1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25
26 #include "internal.h"
27
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states);
31
sum_vm_events(unsigned long * ret)32 static void sum_vm_events(unsigned long *ret)
33 {
34 int cpu;
35 int i;
36
37 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
38
39 for_each_online_cpu(cpu) {
40 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
41
42 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
43 ret[i] += this->event[i];
44 }
45 }
46
47 /*
48 * Accumulate the vm event counters across all CPUs.
49 * The result is unavoidably approximate - it can change
50 * during and after execution of this function.
51 */
all_vm_events(unsigned long * ret)52 void all_vm_events(unsigned long *ret)
53 {
54 get_online_cpus();
55 sum_vm_events(ret);
56 put_online_cpus();
57 }
58 EXPORT_SYMBOL_GPL(all_vm_events);
59
60 /*
61 * Fold the foreign cpu events into our own.
62 *
63 * This is adding to the events on one processor
64 * but keeps the global counts constant.
65 */
vm_events_fold_cpu(int cpu)66 void vm_events_fold_cpu(int cpu)
67 {
68 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
69 int i;
70
71 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
72 count_vm_events(i, fold_state->event[i]);
73 fold_state->event[i] = 0;
74 }
75 }
76
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
78
79 /*
80 * Manage combined zone based / global counters
81 *
82 * vm_stat contains the global counters
83 */
84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 EXPORT_SYMBOL(vm_stat);
86
87 #ifdef CONFIG_SMP
88
calculate_pressure_threshold(struct zone * zone)89 int calculate_pressure_threshold(struct zone *zone)
90 {
91 int threshold;
92 int watermark_distance;
93
94 /*
95 * As vmstats are not up to date, there is drift between the estimated
96 * and real values. For high thresholds and a high number of CPUs, it
97 * is possible for the min watermark to be breached while the estimated
98 * value looks fine. The pressure threshold is a reduced value such
99 * that even the maximum amount of drift will not accidentally breach
100 * the min watermark
101 */
102 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
103 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
104
105 /*
106 * Maximum threshold is 125
107 */
108 threshold = min(125, threshold);
109
110 return threshold;
111 }
112
calculate_normal_threshold(struct zone * zone)113 int calculate_normal_threshold(struct zone *zone)
114 {
115 int threshold;
116 int mem; /* memory in 128 MB units */
117
118 /*
119 * The threshold scales with the number of processors and the amount
120 * of memory per zone. More memory means that we can defer updates for
121 * longer, more processors could lead to more contention.
122 * fls() is used to have a cheap way of logarithmic scaling.
123 *
124 * Some sample thresholds:
125 *
126 * Threshold Processors (fls) Zonesize fls(mem+1)
127 * ------------------------------------------------------------------
128 * 8 1 1 0.9-1 GB 4
129 * 16 2 2 0.9-1 GB 4
130 * 20 2 2 1-2 GB 5
131 * 24 2 2 2-4 GB 6
132 * 28 2 2 4-8 GB 7
133 * 32 2 2 8-16 GB 8
134 * 4 2 2 <128M 1
135 * 30 4 3 2-4 GB 5
136 * 48 4 3 8-16 GB 8
137 * 32 8 4 1-2 GB 4
138 * 32 8 4 0.9-1GB 4
139 * 10 16 5 <128M 1
140 * 40 16 5 900M 4
141 * 70 64 7 2-4 GB 5
142 * 84 64 7 4-8 GB 6
143 * 108 512 9 4-8 GB 6
144 * 125 1024 10 8-16 GB 8
145 * 125 1024 10 16-32 GB 9
146 */
147
148 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
149
150 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
151
152 /*
153 * Maximum threshold is 125
154 */
155 threshold = min(125, threshold);
156
157 return threshold;
158 }
159
160 /*
161 * Refresh the thresholds for each zone.
