582 if (remaining >= need) { 583 opts->options |= OPTION_FAST_OPEN_COOKIE; 584 opts->fastopen_cookie = &fastopen->cookie; 585 remaining -= need; 586 tp->syn_fastopen = 1; 587 } 588 } 589 590 return MAX_TCP_OPTION_SPACE - remaining; 591 } 592 593 /* Set up TCP options for SYN-ACKs. */ tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5,struct tcp_fastopen_cookie * foc)594 static unsigned int tcp_synack_options(struct sock *sk, 595 struct request_sock *req, 596 unsigned int mss, struct sk_buff *skb, 597 struct tcp_out_options *opts, 598 struct tcp_md5sig_key **md5, 599 struct tcp_fastopen_cookie *foc) 600 { 601 struct inet_request_sock *ireq = inet_rsk(req); 602 unsigned int remaining = MAX_TCP_OPTION_SPACE; 603 604 #ifdef CONFIG_TCP_MD5SIG 605 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 606 if (*md5) { 607 opts->options |= OPTION_MD5; 608 remaining -= TCPOLEN_MD5SIG_ALIGNED; 609 610 /* We can't fit any SACK blocks in a packet with MD5 + TS 611 * options. There was discussion about disabling SACK 612 * rather than TS in order to fit in better with old, 613 * buggy kernels, but that was deemed to be unnecessary. 614 */ 615 ireq->tstamp_ok &= !ireq->sack_ok; 616 } 617 #else 618 *md5 = NULL; 619 #endif 620 621 /* We always send an MSS option. */ 622 opts->mss = mss; 623 remaining -= TCPOLEN_MSS_ALIGNED; 624 625 if (likely(ireq->wscale_ok)) { 626 opts->ws = ireq->rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(ireq->tstamp_ok)) { 631 opts->options |= OPTION_TS; 632 opts->tsval = tcp_skb_timestamp(skb); 633 opts->tsecr = req->ts_recent; 634 remaining -= TCPOLEN_TSTAMP_ALIGNED; 635 } 636 if (likely(ireq->sack_ok)) { 637 opts->options |= OPTION_SACK_ADVERTISE; 638 if (unlikely(!ireq->tstamp_ok)) 639 remaining -= TCPOLEN_SACKPERM_ALIGNED; 640 } 641 if (foc != NULL && foc->len >= 0) { 642 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 643 need = (need + 3) & ~3U; /* Align to 32 bits */ 644 if (remaining >= need) { 645 opts->options |= OPTION_FAST_OPEN_COOKIE; 646 opts->fastopen_cookie = foc; 647 remaining -= need; 648 } 649 } 650 651 return MAX_TCP_OPTION_SPACE - remaining; 652 } 653 654 /* Compute TCP options for ESTABLISHED sockets. This is not the 655 * final wire format yet. 656 */ tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)657 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 658 struct tcp_out_options *opts, 659 struct tcp_md5sig_key **md5) 660 { 661 struct tcp_sock *tp = tcp_sk(sk); 662 unsigned int size = 0; 663 unsigned int eff_sacks; 664 665 opts->options = 0; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 *md5 = tp->af_specific->md5_lookup(sk, sk); 669 if (unlikely(*md5)) { 670 opts->options |= OPTION_MD5; 671 size += TCPOLEN_MD5SIG_ALIGNED; 672 } 673 #else 674 *md5 = NULL; 675 #endif 676 677 if (likely(tp->rx_opt.tstamp_ok)) { 678 opts->options |= OPTION_TS; 679 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 680 opts->tsecr = tp->rx_opt.ts_recent; 681 size += TCPOLEN_TSTAMP_ALIGNED; 682 } 683 684 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 685 if (unlikely(eff_sacks)) { 686 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 687 opts->num_sack_blocks = 688 min_t(unsigned int, eff_sacks, 689 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 690 TCPOLEN_SACK_PERBLOCK); 691 size += TCPOLEN_SACK_BASE_ALIGNED + 692 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 693 } 694 695 return size; 696 } 697 698 699 /* TCP SMALL QUEUES (TSQ) 700 * 701 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 702 * to reduce RTT and bufferbloat. 703 * We do this using a special skb destructor (tcp_wfree). 704 * 705 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 706 * needs to be reallocated in a driver. 707 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 708 * 709 * Since transmit from skb destructor is forbidden, we use a tasklet 710 * to process all sockets that eventually need to send more skbs. 711 * We use one tasklet per cpu, with its own queue of sockets. 712 */ 713 struct tsq_tasklet { 714 struct tasklet_struct tasklet; 715 struct list_head head; /* queue of tcp sockets */ 716 }; 717 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 718 tcp_tsq_handler(struct sock * sk)719 static void tcp_tsq_handler(struct sock *sk) 720 { 721 if ((1 << sk->sk_state) & 722 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 723 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 724 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 725 0, GFP_ATOMIC); 726 } 727 /* 728 * One tasklet per cpu tries to send more skbs. 729 * We run in tasklet context but need to disable irqs when 730 * transferring tsq->head because tcp_wfree() might 731 * interrupt us (non NAPI drivers) 732 */ tcp_tasklet_func(unsigned long data)733 static void tcp_tasklet_func(unsigned long data) 734 { 735 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 736 LIST_HEAD(list); 737 unsigned long flags; 738 struct list_head *q, *n; 739 struct tcp_sock *tp; 740 struct sock *sk; 741 742 local_irq_save(flags); 743 list_splice_init(&tsq->head, &list); 744 local_irq_restore(flags); 745 746 list_for_each_safe(q, n, &list) { 747 tp = list_entry(q, struct tcp_sock, tsq_node); 748 list_del(&tp->tsq_node); 749 750 sk = (struct sock *)tp; 751 bh_lock_sock(sk); 752 753 if (!sock_owned_by_user(sk)) { 754 tcp_tsq_handler(sk); 755 } else { 756 /* defer the work to tcp_release_cb() */ 757 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 758 } 759 bh_unlock_sock(sk); 760 761 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 762 sk_free(sk); 763 } 764 } 765 766 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 767 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 768 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 769 (1UL << TCP_MTU_REDUCED_DEFERRED)) 770 /** 771 * tcp_release_cb - tcp release_sock() callback 772 * @sk: socket 773 * 774 * called from release_sock() to perform protocol dependent 775 * actions before socket release. 776 */ tcp_release_cb(struct sock * sk)777 void tcp_release_cb(struct sock *sk) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 unsigned long flags, nflags; 781 782 /* perform an atomic operation only if at least one flag is set */ 783 do { 784 flags = tp->tsq_flags; 785 if (!(flags & TCP_DEFERRED_ALL)) 786 return; 787 nflags = flags & ~TCP_DEFERRED_ALL; 788 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 789 790 if (flags & (1UL << TCP_TSQ_DEFERRED)) 791 tcp_tsq_handler(sk); 792 793 /* Here begins the tricky part : 794 * We are called from release_sock() with : 795 * 1) BH disabled 796 * 2) sk_lock.slock spinlock held 797 * 3) socket owned by us (sk->sk_lock.owned == 1) 798 * 799 * But following code is meant to be called from BH handlers, 800 * so we should keep BH disabled, but early release socket ownership 801 */ 802 sock_release_ownership(sk); 803 804 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 805 tcp_write_timer_handler(sk); 806 __sock_put(sk); 807 } 808 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 809 tcp_delack_timer_handler(sk); 810 __sock_put(sk); 811 } 812 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 813 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 814 __sock_put(sk); 815 } 816 } 817 EXPORT_SYMBOL(tcp_release_cb); 818 tcp_tasklet_init(void)819 void __init tcp_tasklet_init(void) 820 { 821 int i; 822 823 for_each_possible_cpu(i) { 824 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 825 826 INIT_LIST_HEAD(&tsq->head); 827 tasklet_init(&tsq->tasklet, 828 tcp_tasklet_func, 829 (unsigned long)tsq); 830 } 831 } 832 833 /* 834 * Write buffer destructor automatically called from kfree_skb. 835 * We can't xmit new skbs from this context, as we might already 836 * hold qdisc lock. 837 */ tcp_wfree(struct sk_buff * skb)838 void tcp_wfree(struct sk_buff *skb) 839 { 840 struct sock *sk = skb->sk; 841 struct tcp_sock *tp = tcp_sk(sk); 842 int wmem; 843 844 /* Keep one reference on sk_wmem_alloc. 845 * Will be released by sk_free() from here or tcp_tasklet_func() 846 */ 847 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 848 849 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 850 * Wait until our queues (qdisc + devices) are drained. 851 * This gives : 852 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 853 * - chance for incoming ACK (processed by another cpu maybe) 854 * to migrate this flow (skb->ooo_okay will be eventually set) 855 */ 856 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 857 goto out; 858 859 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 860 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 861 unsigned long flags; 862 struct tsq_tasklet *tsq; 863 864 /* queue this socket to tasklet queue */ 865 local_irq_save(flags); 866 tsq = this_cpu_ptr(&tsq_tasklet); 867 list_add(&tp->tsq_node, &tsq->head); 868 tasklet_schedule(&tsq->tasklet); 869 local_irq_restore(flags); 870 return; 871 } 872 out: 873 sk_free(sk); 874 } 875 876 /* This routine actually transmits TCP packets queued in by 877 * tcp_do_sendmsg(). This is used by both the initial 878 * transmission and possible later retransmissions. 879 * All SKB's seen here are completely headerless. It is our 880 * job to build the TCP header, and pass the packet down to 881 * IP so it can do the same plus pass the packet off to the 882 * device. 883 * 884 * We are working here with either a clone of the original 885 * SKB, or a fresh unique copy made by the retransmit engine. 886 */ tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)887 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 888 gfp_t gfp_mask) 889 { 890 const struct inet_connection_sock *icsk = inet_csk(sk); 891 struct inet_sock *inet; 892 struct tcp_sock *tp; 893 struct tcp_skb_cb *tcb; 894 struct tcp_out_options opts; 895 unsigned int tcp_options_size, tcp_header_size; 896 struct tcp_md5sig_key *md5; 897 struct tcphdr *th; 898 int err; 899 900 BUG_ON(!skb || !tcp_skb_pcount(skb)); 901 902 if (clone_it) { 903 skb_mstamp_get(&skb->skb_mstamp); 904 905 if (unlikely(skb_cloned(skb))) 906 skb = pskb_copy(skb, gfp_mask); 907 else 908 skb = skb_clone(skb, gfp_mask); 909 if (unlikely(!skb)) 910 return -ENOBUFS; 911 } 912 913 inet = inet_sk(sk); 914 tp = tcp_sk(sk); 915 tcb = TCP_SKB_CB(skb); 916 memset(&opts, 0, sizeof(opts)); 917 918 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 919 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 920 else 921 tcp_options_size = tcp_established_options(sk, skb, &opts, 922 &md5); 923 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 924 925 if (tcp_packets_in_flight(tp) == 0) 926 tcp_ca_event(sk, CA_EVENT_TX_START); 927 928 /* if no packet is in qdisc/device queue, then allow XPS to select 929 * another queue. We can be called from tcp_tsq_handler() 930 * which holds one reference to sk_wmem_alloc. 931 * 932 * TODO: Ideally, in-flight pure ACK packets should not matter here. 933 * One way to get this would be to set skb->truesize = 2 on them. 934 */ 935 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 936 937 skb_push(skb, tcp_header_size); 938 skb_reset_transport_header(skb); 939 940 skb_orphan(skb); 941 skb->sk = sk; 942 skb->destructor = tcp_wfree; 943 skb_set_hash_from_sk(skb, sk); 944 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 945 946 /* Build TCP header and checksum it. */ 947 th = tcp_hdr(skb); 948 th->source = inet->inet_sport; 949 th->dest = inet->inet_dport; 950 th->seq = htonl(tcb->seq); 951 th->ack_seq = htonl(tp->rcv_nxt); 952 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 953 tcb->tcp_flags); 954 955 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 956 /* RFC1323: The window in SYN & SYN/ACK segments 957 * is never scaled. 958 */ 959 th->window = htons(min(tp->rcv_wnd, 65535U)); 960 } else { 961 th->window = htons(tcp_select_window(sk)); 962 } 963 th->check = 0; 964 th->urg_ptr = 0; 965 966 /* The urg_mode check is necessary during a below snd_una win probe */ 967 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 968 if (before(tp->snd_up, tcb->seq + 0x10000)) { 969 th->urg_ptr = htons(tp->snd_up - tcb->seq); 970 th->urg = 1; 971 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 972 th->urg_ptr = htons(0xFFFF); 973 th->urg = 1; 974 } 975 } 976 977 tcp_options_write((__be32 *)(th + 1), tp, &opts); 978 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 979 tcp_ecn_send(sk, skb, tcp_header_size); 980 981 #ifdef CONFIG_TCP_MD5SIG 982 /* Calculate the MD5 hash, as we have all we need now */ 983 if (md5) { 984 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 985 tp->af_specific->calc_md5_hash(opts.hash_location, 986 md5, sk, NULL, skb); 987 } 988 #endif 989 990 icsk->icsk_af_ops->send_check(sk, skb); 991 992 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 993 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 994 995 if (skb->len != tcp_header_size) 996 tcp_event_data_sent(tp, sk); 997 998 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 999 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1000 tcp_skb_pcount(skb)); 1001 1002 /* OK, its time to fill skb_shinfo(skb)->gso_segs */ 1003 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1004 1005 /* Our usage of tstamp should remain private */ 1006 skb->tstamp.tv64 = 0; 1007 1008 /* Cleanup our debris for IP stacks */ 1009 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1010 sizeof(struct inet6_skb_parm))); 1011 1012 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1013 1014 if (likely(err <= 0)) 1015 return err; 1016 1017 tcp_enter_cwr(sk); 1018 1019 return net_xmit_eval(err); 1020 } 1021 1022 /* This routine just queues the buffer for sending. 1023 * 1024 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1025 * otherwise socket can stall. 1026 */ tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1027 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1028 { 1029 struct tcp_sock *tp = tcp_sk(sk); 1030 1031 /* Advance write_seq and place onto the write_queue. */ 1032 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1033 __skb_header_release(skb); 1034 tcp_add_write_queue_tail(sk, skb); 1035 sk->sk_wmem_queued += skb->truesize; 1036 sk_mem_charge(sk, skb->truesize); 1037 } 1038 1039 /* Initialize TSO segments for a packet. */ tcp_set_skb_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1040 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1041 unsigned int mss_now) 1042 { 1043 struct skb_shared_info *shinfo = skb_shinfo(skb); 1044 1045 /* Make sure we own this skb before messing gso_size/gso_segs */ 1046 WARN_ON_ONCE(skb_cloned(skb)); 1047 1048 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1049 /* Avoid the costly divide in the normal 1050 * non-TSO case. 1051 */ 1052 tcp_skb_pcount_set(skb, 1); 1053 shinfo->gso_size = 0; 1054 shinfo->gso_type = 0; 1055 } else { 1056 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1057 shinfo->gso_size = mss_now; 1058 shinfo->gso_type = sk->sk_gso_type; 1059 } 1060 } 1061 1062 /* When a modification to fackets out becomes necessary, we need to check 1063 * skb is counted to fackets_out or not. 1064 */ tcp_adjust_fackets_out(struct sock * sk,const struct sk_buff * skb,int decr)1065 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1066 int decr) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 1070 if (!tp->sacked_out || tcp_is_reno(tp)) 1071 return; 1072 1073 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1074 tp->fackets_out -= decr; 1075 } 1076 1077 /* Pcount in the middle of the write queue got changed, we need to do various 1078 * tweaks to fix counters 1079 */ tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1080 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1081 { 1082 struct tcp_sock *tp = tcp_sk(sk); 1083 1084 tp->packets_out -= decr; 1085 1086 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1087 tp->sacked_out -= decr; 1088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1089 tp->retrans_out -= decr; 1090 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1091 tp->lost_out -= decr; 1092 1093 /* Reno case is special. Sigh... */ 1094 if (tcp_is_reno(tp) && decr > 0) 1095 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1096 1097 tcp_adjust_fackets_out(sk, skb, decr); 1098 1099 if (tp->lost_skb_hint && 1100 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1101 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1102 tp->lost_cnt_hint -= decr; 1103 1104 tcp_verify_left_out(tp); 1105 } 1106 tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1107 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1108 { 1109 struct skb_shared_info *shinfo = skb_shinfo(skb); 1110 1111 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1112 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1113 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1114 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1115 1116 shinfo->tx_flags &= ~tsflags; 1117 shinfo2->tx_flags |= tsflags; 1118 swap(shinfo->tskey, shinfo2->tskey); 1119 } 1120 } 1121 1122 /* Function to create two new TCP segments. Shrinks the given segment 1123 * to the specified size and appends a new segment with the rest of the 1124 * packet to the list. This won't be called frequently, I hope. 1125 * Remember, these are still headerless SKBs at this point. 1126 */ tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1127 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1128 unsigned int mss_now, gfp_t gfp) 1129 { 1130 struct tcp_sock *tp = tcp_sk(sk); 1131 struct sk_buff *buff; 1132 int nsize, old_factor; 1133 int nlen; 1134 u8 flags; 1135 1136 if (WARN_ON(len > skb->len)) 1137 return -EINVAL; 1138 1139 nsize = skb_headlen(skb) - len; 1140 if (nsize < 0) 1141 nsize = 0; 1142 1143 if (skb_unclone(skb, gfp)) 1144 return -ENOMEM; 1145 1146 /* Get a new skb... force flag on. */ 1147 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1148 if (buff == NULL) 1149 return -ENOMEM; /* We'll just try again later. */ 1150 1151 sk->sk_wmem_queued += buff->truesize; 1152 sk_mem_charge(sk, buff->truesize); 1153 nlen = skb->len - len - nsize; 1154 buff->truesize += nlen; 1155 skb->truesize -= nlen; 1156 1157 /* Correct the sequence numbers. */ 1158 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1159 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1160 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1161 1162 /* PSH and FIN should only be set in the second packet. */ 1163 flags = TCP_SKB_CB(skb)->tcp_flags; 1164 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1165 TCP_SKB_CB(buff)->tcp_flags = flags; 1166 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1167 1168 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1169 /* Copy and checksum data tail into the new buffer. */ 1170 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1171 skb_put(buff, nsize), 1172 nsize, 0); 1173 1174 skb_trim(skb, len); 1175 1176 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1177 } else { 1178 skb->ip_summed = CHECKSUM_PARTIAL; 1179 skb_split(skb, buff, len); 1180 } 1181 1182 buff->ip_summed = skb->ip_summed; 1183 1184 buff->tstamp = skb->tstamp; 1185 tcp_fragment_tstamp(skb, buff); 1186 1187 old_factor = tcp_skb_pcount(skb); 1188 1189 /* Fix up tso_factor for both original and new SKB. */ 1190 tcp_set_skb_tso_segs(sk, skb, mss_now); 1191 tcp_set_skb_tso_segs(sk, buff, mss_now); 1192 1193 /* If this packet has been sent out already, we must 1194 * adjust the various packet counters. 1195 */ 1196 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1197 int diff = old_factor - tcp_skb_pcount(skb) - 1198 tcp_skb_pcount(buff); 1199 1200 if (diff) 1201 tcp_adjust_pcount(sk, skb, diff); 1202 } 1203 1204 /* Link BUFF into the send queue. */ 1205 __skb_header_release(buff); 1206 tcp_insert_write_queue_after(skb, buff, sk); 1207 1208 return 0; 1209 } 1210 1211 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1212 * eventually). The difference is that pulled data not copied, but 1213 * immediately discarded. 1214 */ __pskb_trim_head(struct sk_buff * skb,int len)1215 static int __pskb_trim_head(struct sk_buff *skb, int len) 1216 { 1217 struct skb_shared_info *shinfo; 1218 int i, k, eat; 1219 1220 eat = min_t(int, len, skb_headlen(skb)); 1221 if (eat) { 1222 __skb_pull(skb, eat); 1223 len -= eat; 1224 if (!len) 1225 return 0; 1226 } 1227 eat = len; 1228 k = 0; 1229 shinfo = skb_shinfo(skb); 1230 for (i = 0; i < shinfo->nr_frags; i++) { 1231 int size = skb_frag_size(&shinfo->frags[i]); 1232 1233 if (size <= eat) { 1234 skb_frag_unref(skb, i); 1235 eat -= size; 1236 } else { 1237 shinfo->frags[k] = shinfo->frags[i]; 1238 if (eat) { 1239 shinfo->frags[k].page_offset += eat; 1240 skb_frag_size_sub(&shinfo->frags[k], eat); 1241 eat = 0; 1242 } 1243 k++; 1244 } 1245 } 1246 shinfo->nr_frags = k; 1247 1248 skb_reset_tail_pointer(skb); 1249 skb->data_len -= len; 1250 skb->len = skb->data_len; 1251 return len; 1252 } 1253 1254 /* Remove acked data from a packet in the transmit queue. */ tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1255 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1256 { 1257 u32 delta_truesize; 1258 1259 if (skb_unclone(skb, GFP_ATOMIC)) 1260 return -ENOMEM; 1261 1262 delta_truesize = __pskb_trim_head(skb, len); 1263 1264 TCP_SKB_CB(skb)->seq += len; 1265 skb->ip_summed = CHECKSUM_PARTIAL; 1266 1267 if (delta_truesize) { 1268 skb->truesize -= delta_truesize; 1269 sk->sk_wmem_queued -= delta_truesize; 1270 sk_mem_uncharge(sk, delta_truesize); 1271 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1272 } 1273 1274 /* Any change of skb->len requires recalculation of tso factor. */ 1275 if (tcp_skb_pcount(skb) > 1) 1276 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1277 1278 return 0; 1279 } 1280 1281 /* Calculate MSS not accounting any TCP options. */ __tcp_mtu_to_mss(struct sock * sk,int pmtu)1282 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1283 { 1284 const struct tcp_sock *tp = tcp_sk(sk); 1285 const struct inet_connection_sock *icsk = inet_csk(sk); 1286 int mss_now; 1287 1288 /* Calculate base mss without TCP options: 1289 It is MMS_S - sizeof(tcphdr) of rfc1122 1290 */ 1291 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1292 1293 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1294 if (icsk->icsk_af_ops->net_frag_header_len) { 1295 const struct dst_entry *dst = __sk_dst_get(sk); 1296 1297 if (dst && dst_allfrag(dst)) 1298 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1299 } 1300 1301 /* Clamp it (mss_clamp does not include tcp options) */ 1302 if (mss_now > tp->rx_opt.mss_clamp) 1303 mss_now = tp->rx_opt.mss_clamp; 1304 1305 /* Now subtract optional transport overhead */ 1306 mss_now -= icsk->icsk_ext_hdr_len; 1307 1308 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1309 if (mss_now < 48) 1310 mss_now = 48; 1311 return mss_now; 1312 } 1313 1314 /* Calculate MSS. Not accounting for SACKs here. */ tcp_mtu_to_mss(struct sock * sk,int pmtu)1315 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1316 { 1317 /* Subtract TCP options size, not including SACKs */ 1318 return __tcp_mtu_to_mss(sk, pmtu) - 1319 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1320 } 1321 1322 /* Inverse of above */ tcp_mss_to_mtu(struct sock * sk,int mss)1323 int tcp_mss_to_mtu(struct sock *sk, int mss) 1324 { 1325 const struct tcp_sock *tp = tcp_sk(sk); 1326 const struct inet_connection_sock *icsk = inet_csk(sk); 1327 int mtu; 1328 1329 mtu = mss + 1330 tp->tcp_header_len + 1331 icsk->icsk_ext_hdr_len + 1332 icsk->icsk_af_ops->net_header_len; 1333 1334 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1335 if (icsk->icsk_af_ops->net_frag_header_len) { 1336 const struct dst_entry *dst = __sk_dst_get(sk); 1337 1338 if (dst && dst_allfrag(dst)) 1339 mtu += icsk->icsk_af_ops->net_frag_header_len; 1340 } 1341 return mtu; 1342 } 1343 1344 /* MTU probing init per socket */ tcp_mtup_init(struct sock * sk)1345 void tcp_mtup_init(struct sock *sk) 1346 { 1347 struct tcp_sock *tp = tcp_sk(sk); 1348 struct inet_connection_sock *icsk = inet_csk(sk); 1349 1350 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1351 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1352 icsk->icsk_af_ops->net_header_len; 1353 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1354 icsk->icsk_mtup.probe_size = 0; 1355 } 1356 EXPORT_SYMBOL(tcp_mtup_init); 1357 1358 /* This function synchronize snd mss to current pmtu/exthdr set. 1359 1360 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1361 for TCP options, but includes only bare TCP header. 