162 */
refresh_zone_stat_thresholds(void)163 void refresh_zone_stat_thresholds(void)
164 {
165 struct zone *zone;
166 int cpu;
167 int threshold;
168
169 for_each_populated_zone(zone) {
170 unsigned long max_drift, tolerate_drift;
171
172 threshold = calculate_normal_threshold(zone);
173
174 for_each_online_cpu(cpu)
175 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
176 = threshold;
177
178 /*
179 * Only set percpu_drift_mark if there is a danger that
180 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 * the min watermark could be breached by an allocation
182 */
183 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
184 max_drift = num_online_cpus() * threshold;
185 if (max_drift > tolerate_drift)
186 zone->percpu_drift_mark = high_wmark_pages(zone) +
187 max_drift;
188 }
189 }
190
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))191 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
192 int (*calculate_pressure)(struct zone *))
193 {
194 struct zone *zone;
195 int cpu;
196 int threshold;
197 int i;
198
199 for (i = 0; i < pgdat->nr_zones; i++) {
200 zone = &pgdat->node_zones[i];
201 if (!zone->percpu_drift_mark)
202 continue;
203
204 threshold = (*calculate_pressure)(zone);
205 for_each_online_cpu(cpu)
206 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
207 = threshold;
208 }
209 }
210
211 /*
212 * For use when we know that interrupts are disabled,
213 * or when we know that preemption is disabled and that
214 * particular counter cannot be updated from interrupt context.
215 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
217 int delta)
218 {
219 struct per_cpu_pageset __percpu *pcp = zone->pageset;
220 s8 __percpu *p = pcp->vm_stat_diff + item;
221 long x;
222 long t;
223
224 x = delta + __this_cpu_read(*p);
225
226 t = __this_cpu_read(pcp->stat_threshold);
227
228 if (unlikely(x > t || x < -t)) {
229 zone_page_state_add(x, zone, item);
230 x = 0;
231 }
232 __this_cpu_write(*p, x);
233 }
234 EXPORT_SYMBOL(__mod_zone_page_state);
235
236 /*
237 * Optimized increment and decrement functions.
238 *
239 * These are only for a single page and therefore can take a struct page *
240 * argument instead of struct zone *. This allows the inclusion of the code
241 * generated for page_zone(page) into the optimized functions.
242 *
243 * No overflow check is necessary and therefore the differential can be
244 * incremented or decremented in place which may allow the compilers to
245 * generate better code.
246 * The increment or decrement is known and therefore one boundary check can
247 * be omitted.
248 *
249 * NOTE: These functions are very performance sensitive. Change only
250 * with care.
251 *
252 * Some processors have inc/dec instructions that are atomic vs an interrupt.
253 * However, the code must first determine the differential location in a zone
254 * based on the processor number and then inc/dec the counter. There is no
255 * guarantee without disabling preemption that the processor will not change
256 * in between and therefore the atomicity vs. interrupt cannot be exploited
257 * in a useful way here.
258 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
260 {
261 struct per_cpu_pageset __percpu *pcp = zone->pageset;
262 s8 __percpu *p = pcp->vm_stat_diff + item;
263 s8 v, t;
264
265 v = __this_cpu_inc_return(*p);
266 t = __this_cpu_read(pcp->stat_threshold);
267 if (unlikely(v > t)) {
268 s8 overstep = t >> 1;
269
270 zone_page_state_add(v + overstep, zone, item);
271 __this_cpu_write(*p, -overstep);
272 }
273 }
274
__inc_zone_page_state(struct page * page,enum zone_stat_item item)275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
276 {
277 __inc_zone_state(page_zone(page), item);
278 }
279 EXPORT_SYMBOL(__inc_zone_page_state);
280
__dec_zone_state(struct zone * zone,enum zone_stat_item item)281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
282 {
283 struct per_cpu_pageset __percpu *pcp = zone->pageset;
284 s8 __percpu *p = pcp->vm_stat_diff + item;
285 s8 v, t;
286
287 v = __this_cpu_dec_return(*p);
288 t = __this_cpu_read(pcp->stat_threshold);
289 if (unlikely(v < - t)) {
290 s8 overstep = t >> 1;
291
292 zone_page_state_add(v - overstep, zone, item);
293 __this_cpu_write(*p, overstep);
294 }
295 }
296
__dec_zone_page_state(struct page * page,enum zone_stat_item item)297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
298 {
299 __dec_zone_state(page_zone(page), item);
300 }
301 EXPORT_SYMBOL(__dec_zone_page_state);
302
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
304 /*
305 * If we have cmpxchg_local support then we do not need to incur the overhead
306 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
307 *
308 * mod_state() modifies the zone counter state through atomic per cpu
309 * operations.