1362 1363 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1364 It is minimum of user_mss and mss received with SYN. 1365 It also does not include TCP options. 1366 1367 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1368 1369 tp->mss_cache is current effective sending mss, including 1370 all tcp options except for SACKs. It is evaluated, 1371 taking into account current pmtu, but never exceeds 1372 tp->rx_opt.mss_clamp. 1373 1374 NOTE1. rfc1122 clearly states that advertised MSS 1375 DOES NOT include either tcp or ip options. 1376 1377 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1378 are READ ONLY outside this function. --ANK (980731) 1379 */ tcp_sync_mss(struct sock * sk,u32 pmtu)1380 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct inet_connection_sock *icsk = inet_csk(sk); 1384 int mss_now; 1385 1386 if (icsk->icsk_mtup.search_high > pmtu) 1387 icsk->icsk_mtup.search_high = pmtu; 1388 1389 mss_now = tcp_mtu_to_mss(sk, pmtu); 1390 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1391 1392 /* And store cached results */ 1393 icsk->icsk_pmtu_cookie = pmtu; 1394 if (icsk->icsk_mtup.enabled) 1395 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1396 tp->mss_cache = mss_now; 1397 1398 return mss_now; 1399 } 1400 EXPORT_SYMBOL(tcp_sync_mss); 1401 1402 /* Compute the current effective MSS, taking SACKs and IP options, 1403 * and even PMTU discovery events into account. 1404 */ tcp_current_mss(struct sock * sk)1405 unsigned int tcp_current_mss(struct sock *sk) 1406 { 1407 const struct tcp_sock *tp = tcp_sk(sk); 1408 const struct dst_entry *dst = __sk_dst_get(sk); 1409 u32 mss_now; 1410 unsigned int header_len; 1411 struct tcp_out_options opts; 1412 struct tcp_md5sig_key *md5; 1413 1414 mss_now = tp->mss_cache; 1415 1416 if (dst) { 1417 u32 mtu = dst_mtu(dst); 1418 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1419 mss_now = tcp_sync_mss(sk, mtu); 1420 } 1421 1422 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1423 sizeof(struct tcphdr); 1424 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1425 * some common options. If this is an odd packet (because we have SACK 1426 * blocks etc) then our calculated header_len will be different, and 1427 * we have to adjust mss_now correspondingly */ 1428 if (header_len != tp->tcp_header_len) { 1429 int delta = (int) header_len - tp->tcp_header_len; 1430 mss_now -= delta; 1431 } 1432 1433 return mss_now; 1434 } 1435 1436 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1437 * As additional protections, we do not touch cwnd in retransmission phases, 1438 * and if application hit its sndbuf limit recently. 1439 */ tcp_cwnd_application_limited(struct sock * sk)1440 static void tcp_cwnd_application_limited(struct sock *sk) 1441 { 1442 struct tcp_sock *tp = tcp_sk(sk); 1443 1444 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1445 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1446 /* Limited by application or receiver window. */ 1447 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1448 u32 win_used = max(tp->snd_cwnd_used, init_win); 1449 if (win_used < tp->snd_cwnd) { 1450 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1451 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1452 } 1453 tp->snd_cwnd_used = 0; 1454 } 1455 tp->snd_cwnd_stamp = tcp_time_stamp; 1456 } 1457 tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1458 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 /* Track the maximum number of outstanding packets in each 1463 * window, and remember whether we were cwnd-limited then. 1464 */ 1465 if (!before(tp->snd_una, tp->max_packets_seq) || 1466 tp->packets_out > tp->max_packets_out) { 1467 tp->max_packets_out = tp->packets_out; 1468 tp->max_packets_seq = tp->snd_nxt; 1469 tp->is_cwnd_limited = is_cwnd_limited; 1470 } 1471 1472 if (tcp_is_cwnd_limited(sk)) { 1473 /* Network is feed fully. */ 1474 tp->snd_cwnd_used = 0; 1475 tp->snd_cwnd_stamp = tcp_time_stamp; 1476 } else { 1477 /* Network starves. */ 1478 if (tp->packets_out > tp->snd_cwnd_used) 1479 tp->snd_cwnd_used = tp->packets_out; 1480 1481 if (sysctl_tcp_slow_start_after_idle && 1482 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1483 tcp_cwnd_application_limited(sk); 1484 } 1485 } 1486 1487 /* Minshall's variant of the Nagle send check. */ tcp_minshall_check(const struct tcp_sock * tp)1488 static bool tcp_minshall_check(const struct tcp_sock *tp) 1489 { 1490 return after(tp->snd_sml, tp->snd_una) && 1491 !after(tp->snd_sml, tp->snd_nxt); 1492 } 1493 1494 /* Update snd_sml if this skb is under mss 1495 * Note that a TSO packet might end with a sub-mss segment 1496 * The test is really : 1497 * if ((skb->len % mss) != 0) 1498 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1499 * But we can avoid doing the divide again given we already have 1500 * skb_pcount = skb->len / mss_now 1501 */ tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1502 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1503 const struct sk_buff *skb) 1504 { 1505 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1506 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1507 } 1508 1509 /* Return false, if packet can be sent now without violation Nagle's rules: 1510 * 1. It is full sized. (provided by caller in %partial bool) 1511 * 2. Or it contains FIN. (already checked by caller) 1512 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1513 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1514 * With Minshall's modification: all sent small packets are ACKed. 1515 */ tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1516 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1517 int nonagle) 1518 { 1519 return partial && 1520 ((nonagle & TCP_NAGLE_CORK) || 1521 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1522 } 1523 /* Returns the portion of skb which can be sent right away */ tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1524 static unsigned int tcp_mss_split_point(const struct sock *sk, 1525 const struct sk_buff *skb, 1526 unsigned int mss_now, 1527 unsigned int max_segs, 1528 int nonagle) 1529 { 1530 const struct tcp_sock *tp = tcp_sk(sk); 1531 u32 partial, needed, window, max_len; 1532 1533 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1534 max_len = mss_now * max_segs; 1535 1536 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1537 return max_len; 1538 1539 needed = min(skb->len, window); 1540 1541 if (max_len <= needed) 1542 return max_len; 1543 1544 partial = needed % mss_now; 1545 /* If last segment is not a full MSS, check if Nagle rules allow us 1546 * to include this last segment in this skb. 1547 * Otherwise, we'll split the skb at last MSS boundary 1548 */ 1549 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1550 return needed - partial; 1551 1552 return needed; 1553 } 1554 1555 /* Can at least one segment of SKB be sent right now, according to the 1556 * congestion window rules? If so, return how many segments are allowed. 1557 */ tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1558 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1559 const struct sk_buff *skb) 1560 { 1561 u32 in_flight, cwnd; 1562 1563 /* Don't be strict about the congestion window for the final FIN. */ 1564 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1565 tcp_skb_pcount(skb) == 1) 1566 return 1; 1567 1568 in_flight = tcp_packets_in_flight(tp); 1569 cwnd = tp->snd_cwnd; 1570 if (in_flight < cwnd) 1571 return (cwnd - in_flight); 1572 1573 return 0; 1574 } 1575 1576 /* Initialize TSO state of a skb. 1577 * This must be invoked the first time we consider transmitting 1578 * SKB onto the wire. 1579 */ tcp_init_tso_segs(const struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1580 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1581 unsigned int mss_now) 1582 { 1583 int tso_segs = tcp_skb_pcount(skb); 1584 1585 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1586 tcp_set_skb_tso_segs(sk, skb, mss_now); 1587 tso_segs = tcp_skb_pcount(skb); 1588 } 1589 return tso_segs; 1590 } 1591 1592 1593 /* Return true if the Nagle test allows this packet to be 1594 * sent now. 1595 */ tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1596 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1597 unsigned int cur_mss, int nonagle) 1598 { 1599 /* Nagle rule does not apply to frames, which sit in the middle of the 1600 * write_queue (they have no chances to get new data). 1601 * 1602 * This is implemented in the callers, where they modify the 'nonagle' 1603 * argument based upon the location of SKB in the send queue. 1604 */ 1605 if (nonagle & TCP_NAGLE_PUSH) 1606 return true; 1607 1608 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1609 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1610 return true; 1611 1612 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1613 return true; 1614 1615 return false; 1616 } 1617 1618 /* Does at least the first segment of SKB fit into the send window? */ tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1619 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1620 const struct sk_buff *skb, 1621 unsigned int cur_mss) 1622 { 1623 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1624 1625 if (skb->len > cur_mss) 1626 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1627 1628 return !after(end_seq, tcp_wnd_end(tp)); 1629 } 1630 1631 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1632 * should be put on the wire right now. If so, it returns the number of 1633 * packets allowed by the congestion window. 1634 */ tcp_snd_test(const struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1635 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1636 unsigned int cur_mss, int nonagle) 1637 { 1638 const struct tcp_sock *tp = tcp_sk(sk); 1639 unsigned int cwnd_quota; 1640 1641 tcp_init_tso_segs(sk, skb, cur_mss); 1642 1643 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1644 return 0; 1645 1646 cwnd_quota = tcp_cwnd_test(tp, skb); 1647 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1648 cwnd_quota = 0; 1649 1650 return cwnd_quota; 1651 } 1652 1653 /* Test if sending is allowed right now. */ tcp_may_send_now(struct sock * sk)1654 bool tcp_may_send_now(struct sock *sk) 1655 { 1656 const struct tcp_sock *tp = tcp_sk(sk); 1657 struct sk_buff *skb = tcp_send_head(sk); 1658 1659 return skb && 1660 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1661 (tcp_skb_is_last(sk, skb) ? 