310 *
311 * Overstep mode specifies how overstep should handled:
312 * 0 No overstepping
313 * 1 Overstepping half of threshold
314 * -1 Overstepping minus half of threshold
315 */
mod_state(struct zone * zone,enum zone_stat_item item,int delta,int overstep_mode)316 static inline void mod_state(struct zone *zone,
317 enum zone_stat_item item, int delta, int overstep_mode)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long o, n, t, z;
322
323 do {
324 z = 0; /* overflow to zone counters */
325
326 /*
327 * The fetching of the stat_threshold is racy. We may apply
328 * a counter threshold to the wrong the cpu if we get
329 * rescheduled while executing here. However, the next
330 * counter update will apply the threshold again and
331 * therefore bring the counter under the threshold again.
332 *
333 * Most of the time the thresholds are the same anyways
334 * for all cpus in a zone.
335 */
336 t = this_cpu_read(pcp->stat_threshold);
337
338 o = this_cpu_read(*p);
339 n = delta + o;
340
341 if (n > t || n < -t) {
342 int os = overstep_mode * (t >> 1) ;
343
344 /* Overflow must be added to zone counters */
345 z = n + os;
346 n = -os;
347 }
348 } while (this_cpu_cmpxchg(*p, o, n) != o);
349
350 if (z)
351 zone_page_state_add(z, zone, item);
352 }
353
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
355 int delta)
356 {
357 mod_state(zone, item, delta, 0);
358 }
359 EXPORT_SYMBOL(mod_zone_page_state);
360
inc_zone_state(struct zone * zone,enum zone_stat_item item)361 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
362 {
363 mod_state(zone, item, 1, 1);
364 }
365
inc_zone_page_state(struct page * page,enum zone_stat_item item)366 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
367 {
368 mod_state(page_zone(page), item, 1, 1);
369 }
370 EXPORT_SYMBOL(inc_zone_page_state);
371
dec_zone_page_state(struct page * page,enum zone_stat_item item)372 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
373 {
374 mod_state(page_zone(page), item, -1, -1);
375 }
376 EXPORT_SYMBOL(dec_zone_page_state);
377 #else
378 /*
379 * Use interrupt disable to serialize counter updates
380 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
382 int delta)
383 {
384 unsigned long flags;
385
386 local_irq_save(flags);
387 __mod_zone_page_state(zone, item, delta);
388 local_irq_restore(flags);
389 }
390 EXPORT_SYMBOL(mod_zone_page_state);
391
inc_zone_state(struct zone * zone,enum zone_stat_item item)392 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
393 {
394 unsigned long flags;
395
396 local_irq_save(flags);
397 __inc_zone_state(zone, item);
398 local_irq_restore(flags);
399 }
400
inc_zone_page_state(struct page * page,enum zone_stat_item item)401 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
402 {
403 unsigned long flags;
404 struct zone *zone;
405
406 zone = page_zone(page);
407 local_irq_save(flags);
408 __inc_zone_state(zone, item);
409 local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL(inc_zone_page_state);
412
dec_zone_page_state(struct page * page,enum zone_stat_item item)413 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
414 {
415 unsigned long flags;
416
417 local_irq_save(flags);
418 __dec_zone_page_state(page, item);
419 local_irq_restore(flags);
420 }
421 EXPORT_SYMBOL(dec_zone_page_state);
422 #endif
423
424
425 /*
426 * Fold a differential into the global counters.
427 * Returns the number of counters updated.
428 */
fold_diff(int * diff)429 static int fold_diff(int *diff)
430 {
431 int i;
432 int changes = 0;
433
434 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
435 if (diff[i]) {
436 atomic_long_add(diff[i], &vm_stat[i]);
437 changes++;
438 }
439 return changes;
440 }
441
442 /*
443 * Update the zone counters for the current cpu.
444 *
445 * Note that refresh_cpu_vm_stats strives to only access
446 * node local memory. The per cpu pagesets on remote zones are placed
447 * in the memory local to the processor using that pageset. So the
448 * loop over all zones will access a series of cachelines local to
449 * the processor.
450 *
451 * The call to zone_page_state_add updates the cachelines with the
452 * statistics in the remote zone struct as well as the global cachelines
453 * with the global counters. These could cause remote node cache line
454 * bouncing and will have to be only done when necessary.
455 *
456 * The function returns the number of global counters updated.
457 */
refresh_cpu_vm_stats(bool do_pagesets)458 static int refresh_cpu_vm_stats(bool do_pagesets)
459 {
460 struct zone *zone;
461 int i;
462 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
463 int changes = 0;
464
465 for_each_populated_zone(zone) {
466 struct per_cpu_pageset __percpu *p = zone->pageset;
467
468 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
469 int v;
470
471 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
472 if (v) {
473
474 atomic_long_add(v, &zone->vm_stat[i]);
475 global_diff[i] += v;
476 #ifdef CONFIG_NUMA
477 /* 3 seconds idle till flush */
478 __this_cpu_write(p->expire, 3);
479 #endif
480 }
481 }
482 #ifdef CONFIG_NUMA
483 if (do_pagesets) {
484 cond_resched();
485 /*
486 * Deal with draining the remote pageset of this
487 * processor
488 *
489 * Check if there are pages remaining in this pageset
490 * if not then there is nothing to expire.
491 */
492 if (!__this_cpu_read(p->expire) ||
493 !__this_cpu_read(p->pcp.count))
494 continue;
495
496 /*
497 * We never drain zones local to this processor.
498 */
499 if (zone_to_nid(zone) == numa_node_id()) {
500 __this_cpu_write(p->expire, 0);
501 continue;
502 }
503
504 if (__this_cpu_dec_return(p->expire))
505 continue;
506
507 if (__this_cpu_read(p->pcp.count)) {
508 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
509 changes++;
510 }
511 }
512 #endif
513 }
514 changes += fold_diff(global_diff);
515 return changes;
516 }
517
518 /*
519 * Fold the data for an offline cpu into the global array.
520 * There cannot be any access by the offline cpu and therefore
521 * synchronization is simplified.
522 */
cpu_vm_stats_fold(int cpu)523 void cpu_vm_stats_fold(int cpu)
524 {
525 struct zone *zone;
526 int i;
527 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
528
529 for_each_populated_zone(zone) {
530 struct per_cpu_pageset *p;
531
532 p = per_cpu_ptr(zone->pageset, cpu);
533
534 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
535 if (p->vm_stat_diff[i]) {
536 int v;
537
538 v = p->vm_stat_diff[i];
539 p->vm_stat_diff[i] = 0;
540 atomic_long_add(v, &zone->vm_stat[i]);
541 global_diff[i] += v;
542 }
543 }
544
545 fold_diff(global_diff);
546 }
547
548 /*
549 * this is only called if !populated_zone(zone), which implies no other users of
550 * pset->vm_stat_diff[] exsist.
551 */
drain_zonestat(struct zone * zone,struct per_cpu_pageset * pset)552 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
553 {
554 int i;
555
556 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
557 if (pset->vm_stat_diff[i]) {
558 int v = pset->vm_stat_diff[i];
559 pset->vm_stat_diff[i] = 0;
560 atomic_long_add(v, &zone->vm_stat[i]);
561 atomic_long_add(v, &vm_stat[i]);
562 }
563 }
564 #endif
565
566 #ifdef CONFIG_NUMA
567 /*
568 * zonelist = the list of zones passed to the allocator
569 * z = the zone from which the allocation occurred.