1662 tp->nonagle : TCP_NAGLE_PUSH)); 1663 } 1664 1665 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1666 * which is put after SKB on the list. It is very much like 1667 * tcp_fragment() except that it may make several kinds of assumptions 1668 * in order to speed up the splitting operation. In particular, we 1669 * know that all the data is in scatter-gather pages, and that the 1670 * packet has never been sent out before (and thus is not cloned). 1671 */ tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1672 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1673 unsigned int mss_now, gfp_t gfp) 1674 { 1675 struct sk_buff *buff; 1676 int nlen = skb->len - len; 1677 u8 flags; 1678 1679 /* All of a TSO frame must be composed of paged data. */ 1680 if (skb->len != skb->data_len) 1681 return tcp_fragment(sk, skb, len, mss_now, gfp); 1682 1683 buff = sk_stream_alloc_skb(sk, 0, gfp); 1684 if (unlikely(buff == NULL)) 1685 return -ENOMEM; 1686 1687 sk->sk_wmem_queued += buff->truesize; 1688 sk_mem_charge(sk, buff->truesize); 1689 buff->truesize += nlen; 1690 skb->truesize -= nlen; 1691 1692 /* Correct the sequence numbers. */ 1693 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1694 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1695 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1696 1697 /* PSH and FIN should only be set in the second packet. */ 1698 flags = TCP_SKB_CB(skb)->tcp_flags; 1699 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1700 TCP_SKB_CB(buff)->tcp_flags = flags; 1701 1702 /* This packet was never sent out yet, so no SACK bits. */ 1703 TCP_SKB_CB(buff)->sacked = 0; 1704 1705 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1706 skb_split(skb, buff, len); 1707 tcp_fragment_tstamp(skb, buff); 1708 1709 /* Fix up tso_factor for both original and new SKB. */ 1710 tcp_set_skb_tso_segs(sk, skb, mss_now); 1711 tcp_set_skb_tso_segs(sk, buff, mss_now); 1712 1713 /* Link BUFF into the send queue. */ 1714 __skb_header_release(buff); 1715 tcp_insert_write_queue_after(skb, buff, sk); 1716 1717 return 0; 1718 } 1719 1720 /* Try to defer sending, if possible, in order to minimize the amount 1721 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1722 * 1723 * This algorithm is from John Heffner. 1724 */ tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited)1725 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1726 bool *is_cwnd_limited) 1727 { 1728 struct tcp_sock *tp = tcp_sk(sk); 1729 const struct inet_connection_sock *icsk = inet_csk(sk); 1730 u32 send_win, cong_win, limit, in_flight; 1731 int win_divisor; 1732 1733 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1734 goto send_now; 1735 1736 if (icsk->icsk_ca_state != TCP_CA_Open) 1737 goto send_now; 1738 1739 /* Defer for less than two clock ticks. */ 1740 if (tp->tso_deferred && 1741 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1742 goto send_now; 1743 1744 in_flight = tcp_packets_in_flight(tp); 1745 1746 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1747 1748 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1749 1750 /* From in_flight test above, we know that cwnd > in_flight. */ 1751 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1752 1753 limit = min(send_win, cong_win); 1754 1755 /* If a full-sized TSO skb can be sent, do it. */ 1756 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1757 tp->xmit_size_goal_segs * tp->mss_cache)) 1758 goto send_now; 1759 1760 /* Middle in queue won't get any more data, full sendable already? */ 1761 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1762 goto send_now; 1763 1764 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1765 if (win_divisor) { 1766 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1767 1768 /* If at least some fraction of a window is available, 1769 * just use it. 1770 */ 1771 chunk /= win_divisor; 1772 if (limit >= chunk) 1773 goto send_now; 1774 } else { 1775 /* Different approach, try not to defer past a single 1776 * ACK. Receiver should ACK every other full sized 1777 * frame, so if we have space for more than 3 frames 1778 * then send now. 1779 */ 1780 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1781 goto send_now; 1782 } 1783 1784 /* Ok, it looks like it is advisable to defer. 1785 * Do not rearm the timer if already set to not break TCP ACK clocking. 1786 */ 1787 if (!tp->tso_deferred) 1788 tp->tso_deferred = 1 | (jiffies << 1); 1789 1790 if (cong_win < send_win && cong_win < skb->len) 1791 *is_cwnd_limited = true; 1792 1793 return true; 1794 1795 send_now: 1796 tp->tso_deferred = 0; 1797 return false; 1798 } 1799 1800 /* Create a new MTU probe if we are ready. 1801 * MTU probe is regularly attempting to increase the path MTU by 1802 * deliberately sending larger packets. This discovers routing 1803 * changes resulting in larger path MTUs. 1804 * 1805 * Returns 0 if we should wait to probe (no cwnd available), 1806 * 1 if a probe was sent, 1807 * -1 otherwise 1808 */ tcp_mtu_probe(struct sock * sk)1809 static int tcp_mtu_probe(struct sock *sk) 1810 { 1811 struct tcp_sock *tp = tcp_sk(sk); 1812 struct inet_connection_sock *icsk = inet_csk(sk); 1813 struct sk_buff *skb, *nskb, *next; 1814 int len; 1815 int probe_size; 1816 int size_needed; 1817 int copy; 1818 int mss_now; 1819 1820 /* Not currently probing/verifying, 1821 * not in recovery, 1822 * have enough cwnd, and 1823 * not SACKing (the variable headers throw things off) */ 1824 if (!icsk->icsk_mtup.enabled || 1825 icsk->icsk_mtup.probe_size || 1826 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1827 tp->snd_cwnd < 11 || 1828 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1829 return -1; 1830 1831 /* Very simple search strategy: just double the MSS. */ 1832 mss_now = tcp_current_mss(sk); 1833 probe_size = 2 * tp->mss_cache; 1834 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1835 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1836 /* TODO: set timer for probe_converge_event */ 1837 return -1; 1838 } 1839 1840 /* Have enough data in the send queue to probe? */ 1841 if (tp->write_seq - tp->snd_nxt < size_needed) 1842 return -1; 1843 1844 if (tp->snd_wnd < size_needed) 1845 return -1; 1846 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1847 return 0; 1848 1849 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1850 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1851 if (!tcp_packets_in_flight(tp)) 1852 return -1; 1853 else 1854 return 0; 1855 } 1856 1857 /* We're allowed to probe. Build it now. */ 1858 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1859 return -1; 1860 sk->sk_wmem_queued += nskb->truesize; 1861 sk_mem_charge(sk, nskb->truesize); 1862 1863 skb = tcp_send_head(sk); 1864 1865 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1866 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1867 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1868 TCP_SKB_CB(nskb)->sacked = 0; 1869 nskb->csum = 0; 1870 nskb->ip_summed = skb->ip_summed; 1871 1872 tcp_insert_write_queue_before(nskb, skb, sk); 1873 tcp_highest_sack_replace(sk, skb, nskb); 1874 1875 len = 0; 1876 tcp_for_write_queue_from_safe(skb, next, sk) { 1877 copy = min_t(int, skb->len, probe_size - len); 1878 if (nskb->ip_summed) { 1879 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1880 } else { 1881 __wsum csum = skb_copy_and_csum_bits(skb, 0, 1882 skb_put(nskb, copy), 1883 copy, 0); 1884 nskb->csum = csum_block_add(nskb->csum, csum, len); 1885 } 1886 1887 if (skb->len <= copy) { 1888 /* We've eaten all the data from this skb. 1889 * Throw it away. */ 1890 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1891 tcp_unlink_write_queue(skb, sk); 1892 sk_wmem_free_skb(sk, skb); 1893 } else { 1894 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1895 ~(TCPHDR_FIN|TCPHDR_PSH); 1896 if (!skb_shinfo(skb)->nr_frags) { 1897 skb_pull(skb, copy); 1898 if (skb->ip_summed != CHECKSUM_PARTIAL) 1899 skb->csum = csum_partial(skb->data, 1900 skb->len, 0); 1901 } else { 1902 __pskb_trim_head(skb, copy); 1903 tcp_set_skb_tso_segs(sk, skb, mss_now); 1904 } 1905 TCP_SKB_CB(skb)->seq += copy; 1906 } 1907 1908 len += copy; 1909 1910 if (len >= probe_size) 1911 break; 1912 } 1913 tcp_init_tso_segs(sk, nskb, nskb->len); 1914 1915 /* We're ready to send. If this fails, the probe will 1916 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1917 */ 1918 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1919 /* Decrement cwnd here because we are sending 1920 * effectively two packets. */ 1921 tp->snd_cwnd--; 1922 tcp_event_new_data_sent(sk, nskb); 1923 1924 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1925 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1926 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1927 1928 return 1; 1929 } 1930 1931 return -1; 1932 } 1933 1934 /* This routine writes packets to the network. It advances the 1935 * send_head. This happens as incoming acks open up the remote 1936 * window for us. 1937 * 1938 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1939 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1940 * account rare use of URG, this is not a big flaw. 1941 * 1942 * Send at most one packet when push_one > 0. Temporarily ignore 1943 * cwnd limit to force at most one packet out when push_one == 2. 1944 1945 * Returns true, if no segments are in flight and we have queued segments, 1946 * but cannot send anything now because of SWS or another problem. 1947 */ tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1948 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1949 int push_one, gfp_t gfp) 1950 { 1951 struct tcp_sock *tp = tcp_sk(sk); 1952 struct sk_buff *skb; 1953 unsigned int tso_segs, sent_pkts; 1954 int cwnd_quota; 1955 int result; 1956 bool is_cwnd_limited = false; 1957 1958 sent_pkts = 0; 1959 1960 if (!push_one) { 1961 /* Do MTU probing. */ 1962 result = tcp_mtu_probe(sk); 1963 if (!result) { 1964 return false; 1965 } else if (result > 0) { 1966 sent_pkts = 1; 1967 } 1968 } 1969 1970 while ((skb = tcp_send_head(sk))) { 1971 unsigned int limit; 1972 1973 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1974 BUG_ON(!tso_segs); 1975 1976 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 1977 /* "skb_mstamp" is used as a start point for the retransmit timer */ 1978 skb_mstamp_get(&skb->skb_mstamp); 1979 goto repair; /* Skip network transmission */ 1980 } 1981 1982 cwnd_quota = tcp_cwnd_test(tp, skb); 1983 if (!cwnd_quota) { 1984 is_cwnd_limited = true; 1985 if (push_one == 2) 1986 /* Force out a loss probe pkt. */ 1987 cwnd_quota = 1; 1988 else 1989 break; 1990 } 1991 1992 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1993 break; 1994 1995 if (tso_segs == 1 || !sk->sk_gso_max_segs) { 1996 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1997 (tcp_skb_is_last(sk, skb) ? 1998 nonagle : TCP_NAGLE_PUSH)))) 1999 break; 2000 } else { 2001 if (!push_one && 2002 tcp_tso_should_defer(sk, skb, &is_cwnd_limited)) 2003 break; 2004 } 2005 2006 /* TCP Small Queues : 2007 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2008 * This allows for : 2009 * - better RTT estimation and ACK scheduling 2010 * - faster recovery 2011 * - high rates 2012 * Alas, some drivers / subsystems require a fair amount 2013 * of queued bytes to ensure line rate. 2014 * One example is wifi aggregation (802.11 AMPDU) 2015 */ 2016 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes, 2017 sk->sk_pacing_rate >> 10); 2018 2019 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2020 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2021 /* It is possible TX completion already happened 2022 * before we set TSQ_THROTTLED, so we must 2023 * test again the condition. 2024 */ 2025 smp_mb__after_atomic(); 2026 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2027 break; 2028 } 2029 2030 limit = mss_now; 2031 if (tso_segs > 1 && sk->sk_gso_max_segs && !tcp_urg_mode(tp)) 2032 limit = tcp_mss_split_point(sk, skb, mss_now, 2033 min_t(unsigned int, 2034 cwnd_quota, 2035 sk->sk_gso_max_segs), 2036 nonagle); 2037 2038 if (skb->len > limit && 2039 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2040 break; 2041 2042 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2043 break; 2044 2045 repair: 2046 /* Advance the send_head. This one is sent out. 2047 * This call will increment packets_out. 2048 */ 2049 tcp_event_new_data_sent(sk, skb); 2050 2051 tcp_minshall_update(tp, mss_now, skb); 2052 sent_pkts += tcp_skb_pcount(skb); 2053 2054 if (push_one) 2055 break; 2056 } 2057 2058 if (likely(sent_pkts)) { 2059 if (tcp_in_cwnd_reduction(sk)) 2060 tp->prr_out += sent_pkts; 2061 2062 /* Send one loss probe per tail loss episode. */ 2063 if (push_one != 2) 2064 tcp_schedule_loss_probe(sk); 2065 tcp_cwnd_validate(sk, is_cwnd_limited); 2066 return false; 2067 } 2068 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2069 } 2070 tcp_schedule_loss_probe(struct sock * sk)2071 bool tcp_schedule_loss_probe(struct sock *sk) 2072 { 2073 struct inet_connection_sock *icsk = inet_csk(sk); 2074 struct tcp_sock *tp = tcp_sk(sk); 2075 u32 timeout, tlp_time_stamp, rto_time_stamp; 2076 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2077 2078 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2079 return false; 2080 /* No consecutive loss probes. */ 2081 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2082 tcp_rearm_rto(sk); 2083 return false; 2084 } 2085 /* Don't do any loss probe on a Fast Open connection before 3WHS 2086 * finishes. 2087 */ 2088 if (sk->sk_state == TCP_SYN_RECV) 2089 return false; 2090 2091 /* TLP is only scheduled when next timer event is RTO. */ 2092 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2093 return false; 2094 2095 /* Schedule a loss probe in 2*RTT for SACK capable connections 2096 * in Open state, that are either limited by cwnd or application. 2097 */ 2098 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2099 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2100 return false; 2101 2102 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2103 tcp_send_head(sk)) 2104 return false; 2105 2106 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2107 * for delayed ack when there's one outstanding packet. 2108 */ 2109 timeout = rtt << 1; 2110 if (tp->packets_out == 1) 2111 timeout = max_t(u32, timeout, 2112 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2113 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2114 2115 /* If RTO is shorter, just schedule TLP in its place. */ 2116 tlp_time_stamp = tcp_time_stamp + timeout; 2117 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2118 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2119 s32 delta = rto_time_stamp - tcp_time_stamp; 2120 if (delta > 0) 2121 timeout = delta; 2122 } 2123 2124 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2125 TCP_RTO_MAX); 2126 return true; 2127 } 2128 2129 /* Thanks to skb fast clones, we can detect if a prior transmit of 2130 * a packet is still in a qdisc or driver queue. 2131 * In this case, there is very little point doing a retransmit ! 2132 * Note: This is called from BH context only. 2133 */ skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2134 static bool skb_still_in_host_queue(const struct sock *sk, 2135 const struct sk_buff *skb) 2136 { 2137 if (unlikely(skb_fclone_busy(sk, skb))) { 2138 NET_INC_STATS_BH(sock_net(sk), 2139 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2140 return true; 2141 } 2142 return false; 2143 } 2144 2145 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2146 * retransmit the last segment. 2147 */ tcp_send_loss_probe(struct sock * sk)2148 void tcp_send_loss_probe(struct sock *sk) 2149 { 2150 struct tcp_sock *tp = tcp_sk(sk); 2151 struct sk_buff *skb; 2152 int pcount; 2153 int mss = tcp_current_mss(sk); 2154 int err = -1; 2155 2156 if (tcp_send_head(sk) != NULL) { 2157 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2158 goto rearm_timer; 2159 } 2160 2161 /* At most one outstanding TLP retransmission. */ 2162 if (tp->tlp_high_seq) 2163 goto rearm_timer; 2164 2165 /* Retransmit last segment. */ 2166 skb = tcp_write_queue_tail(sk); 2167 if (WARN_ON(!skb)) 2168 goto rearm_timer; 2169 2170 if (skb_still_in_host_queue(sk, skb)) 2171 goto rearm_timer; 2172 2173 pcount = tcp_skb_pcount(skb); 2174 if (WARN_ON(!pcount)) 2175 goto rearm_timer; 2176 2177 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2178 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2179 GFP_ATOMIC))) 2180 goto rearm_timer; 2181 skb = tcp_write_queue_tail(sk); 2182 } 2183 2184 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2185 goto rearm_timer; 2186 2187 err = __tcp_retransmit_skb(sk, skb); 2188 2189 /* Record snd_nxt for loss detection. */ 2190 if (likely(!err)) 2191 tp->tlp_high_seq = tp->snd_nxt; 2192 2193 rearm_timer: 2194 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2195 inet_csk(sk)->icsk_rto, 2196 TCP_RTO_MAX); 2197 2198 if (likely(!err)) 2199 NET_INC_STATS_BH(sock_net(sk), 2200 LINUX_MIB_TCPLOSSPROBES); 2201 } 2202 2203 /* Push out any pending frames which were held back due to 2204 * TCP_CORK or attempt at coalescing tiny packets. 2205 * The socket must be locked by the caller. 2206 */ __tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2207 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2208 int nonagle) 2209 { 2210 /* If we are closed, the bytes will have to remain here. 2211 * In time closedown will finish, we empty the write queue and 2212 * all will be happy. 2213 */ 2214 if (unlikely(sk->sk_state == TCP_CLOSE)) 2215 return; 2216 2217 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2218 sk_gfp_atomic(sk, GFP_ATOMIC))) 2219 tcp_check_probe_timer(sk); 2220 } 2221 2222 /* Send _single_ skb sitting at the send head. This function requires 2223 * true push pending frames to setup probe timer etc. 2224 */ tcp_push_one(struct sock * sk,unsigned int mss_now)2225 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2226 { 2227 struct sk_buff *skb = tcp_send_head(sk); 2228 2229 BUG_ON(!skb || skb->len < mss_now); 2230 2231 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2232 } 2233 2234 /* This function returns the amount that we can raise the 2235 * usable window based on the following constraints 2236 * 2237 * 1. The window can never be shrunk once it is offered (RFC 793) 2238 * 2. We limit memory per socket 2239 * 2240 * RFC 1122: 2241 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2242 * RECV.NEXT + RCV.WIN fixed until: 2243 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2244 * 2245 * i.e. don't raise the right edge of the window until you can raise 2246 * it at least MSS bytes. 2247 * 2248 * Unfortunately, the recommended algorithm breaks header prediction, 2249 * since header prediction assumes th->window stays fixed. 2250 * 2251 * Strictly speaking, keeping th->window fixed violates the receiver 2252 * side SWS prevention criteria. The problem is that under this rule 2253 * a stream of single byte packets will cause the right side of the 2254 * window to always advance by a single byte. 2255 * 2256 * Of course, if the sender implements sender side SWS prevention 2257 * then this will not be a problem. 2258 * 2259 * BSD seems to make the following compromise: 2260 * 2261 * If the free space is less than the 1/4 of the maximum 2262 * space available and the free space is less than 1/2 mss, 2263 * then set the window to 0. 2264 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2265 * Otherwise, just prevent the window from shrinking 2266 * and from being larger than the largest representable value. 2267 * 2268 * This prevents incremental opening of the window in the regime 2269 * where TCP is limited by the speed of the reader side taking 2270 * data out of the TCP receive queue. It does nothing about 2271 * those cases where the window is constrained on the sender side 2272 * because the pipeline is full. 2273 * 2274 * BSD also seems to "accidentally" limit itself to windows that are a 2275 * multiple of MSS, at least until the free space gets quite small. 2276 * This would appear to be a side effect of the mbuf implementation. 2277 * Combining these two algorithms results in the observed behavior 2278 * of having a fixed window size at almost all times. 2279 * 2280 * Below we obtain similar behavior by forcing the offered window to 2281 * a multiple of the mss when it is feasible to do so. 2282 * 2283 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2284 * Regular options like TIMESTAMP are taken into account. 2285 */ __tcp_select_window(struct sock * sk)2286 u32 __tcp_select_window(struct sock *sk) 2287 { 2288 struct inet_connection_sock *icsk = inet_csk(sk); 2289 struct tcp_sock *tp = tcp_sk(sk); 2290 /* MSS for the peer's data. Previous versions used mss_clamp 2291 * here. I don't know if the value based on our guesses 2292 * of peer's MSS is better for the performance. It's more correct 2293 * but may be worse for the performance because of rcv_mss 2294 * fluctuations. --SAW 1998/11/1 2295 */ 2296 int mss = icsk->icsk_ack.rcv_mss; 2297 int free_space = tcp_space(sk); 2298 int allowed_space = tcp_full_space(sk); 2299 int full_space = min_t(int, tp->window_clamp, allowed_space); 2300 int window; 2301 2302 if (unlikely(mss > full_space)) { 2303 mss = full_space; 2304 if (mss <= 0) 2305 return 0; 2306 } 2307 if (free_space < (full_space >> 1)) { 2308 icsk->icsk_ack.quick = 0; 2309 2310 if (sk_under_memory_pressure(sk)) 2311 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2312 4U * tp->advmss); 2313 2314 /* free_space might become our new window, make sure we don't 2315 * increase it due to wscale. 2316 */ 2317 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2318 2319 /* if free space is less than mss estimate, or is below 1/16th 2320 * of the maximum allowed, try to move to zero-window, else 2321 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2322 * new incoming data is dropped due to memory limits. 2323 * With large window, mss test triggers way too late in order 2324 * to announce zero window in time before rmem limit kicks in. 2325 */ 2326 if (free_space < (allowed_space >> 4) || free_space < mss) 2327 return 0; 2328 } 2329 2330 if (free_space > tp->rcv_ssthresh) 2331 free_space = tp->rcv_ssthresh; 2332 2333 /* Don't do rounding if we are using window scaling, since the 2334 * scaled window will not line up with the MSS boundary anyway. 