570 *
571 * Must be called with interrupts disabled.
572 *
573 * When __GFP_OTHER_NODE is set assume the node of the preferred
574 * zone is the local node. This is useful for daemons who allocate
575 * memory on behalf of other processes.
576 */
zone_statistics(struct zone * preferred_zone,struct zone * z,gfp_t flags)577 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
578 {
579 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
580 __inc_zone_state(z, NUMA_HIT);
581 } else {
582 __inc_zone_state(z, NUMA_MISS);
583 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
584 }
585 if (z->node == ((flags & __GFP_OTHER_NODE) ?
586 preferred_zone->node : numa_node_id()))
587 __inc_zone_state(z, NUMA_LOCAL);
588 else
589 __inc_zone_state(z, NUMA_OTHER);
590 }
591 #endif
592
593 #ifdef CONFIG_COMPACTION
594
595 struct contig_page_info {
596 unsigned long free_pages;
597 unsigned long free_blocks_total;
598 unsigned long free_blocks_suitable;
599 };
600
601 /*
602 * Calculate the number of free pages in a zone, how many contiguous
603 * pages are free and how many are large enough to satisfy an allocation of
604 * the target size. Note that this function makes no attempt to estimate
605 * how many suitable free blocks there *might* be if MOVABLE pages were
606 * migrated. Calculating that is possible, but expensive and can be
607 * figured out from userspace
608 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)609 static void fill_contig_page_info(struct zone *zone,
610 unsigned int suitable_order,
611 struct contig_page_info *info)
612 {
613 unsigned int order;
614
615 info->free_pages = 0;
616 info->free_blocks_total = 0;
617 info->free_blocks_suitable = 0;
618
619 for (order = 0; order < MAX_ORDER; order++) {
620 unsigned long blocks;
621
622 /* Count number of free blocks */
623 blocks = zone->free_area[order].nr_free;
624 info->free_blocks_total += blocks;
625
626 /* Count free base pages */
627 info->free_pages += blocks << order;
628
629 /* Count the suitable free blocks */
630 if (order >= suitable_order)
631 info->free_blocks_suitable += blocks <<
632 (order - suitable_order);
633 }
634 }
635
636 /*
637 * A fragmentation index only makes sense if an allocation of a requested
638 * size would fail. If that is true, the fragmentation index indicates
639 * whether external fragmentation or a lack of memory was the problem.
640 * The value can be used to determine if page reclaim or compaction
641 * should be used
642 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)643 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
644 {
645 unsigned long requested = 1UL << order;
646
647 if (!info->free_blocks_total)
648 return 0;
649
650 /* Fragmentation index only makes sense when a request would fail */
651 if (info->free_blocks_suitable)
652 return -1000;
653
654 /*
655 * Index is between 0 and 1 so return within 3 decimal places
656 *
657 * 0 => allocation would fail due to lack of memory
658 * 1 => allocation would fail due to fragmentation
659 */
660 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
661 }
662
663 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)664 int fragmentation_index(struct zone *zone, unsigned int order)
665 {
666 struct contig_page_info info;
667
668 fill_contig_page_info(zone, order, &info);
669 return __fragmentation_index(order, &info);
670 }
671 #endif
672