2335 */ 2336 window = tp->rcv_wnd; 2337 if (tp->rx_opt.rcv_wscale) { 2338 window = free_space; 2339 2340 /* Advertise enough space so that it won't get scaled away. 2341 * Import case: prevent zero window announcement if 2342 * 1<<rcv_wscale > mss. 2343 */ 2344 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2345 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2346 << tp->rx_opt.rcv_wscale); 2347 } else { 2348 /* Get the largest window that is a nice multiple of mss. 2349 * Window clamp already applied above. 2350 * If our current window offering is within 1 mss of the 2351 * free space we just keep it. This prevents the divide 2352 * and multiply from happening most of the time. 2353 * We also don't do any window rounding when the free space 2354 * is too small. 2355 */ 2356 if (window <= free_space - mss || window > free_space) 2357 window = (free_space / mss) * mss; 2358 else if (mss == full_space && 2359 free_space > window + (full_space >> 1)) 2360 window = free_space; 2361 } 2362 2363 return window; 2364 } 2365 2366 /* Collapses two adjacent SKB's during retransmission. */ tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2367 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2368 { 2369 struct tcp_sock *tp = tcp_sk(sk); 2370 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2371 int skb_size, next_skb_size; 2372 2373 skb_size = skb->len; 2374 next_skb_size = next_skb->len; 2375 2376 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2377 2378 tcp_highest_sack_replace(sk, next_skb, skb); 2379 2380 tcp_unlink_write_queue(next_skb, sk); 2381 2382 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2383 next_skb_size); 2384 2385 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2386 skb->ip_summed = CHECKSUM_PARTIAL; 2387 2388 if (skb->ip_summed != CHECKSUM_PARTIAL) 2389 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2390 2391 /* Update sequence range on original skb. */ 2392 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2393 2394 /* Merge over control information. This moves PSH/FIN etc. over */ 2395 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2396 2397 /* All done, get rid of second SKB and account for it so 2398 * packet counting does not break. 2399 */ 2400 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2401 2402 /* changed transmit queue under us so clear hints */ 2403 tcp_clear_retrans_hints_partial(tp); 2404 if (next_skb == tp->retransmit_skb_hint) 2405 tp->retransmit_skb_hint = skb; 2406 2407 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2408 2409 sk_wmem_free_skb(sk, next_skb); 2410 } 2411 2412 /* Check if coalescing SKBs is legal. */ tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2413 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2414 { 2415 if (tcp_skb_pcount(skb) > 1) 2416 return false; 2417 /* TODO: SACK collapsing could be used to remove this condition */ 2418 if (skb_shinfo(skb)->nr_frags != 0) 2419 return false; 2420 if (skb_cloned(skb)) 2421 return false; 2422 if (skb == tcp_send_head(sk)) 2423 return false; 2424 /* Some heurestics for collapsing over SACK'd could be invented */ 2425 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2426 return false; 2427 2428 return true; 2429 } 2430 2431 /* Collapse packets in the retransmit queue to make to create 2432 * less packets on the wire. This is only done on retransmission. 2433 */ tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2434 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2435 int space) 2436 { 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 struct sk_buff *skb = to, *tmp; 2439 bool first = true; 2440 2441 if (!sysctl_tcp_retrans_collapse) 2442 return; 2443 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2444 return; 2445 2446 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2447 if (!tcp_can_collapse(sk, skb)) 2448 break; 2449 2450 space -= skb->len; 2451 2452 if (first) { 2453 first = false; 2454 continue; 2455 } 2456 2457 if (space < 0) 2458 break; 2459 /* Punt if not enough space exists in the first SKB for 2460 * the data in the second 2461 */ 2462 if (skb->len > skb_availroom(to)) 2463 break; 2464 2465 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2466 break; 2467 2468 tcp_collapse_retrans(sk, to); 2469 } 2470 } 2471 2472 /* This retransmits one SKB. Policy decisions and retransmit queue 2473 * state updates are done by the caller. Returns non-zero if an 2474 * error occurred which prevented the send. 2475 */ __tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2476 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 struct inet_connection_sock *icsk = inet_csk(sk); 2480 unsigned int cur_mss; 2481 int err; 2482 2483 /* Inconslusive MTU probe */ 2484 if (icsk->icsk_mtup.probe_size) { 2485 icsk->icsk_mtup.probe_size = 0; 2486 } 2487 2488 /* Do not sent more than we queued. 1/4 is reserved for possible 2489 * copying overhead: fragmentation, tunneling, mangling etc. 2490 */ 2491 if (atomic_read(&sk->sk_wmem_alloc) > 2492 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2493 sk->sk_sndbuf)) 2494 return -EAGAIN; 2495 2496 if (skb_still_in_host_queue(sk, skb)) 2497 return -EBUSY; 2498 2499 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2500 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2501 BUG(); 2502 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2503 return -ENOMEM; 2504 } 2505 2506 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2507 return -EHOSTUNREACH; /* Routing failure or similar. */ 2508 2509 cur_mss = tcp_current_mss(sk); 2510 2511 /* If receiver has shrunk his window, and skb is out of 2512 * new window, do not retransmit it. The exception is the 2513 * case, when window is shrunk to zero. In this case 2514 * our retransmit serves as a zero window probe. 2515 */ 2516 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2517 TCP_SKB_CB(skb)->seq != tp->snd_una) 2518 return -EAGAIN; 2519 2520 if (skb->len > cur_mss) { 2521 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2522 return -ENOMEM; /* We'll try again later. */ 2523 } else { 2524 int oldpcount = tcp_skb_pcount(skb); 2525 2526 if (unlikely(oldpcount > 1)) { 2527 if (skb_unclone(skb, GFP_ATOMIC)) 2528 return -ENOMEM; 2529 tcp_init_tso_segs(sk, skb, cur_mss); 2530 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2531 } 2532 } 2533 2534 tcp_retrans_try_collapse(sk, skb, cur_mss); 2535 2536 /* Make a copy, if the first transmission SKB clone we made 2537 * is still in somebody's hands, else make a clone. 2538 */ 2539 2540 /* make sure skb->data is aligned on arches that require it 2541 * and check if ack-trimming & collapsing extended the headroom 2542 * beyond what csum_start can cover. 2543 */ 2544 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2545 skb_headroom(skb) >= 0xFFFF)) { 2546 struct sk_buff *nskb; 2547 2548 skb_mstamp_get(&skb->skb_mstamp); 2549 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2550 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2551 -ENOBUFS; 2552 } else { 2553 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2554 } 2555 2556 if (likely(!err)) { 2557 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2558 /* Update global TCP statistics. */ 2559 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2560 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2561 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2562 tp->total_retrans++; 2563 } 2564 return err; 2565 } 2566 tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)2567 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 int err = __tcp_retransmit_skb(sk, skb); 2571 2572 if (err == 0) { 2573 #if FASTRETRANS_DEBUG > 0 2574 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2575 net_dbg_ratelimited("retrans_out leaked\n"); 2576 } 2577 #endif 2578 if (!tp->retrans_out) 2579 tp->lost_retrans_low = tp->snd_nxt; 2580 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2581 tp->retrans_out += tcp_skb_pcount(skb); 2582 2583 /* Save stamp of the first retransmit. */ 2584 if (!tp->retrans_stamp) 2585 tp->retrans_stamp = tcp_skb_timestamp(skb); 2586 2587 /* snd_nxt is stored to detect loss of retransmitted segment, 2588 * see tcp_input.c tcp_sacktag_write_queue(). 2589 */ 2590 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2591 } else if (err != -EBUSY) { 2592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2593 } 2594 2595 if (tp->undo_retrans < 0) 2596 tp->undo_retrans = 0; 2597 tp->undo_retrans += tcp_skb_pcount(skb); 2598 return err; 2599 } 2600 2601 /* Check if we forward retransmits are possible in the current 2602 * window/congestion state. 2603 */ tcp_can_forward_retransmit(struct sock * sk)2604 static bool tcp_can_forward_retransmit(struct sock *sk) 2605 { 2606 const struct inet_connection_sock *icsk = inet_csk(sk); 2607 const struct tcp_sock *tp = tcp_sk(sk); 2608 2609 /* Forward retransmissions are possible only during Recovery. */ 2610 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2611 return false; 2612 2613 /* No forward retransmissions in Reno are possible. */ 2614 if (tcp_is_reno(tp)) 2615 return false; 2616 2617 /* Yeah, we have to make difficult choice between forward transmission 2618 * and retransmission... Both ways have their merits... 2619 * 2620 * For now we do not retransmit anything, while we have some new 2621 * segments to send. In the other cases, follow rule 3 for 2622 * NextSeg() specified in RFC3517. 2623 */ 2624 2625 if (tcp_may_send_now(sk)) 2626 return false; 2627 2628 return true; 2629 } 2630 2631 /* This gets called after a retransmit timeout, and the initially 2632 * retransmitted data is acknowledged. It tries to continue 2633 * resending the rest of the retransmit queue, until either 2634 * we've sent it all or the congestion window limit is reached. 2635 * If doing SACK, the first ACK which comes back for a timeout 2636 * based retransmit packet might feed us FACK information again. 2637 * If so, we use it to avoid unnecessarily retransmissions. 2638 */ tcp_xmit_retransmit_queue(struct sock * sk)2639 void tcp_xmit_retransmit_queue(struct sock *sk) 2640 { 2641 const struct inet_connection_sock *icsk = inet_csk(sk); 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 struct sk_buff *skb; 2644 struct sk_buff *hole = NULL; 2645 u32 last_lost; 2646 int mib_idx; 2647 int fwd_rexmitting = 0; 2648 2649 if (!tp->packets_out) 2650 return; 2651 2652 if (!tp->lost_out) 2653 tp->retransmit_high = tp->snd_una; 2654 2655 if (tp->retransmit_skb_hint) { 2656 skb = tp->retransmit_skb_hint; 2657 last_lost = TCP_SKB_CB(skb)->end_seq; 2658 if (after(last_lost, tp->retransmit_high)) 2659 last_lost = tp->retransmit_high; 2660 } else { 2661 skb = tcp_write_queue_head(sk); 2662 last_lost = tp->snd_una; 2663 } 2664 2665 tcp_for_write_queue_from(skb, sk) { 2666 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2667 2668 if (skb == tcp_send_head(sk)) 2669 break; 2670 /* we could do better than to assign each time */ 2671 if (hole == NULL) 2672 tp->retransmit_skb_hint = skb; 2673 2674 /* Assume this retransmit will generate 2675 * only one packet for congestion window 2676 * calculation purposes. This works because 2677 * tcp_retransmit_skb() will chop up the 2678 * packet to be MSS sized and all the 2679 * packet counting works out. 2680 */ 2681 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2682 return; 2683 2684 if (fwd_rexmitting) { 2685 begin_fwd: 2686 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2687 break; 2688 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2689 2690 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2691 tp->retransmit_high = last_lost; 2692 if (!tcp_can_forward_retransmit(sk)) 2693 break; 2694 /* Backtrack if necessary to non-L'ed skb */ 2695 if (hole != NULL) { 2696 skb = hole; 2697 hole = NULL; 2698 } 2699 fwd_rexmitting = 1; 2700 goto begin_fwd; 2701 2702 } else if (!