673 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
674 #include <linux/proc_fs.h>
675 #include <linux/seq_file.h>
676
677 static char * const migratetype_names[MIGRATE_TYPES] = {
678 "Unmovable",
679 "Reclaimable",
680 "Movable",
681 "Reserve",
682 #ifdef CONFIG_CMA
683 "CMA",
684 #endif
685 #ifdef CONFIG_MEMORY_ISOLATION
686 "Isolate",
687 #endif
688 };
689
frag_start(struct seq_file * m,loff_t * pos)690 static void *frag_start(struct seq_file *m, loff_t *pos)
691 {
692 pg_data_t *pgdat;
693 loff_t node = *pos;
694 for (pgdat = first_online_pgdat();
695 pgdat && node;
696 pgdat = next_online_pgdat(pgdat))
697 --node;
698
699 return pgdat;
700 }
701
frag_next(struct seq_file * m,void * arg,loff_t * pos)702 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
703 {
704 pg_data_t *pgdat = (pg_data_t *)arg;
705
706 (*pos)++;
707 return next_online_pgdat(pgdat);
708 }
709
frag_stop(struct seq_file * m,void * arg)710 static void frag_stop(struct seq_file *m, void *arg)
711 {
712 }
713
714 /* Walk all the zones in a node and print using a callback */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))715 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
716 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
717 {
718 struct zone *zone;
719 struct zone *node_zones = pgdat->node_zones;
720 unsigned long flags;
721
722 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
723 if (!populated_zone(zone))
724 continue;
725
726 spin_lock_irqsave(&zone->lock, flags);
727 print(m, pgdat, zone);
728 spin_unlock_irqrestore(&zone->lock, flags);
729 }
730 }
731 #endif
732
733 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
734 #ifdef CONFIG_ZONE_DMA
735 #define TEXT_FOR_DMA(xx) xx "_dma",
736 #else
737 #define TEXT_FOR_DMA(xx)
738 #endif
739
740 #ifdef CONFIG_ZONE_DMA32
741 #define TEXT_FOR_DMA32(xx) xx "_dma32",
742 #else
743 #define TEXT_FOR_DMA32(xx)
744 #endif
745
746 #ifdef CONFIG_HIGHMEM
747 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
748 #else
749 #define TEXT_FOR_HIGHMEM(xx)
750 #endif
751
752 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
753 TEXT_FOR_HIGHMEM(xx) xx "_movable",
754
755 const char * const vmstat_text[] = {
756 /* enum zone_stat_item countes */
757 "nr_free_pages",
758 "nr_alloc_batch",
759 "nr_inactive_anon",
760 "nr_active_anon",
761 "nr_inactive_file",
762 "nr_active_file",
763 "nr_unevictable",
764 "nr_mlock",
765 "nr_anon_pages",
766 "nr_mapped",
767 "nr_file_pages",
768 "nr_dirty",
769 "nr_writeback",
770 "nr_slab_reclaimable",
771 "nr_slab_unreclaimable",
772 "nr_page_table_pages",
773 "nr_kernel_stack",
774 "nr_unstable",
775 "nr_bounce",
776 "nr_vmscan_write",
777 "nr_vmscan_immediate_reclaim",
778 "nr_writeback_temp",
779 "nr_isolated_anon",
780 "nr_isolated_file",
781 "nr_shmem",
782 "nr_dirtied",
783 "nr_written",
784 "nr_pages_scanned",
785
786 #ifdef CONFIG_NUMA
787 "numa_hit",
788 "numa_miss",
789 "numa_foreign",
790 "numa_interleave",
791 "numa_local",
792 "numa_other",
793 #endif
794 "workingset_refault",
795 "workingset_activate",
796 "workingset_nodereclaim",
797 "nr_anon_transparent_hugepages",
798 "nr_free_cma",
799
800 /* enum writeback_stat_item counters */
801 "nr_dirty_threshold",
802 "nr_dirty_background_threshold",
803
804 #ifdef CONFIG_VM_EVENT_COUNTERS
805 /* enum vm_event_item counters */
806 "pgpgin",
807 "pgpgout",
808 "pswpin",
809 "pswpout",
810
811 TEXTS_FOR_ZONES("pgalloc")