(sacked & TCPCB_LOST)) { 2703 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2704 hole = skb; 2705 continue; 2706 2707 } else { 2708 last_lost = TCP_SKB_CB(skb)->end_seq; 2709 if (icsk->icsk_ca_state != TCP_CA_Loss) 2710 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2711 else 2712 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2713 } 2714 2715 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2716 continue; 2717 2718 if (tcp_retransmit_skb(sk, skb)) 2719 return; 2720 2721 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2722 2723 if (tcp_in_cwnd_reduction(sk)) 2724 tp->prr_out += tcp_skb_pcount(skb); 2725 2726 if (skb == tcp_write_queue_head(sk)) 2727 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2728 inet_csk(sk)->icsk_rto, 2729 TCP_RTO_MAX); 2730 } 2731 } 2732 2733 /* We allow to exceed memory limits for FIN packets to expedite 2734 * connection tear down and (memory) recovery. 2735 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2736 * or even be forced to close flow without any FIN. 2737 */ sk_forced_wmem_schedule(struct sock * sk,int size)2738 static void sk_forced_wmem_schedule(struct sock *sk, int size) 2739 { 2740 int amt, status; 2741 2742 if (size <= sk->sk_forward_alloc) 2743 return; 2744 amt = sk_mem_pages(size); 2745 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2746 sk_memory_allocated_add(sk, amt, &status); 2747 } 2748 2749 /* Send a FIN. The caller locks the socket for us. 2750 * We should try to send a FIN packet really hard, but eventually give up. 2751 */ tcp_send_fin(struct sock * sk)2752 void tcp_send_fin(struct sock *sk) 2753 { 2754 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 2757 /* Optimization, tack on the FIN if we have one skb in write queue and 2758 * this skb was not yet sent, or we are under memory pressure. 2759 * Note: in the latter case, FIN packet will be sent after a timeout, 2760 * as TCP stack thinks it has already been transmitted. 2761 */ 2762 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) { 2763 coalesce: 2764 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2765 TCP_SKB_CB(tskb)->end_seq++; 2766 tp->write_seq++; 2767 if (!tcp_send_head(sk)) { 2768 /* This means tskb was already sent. 2769 * Pretend we included the FIN on previous transmit. 2770 * We need to set tp->snd_nxt to the value it would have 2771 * if FIN had been sent. This is because retransmit path 2772 * does not change tp->snd_nxt. 2773 */ 2774 tp->snd_nxt++; 2775 return; 2776 } 2777 } else { 2778 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2779 if (unlikely(!skb)) { 2780 if (tskb) 2781 goto coalesce; 2782 return; 2783 } 2784 skb_reserve(skb, MAX_TCP_HEADER); 2785 sk_forced_wmem_schedule(sk, skb->truesize); 2786 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2787 tcp_init_nondata_skb(skb, tp->write_seq, 2788 TCPHDR_ACK | TCPHDR_FIN); 2789 tcp_queue_skb(sk, skb); 2790 } 2791 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2792 } 2793 2794 /* We get here when a process closes a file descriptor (either due to 2795 * an explicit close() or as a byproduct of exit()'ing) and there 2796 * was unread data in the receive queue. This behavior is recommended 2797 * by RFC 2525, section 2.17. -DaveM 2798 */ tcp_send_active_reset(struct sock * sk,gfp_t priority)2799 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2800 { 2801 struct sk_buff *skb; 2802 2803 /* NOTE: No TCP options attached and we never retransmit this. */ 2804 skb = alloc_skb(MAX_TCP_HEADER, priority); 2805 if (!skb) { 2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2807 return; 2808 } 2809 2810 /* Reserve space for headers and prepare control bits. */ 2811 skb_reserve(skb, MAX_TCP_HEADER); 2812 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2813 TCPHDR_ACK | TCPHDR_RST); 2814 skb_mstamp_get(&skb->skb_mstamp); 2815 /* Send it off. */ 2816 if (tcp_transmit_skb(sk, skb, 0, priority)) 2817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2818 2819 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2820 } 2821 2822 /* Send a crossed SYN-ACK during socket establishment. 2823 * WARNING: This routine must only be called when we have already sent 2824 * a SYN packet that crossed the incoming SYN that caused this routine 2825 * to get called. If this assumption fails then the initial rcv_wnd 2826 * and rcv_wscale values will not be correct. 2827 */ tcp_send_synack(struct sock * sk)2828 int tcp_send_synack(struct sock *sk) 2829 { 2830 struct sk_buff *skb; 2831 2832 skb = tcp_write_queue_head(sk); 2833 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2834 pr_debug("%s: wrong queue state\n", __func__); 2835 return -EFAULT; 2836 } 2837 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2838 if (skb_cloned(skb)) { 2839 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2840 if (nskb == NULL) 2841 return -ENOMEM; 2842 tcp_unlink_write_queue(skb, sk); 2843 __skb_header_release(nskb); 2844 __tcp_add_write_queue_head(sk, nskb); 2845 sk_wmem_free_skb(sk, skb); 2846 sk->sk_wmem_queued += nskb->truesize; 2847 sk_mem_charge(sk, nskb->truesize); 2848 skb = nskb; 2849 } 2850 2851 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2852 tcp_ecn_send_synack(sk, skb); 2853 } 2854 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2855 } 2856 2857 /** 2858 * tcp_make_synack - Prepare a SYN-ACK. 2859 * sk: listener socket 2860 * dst: dst entry attached to the SYNACK 2861 * req: request_sock pointer 2862 * 2863 * Allocate one skb and build a SYNACK packet. 2864 * @dst is consumed : Caller should not use it again. 2865 */ tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc)2866 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2867 struct request_sock *req, 2868 struct tcp_fastopen_cookie *foc) 2869 { 2870 struct tcp_out_options opts; 2871 struct inet_request_sock *ireq = inet_rsk(req); 2872 struct tcp_sock *tp = tcp_sk(sk); 2873 struct tcphdr *th; 2874 struct sk_buff *skb; 2875 struct tcp_md5sig_key *md5; 2876 int tcp_header_size; 2877 int mss; 2878 2879 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2880 if (unlikely(!skb)) { 2881 dst_release(dst); 2882 return NULL; 2883 } 2884 /* Reserve space for headers. */ 2885 skb_reserve(skb, MAX_TCP_HEADER); 2886 2887 skb_dst_set(skb, dst); 2888 security_skb_owned_by(skb, sk); 2889 2890 mss = dst_metric_advmss(dst); 2891 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2892 mss = tp->rx_opt.user_mss; 2893 2894 memset(&opts, 0, sizeof(opts)); 2895 #ifdef CONFIG_SYN_COOKIES 2896 if (unlikely(req->cookie_ts)) 2897 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2898 else 2899 #endif 2900 skb_mstamp_get(&skb->skb_mstamp); 2901 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2902 foc) + sizeof(*th); 2903 2904 skb_push(skb, tcp_header_size); 2905 skb_reset_transport_header(skb); 2906 2907 th = tcp_hdr(skb); 2908 memset(th, 0, sizeof(struct tcphdr)); 2909 th->syn = 1; 2910 th->ack = 1; 2911 tcp_ecn_make_synack(req, th, sk); 2912 th->source = htons(ireq->ir_num); 2913 th->dest = ireq->ir_rmt_port; 2914 skb->ip_summed = CHECKSUM_PARTIAL; 2915 th->seq = htonl(tcp_rsk(req)->snt_isn); 2916 /* XXX data is queued and acked as is. No buffer/window check */ 2917 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2918 2919 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2920 th->window = htons(min(req->rcv_wnd, 65535U)); 2921 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2922 th->doff = (tcp_header_size >> 2); 2923 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2924 2925 #ifdef CONFIG_TCP_MD5SIG 2926 /* Okay, we have all we need - do the md5 hash if needed */ 2927 if (md5) { 2928 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2929 md5, NULL, req, skb); 2930 } 2931 #endif 2932 2933 /* Do not fool tcpdump (if any), clean our debris */ 2934 skb->tstamp.tv64 = 0; 2935 return skb; 2936 } 2937 EXPORT_SYMBOL(tcp_make_synack); 2938 2939 /* Do all connect socket setups that can be done AF independent. */ tcp_connect_init(struct sock * sk)2940 static void tcp_connect_init(struct sock *sk) 2941 { 2942 const struct dst_entry *dst = __sk_dst_get(sk); 2943 struct tcp_sock *tp = tcp_sk(sk); 2944 __u8 rcv_wscale; 2945 2946 /* We'll fix this up when we get a response from the other end. 2947 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2948 */ 2949 tp->tcp_header_len = sizeof(struct tcphdr) + 2950 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2951 2952 #ifdef CONFIG_TCP_MD5SIG 2953 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2954 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2955 #endif 2956 2957 /* If user gave his TCP_MAXSEG, record it to clamp */ 2958 if (tp->rx_opt.user_mss) 2959 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2960 tp->max_window = 0; 2961 tcp_mtup_init(sk); 2962 tcp_sync_mss(sk, dst_mtu(dst)); 2963 2964 if (!tp->window_clamp) 2965 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2966 tp->advmss = dst_metric_advmss(dst); 2967 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2968 tp->advmss = tp->rx_opt.user_mss; 2969 2970 tcp_initialize_rcv_mss(sk); 2971 2972 /* limit the window selection if the user enforce a smaller rx buffer */ 2973 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2974 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2975 tp->window_clamp = tcp_full_space(sk); 2976 2977 tcp_select_initial_window(tcp_full_space(sk), 2978 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2979 &tp->rcv_wnd, 2980 &tp->window_clamp, 2981 sysctl_tcp_window_scaling, 2982 &rcv_wscale, 2983 dst_metric(dst, RTAX_INITRWND)); 2984 2985 tp->rx_opt.rcv_wscale = rcv_wscale; 2986 tp->rcv_ssthresh = tp->rcv_wnd; 2987 2988 sk->sk_err = 0; 2989 sock_reset_flag(sk, SOCK_DONE); 2990 tp->snd_wnd = 0; 2991 tcp_init_wl(tp, 0); 2992 tp->snd_una = tp->write_seq; 2993 tp->snd_sml = tp->write_seq; 2994 tp->snd_up = tp->write_seq; 2995 tp->snd_nxt = tp->write_seq; 2996 2997 if (likely(!tp->repair)) 2998 tp->rcv_nxt = 0; 2999 else 3000 tp->rcv_tstamp = tcp_time_stamp; 3001 tp->rcv_wup = tp->rcv_nxt; 3002 tp->copied_seq = tp->rcv_nxt; 3003 3004 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3005 inet_csk(sk)->icsk_retransmits = 0; 3006 tcp_clear_retrans(tp); 3007 } 3008 tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3009 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3010 { 3011 struct tcp_sock *tp = tcp_sk(sk); 3012 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3013 3014 tcb->end_seq += skb->len; 3015 __skb_header_release(skb); 3016 __tcp_add_write_queue_tail(sk, skb); 3017 sk->sk_wmem_queued += skb->truesize; 3018 sk_mem_charge(sk, skb->truesize); 3019 tp->write_seq = tcb->end_seq; 3020 tp->packets_out += tcp_skb_pcount(skb); 3021 } 3022 3023 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3024 * queue a data-only packet after the regular SYN, such that regular SYNs 3025 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3026 * only the SYN sequence, the data are retransmitted in the first ACK. 3027 * If cookie is not cached or other error occurs, falls back to send a 3028 * regular SYN with Fast Open cookie request option. 3029 */ tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3030 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3031 { 3032 struct tcp_sock *tp = tcp_sk(sk); 3033 struct tcp_fastopen_request *fo = tp->fastopen_req; 3034 int syn_loss = 0, space, err = 0; 3035 unsigned long last_syn_loss = 0; 3036 struct sk_buff *syn_data; 3037 3038 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3039 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3040 &syn_loss, &last_syn_loss); 3041 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3042 if (syn_loss > 1 && 3043 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3044 fo->cookie.len = -1; 3045 goto fallback; 3046 } 3047 3048 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3049 fo->cookie.len = -1; 3050 else if (fo->cookie.len <= 0) 3051 goto fallback; 3052 3053 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3054 * user-MSS. Reserve maximum option space for middleboxes that add 3055 * private TCP options. The cost is reduced data space in SYN :( 3056 */ 3057 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3058 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3059 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3060 MAX_TCP_OPTION_SPACE; 3061 3062 space = min_t(size_t, space, fo->size); 3063 3064 /* limit to order-0 allocations */ 3065 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3066 3067 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation); 3068 if (!syn_data) 3069 goto fallback; 3070 syn_data->ip_summed = CHECKSUM_PARTIAL; 3071 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3072 if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space), 3073 fo->data->msg_iov, 0, space))) { 3074 kfree_skb(syn_data); 3075 goto fallback; 3076 } 3077 3078 /* No more data pending in inet_wait_for_connect() */ 3079 if (space == fo->size) 3080 fo->data = NULL; 3081 fo->copied = space; 3082 3083 tcp_connect_queue_skb(sk, syn_data); 3084 3085 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3086 3087 syn->skb_mstamp = syn_data->skb_mstamp; 3088 3089 /* Now full SYN+DATA was cloned and sent (or not), 3090 * remove the SYN from the original skb (syn_data) 3091 * we keep in write queue in case of a retransmit, as we 3092 * also have the SYN packet (with no data) in the same queue. 3093 */ 3094 TCP_SKB_CB(syn_data)->seq++; 3095 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3096 if (!err) { 3097 tp->syn_data = (fo->copied > 0); 3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3099 goto done; 3100 } 3101 3102 fallback: 3103 /* Send a regular SYN with Fast Open cookie request option */ 3104 if (fo->cookie.len > 0) 3105 fo->cookie.len = 0; 3106 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3107 if (err) 3108 tp->syn_fastopen = 0; 3109 done: 3110 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3111 return err; 3112 } 3113 3114 /* Build a SYN and send it off. */ tcp_connect(struct sock * sk)3115 int tcp_connect(struct sock *sk) 3116 { 3117 struct tcp_sock *tp = tcp_sk(sk); 3118 struct sk_buff *buff; 3119 int err; 3120 3121 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3122 return -EHOSTUNREACH; /* Routing failure or similar. */ 3123 3124 tcp_connect_init(sk); 3125 3126 if (unlikely(tp->repair)) { 3127 tcp_finish_connect(sk, NULL); 3128 return 0; 3129 } 3130 3131 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 3132 if (unlikely(!buff)) 3133 return -ENOBUFS; 3134 3135 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3136 tp->retrans_stamp = tcp_time_stamp; 3137 tcp_connect_queue_skb(sk, buff); 3138 tcp_ecn_send_syn(sk, buff); 3139 3140 /* Send off SYN; include data in Fast Open. */ 3141 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3142 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3143 if (err == -ECONNREFUSED) 3144 return err; 3145 3146 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3147 * in order to make this packet get counted in tcpOutSegs. 3148 */ 3149 tp->snd_nxt = tp->write_seq; 3150 tp->pushed_seq = tp->write_seq; 3151 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3152 3153 /* Timer for repeating the SYN until an answer. */ 3154 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3155 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3156 return 0; 3157 } 3158 EXPORT_SYMBOL(tcp_connect); 3159 3160 /* Send out a delayed ack, the caller does the policy checking 3161 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3162 * for details. 3163 */ tcp_send_delayed_ack(struct sock * sk)3164 void tcp_send_delayed_ack(struct sock *sk) 3165 { 3166 struct inet_connection_sock *icsk = inet_csk(sk); 3167 int ato = icsk->icsk_ack.ato; 3168 unsigned long timeout; 3169 3170 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3171 3172 if (ato > TCP_DELACK_MIN) { 3173 const struct tcp_sock *tp = tcp_sk(sk); 3174 int max_ato = HZ / 2; 3175 3176 if (icsk->icsk_ack.pingpong || 3177 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3178 max_ato = TCP_DELACK_MAX; 3179 3180 /* Slow path, intersegment interval is "high". */ 3181 3182 /* If some rtt estimate is known, use it to bound delayed ack. 3183 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3184 * directly. 3185 */ 3186 if (tp->srtt_us) { 3187 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3188 TCP_DELACK_MIN); 3189 3190 if (rtt < max_ato) 3191 max_ato = rtt; 3192 } 3193 3194 ato = min(ato, max_ato); 3195 } 3196 3197 /* Stay within the limit we were given */ 3198 timeout = jiffies + ato; 3199 3200 /* Use new timeout only if there wasn't a older one earlier. */ 3201 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3202 /* If delack timer was blocked or is about to expire, 3203 * send ACK now. 3204 */ 3205 if (icsk->icsk_ack.blocked || 3206 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3207 tcp_send_ack(sk); 3208 return; 3209 } 3210 3211 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3212 timeout = icsk->icsk_ack.timeout; 3213 } 3214 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3215 icsk->icsk_ack.timeout = timeout; 3216 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3217 } 3218 3219 /* This routine sends an ack and also updates the window. */ tcp_send_ack(struct sock * sk)3220 void tcp_send_ack(struct sock *sk) 3221 { 3222 struct sk_buff *buff; 3223 3224 /* If we have been reset, we may not send again. */ 3225 if (sk->sk_state == TCP_CLOSE) 3226 return; 3227 3228 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3229 3230 /* We are not putting this on the write queue, so 3231 * tcp_transmit_skb() will set the ownership to this 3232 * sock. 3233 */ 3234 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3235 if (buff == NULL) { 3236 inet_csk_schedule_ack(sk); 3237 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3239 TCP_DELACK_MAX, TCP_RTO_MAX); 3240 return; 3241 } 3242 3243 /* Reserve space for headers and prepare control bits. */ 3244 skb_reserve(buff, MAX_TCP_HEADER); 3245 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3246 3247 /* Send it off, this clears delayed acks for us. */ 3248 skb_mstamp_get(&buff->skb_mstamp); 3249 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3250 } 3251 EXPORT_SYMBOL_GPL(tcp_send_ack); 3252 3253 /* This routine sends a packet with an out of date sequence 3254 * number. It assumes the other end will try to ack it. 3255 * 3256 * Question: what should we make while urgent mode? 3257 * 4.4BSD forces sending single byte of data. We cannot send 3258 * out of window data, because we have SND.NXT==SND.MAX... 3259 * 3260 * Current solution: to send TWO zero-length segments in urgent mode: 3261 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3262 * out-of-date with SND.UNA-1 to probe window. 3263 */ tcp_xmit_probe_skb(struct sock * sk,int urgent)3264 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3265 { 3266 struct tcp_sock *tp = tcp_sk(sk); 3267 struct sk_buff *skb; 3268 3269 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3270 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3271 if (skb == NULL) 3272 return -1; 3273 3274 /* Reserve space for headers and set control bits. */ 3275 skb_reserve(skb, MAX_TCP_HEADER); 3276 /* Use a previous sequence. This should cause the other 3277 * end to send an ack. Don't queue or clone SKB, just 3278 * send it. 3279 */ 3280 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3281 skb_mstamp_get(&skb->skb_mstamp); 3282 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3283 } 3284 tcp_send_window_probe(struct sock * sk)3285 void tcp_send_window_probe(struct sock *sk) 3286 { 3287 if (sk->sk_state == TCP_ESTABLISHED) { 3288 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3289 tcp_xmit_probe_skb(sk, 0); 3290 } 3291 } 3292 3293 /* Initiate keepalive or window probe from timer. */ tcp_write_wakeup(struct sock * sk)3294 int tcp_write_wakeup(struct sock *sk) 3295 { 3296 struct tcp_sock *tp = tcp_sk(sk); 3297 struct sk_buff *skb; 3298 3299 if (sk->sk_state == TCP_CLOSE) 3300 return -1; 3301 3302 if ((skb = tcp_send_head(sk)) != NULL && 3303 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3304 int err; 3305 unsigned int mss = tcp_current_mss(sk); 3306 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3307 3308 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3309 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3310 3311 /* We are probing the opening of a window 3312 * but the window size is != 0 3313 * must have been a result SWS avoidance ( sender ) 3314 */ 3315 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3316 skb->len > mss) { 3317 seg_size = min(seg_size, mss); 3318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3319 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3320 return -1; 3321 } else if (!tcp_skb_pcount(skb)) 3322 tcp_set_skb_tso_segs(sk, skb, mss); 3323 3324 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3325 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3326 if (!err) 3327 tcp_event_new_data_sent(sk, skb); 3328 return err; 3329 } else { 3330 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3331 tcp_xmit_probe_skb(sk, 1); 3332 return tcp_xmit_probe_skb(sk, 0); 3333 } 3334 } 3335 3336 /* A window probe timeout has occurred. If window is not closed send 3337 * a partial packet else a zero probe. 3338 */ tcp_send_probe0(struct sock * sk)3339 void tcp_send_probe0(struct sock *sk) 3340 { 3341 struct inet_connection_sock *icsk = inet_csk(sk); 3342 struct tcp_sock *tp = tcp_sk(sk); 3343 unsigned long probe_max; 3344 int err; 3345 3346 err = tcp_write_wakeup(sk); 3347 3348 if (tp->packets_out || !tcp_send_head(sk)) { 3349 /* Cancel probe timer, if it is not required. */ 3350 icsk->icsk_probes_out = 0; 3351 icsk->icsk_backoff = 0; 3352 return; 3353 } 3354 3355 if (err <= 0) { 3356 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3357 icsk->icsk_backoff++; 3358 icsk->icsk_probes_out++; 3359 probe_max = TCP_RTO_MAX; 3360 } else { 3361 /* If packet was not sent due to local congestion, 3362 * do not backoff and do not remember icsk_probes_out. 3363 * Let local senders to fight for local resources. 3364 * 3365 * Use accumulated backoff yet. 3366 */ 3367 if (!icsk->icsk_probes_out) 3368 icsk->icsk_probes_out = 1; 3369 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3370 } 3371 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3372 inet_csk_rto_backoff(icsk, probe_max), 3373 TCP_RTO_MAX); 3374 } 3375 tcp_rtx_synack(struct sock * sk,struct request_sock * req)3376 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3377 { 3378 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3379 struct flowi fl; 3380 int res; 3381 3382 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3383 if (!res) { 3384 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3386 } 3387 return res; 3388 } 3389 EXPORT_SYMBOL(tcp_rtx_synack); 3390