812
813 "pgfree",
814 "pgactivate",
815 "pgdeactivate",
816
817 "pgfault",
818 "pgmajfault",
819
820 TEXTS_FOR_ZONES("pgrefill")
821 TEXTS_FOR_ZONES("pgsteal_kswapd")
822 TEXTS_FOR_ZONES("pgsteal_direct")
823 TEXTS_FOR_ZONES("pgscan_kswapd")
824 TEXTS_FOR_ZONES("pgscan_direct")
825 "pgscan_direct_throttle",
826
827 #ifdef CONFIG_NUMA
828 "zone_reclaim_failed",
829 #endif
830 "pginodesteal",
831 "slabs_scanned",
832 "kswapd_inodesteal",
833 "kswapd_low_wmark_hit_quickly",
834 "kswapd_high_wmark_hit_quickly",
835 "pageoutrun",
836 "allocstall",
837
838 "pgrotated",
839
840 "drop_pagecache",
841 "drop_slab",
842
843 #ifdef CONFIG_NUMA_BALANCING
844 "numa_pte_updates",
845 "numa_huge_pte_updates",
846 "numa_hint_faults",
847 "numa_hint_faults_local",
848 "numa_pages_migrated",
849 #endif
850 #ifdef CONFIG_MIGRATION
851 "pgmigrate_success",
852 "pgmigrate_fail",
853 #endif
854 #ifdef CONFIG_COMPACTION
855 "compact_migrate_scanned",
856 "compact_free_scanned",
857 "compact_isolated",
858 "compact_stall",
859 "compact_fail",
860 "compact_success",
861 #endif
862
863 #ifdef CONFIG_HUGETLB_PAGE
864 "htlb_buddy_alloc_success",
865 "htlb_buddy_alloc_fail",
866 #endif
867 "unevictable_pgs_culled",
868 "unevictable_pgs_scanned",
869 "unevictable_pgs_rescued",
870 "unevictable_pgs_mlocked",
871 "unevictable_pgs_munlocked",
872 "unevictable_pgs_cleared",
873 "unevictable_pgs_stranded",
874
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 "thp_fault_alloc",
877 "thp_fault_fallback",
878 "thp_collapse_alloc",
879 "thp_collapse_alloc_failed",
880 "thp_split",
881 "thp_zero_page_alloc",
882 "thp_zero_page_alloc_failed",
883 #endif
884 #ifdef CONFIG_MEMORY_BALLOON
885 "balloon_inflate",
886 "balloon_deflate",
887 #ifdef CONFIG_BALLOON_COMPACTION
888 "balloon_migrate",
889 #endif
890 #endif /* CONFIG_MEMORY_BALLOON */
891 #ifdef CONFIG_DEBUG_TLBFLUSH
892 #ifdef CONFIG_SMP
893 "nr_tlb_remote_flush",
894 "nr_tlb_remote_flush_received",
895 #endif /* CONFIG_SMP */
896 "nr_tlb_local_flush_all",
897 "nr_tlb_local_flush_one",
898 #endif /* CONFIG_DEBUG_TLBFLUSH */
899
900 #ifdef CONFIG_DEBUG_VM_VMACACHE
901 "vmacache_find_calls",
902 "vmacache_find_hits",
903 #endif
904 #endif /* CONFIG_VM_EVENTS_COUNTERS */
905 };
906 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
907
908
909 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)910 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
911 struct zone *zone)
912 {
913 int order;
914
915 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
916 for (order = 0; order < MAX_ORDER; ++order)
917 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
918 seq_putc(m, '\n');
919 }
920
921 /*
922 * This walks the free areas for each zone.
923 */
frag_show(struct seq_file * m,void * arg)924 static int frag_show(struct seq_file *m, void *arg)
925 {
926 pg_data_t *pgdat = (pg_data_t *)arg;
927 walk_zones_in_node(m, pgdat, frag_show_print);
928 return 0;
929 }
930
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)931 static void pagetypeinfo_showfree_print(struct seq_file *m,
932 pg_data_t *pgdat, struct zone *zone)
933 {
934 int order, mtype;
935
936 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
937 seq_printf(m, "Node %4d, zone %8s, type %12s ",
938 pgdat->node_id,
939 zone->name,
940 migratetype_names[mtype]);
941 for (order = 0; order < MAX_ORDER; ++order) {
942 unsigned long freecount = 0;
943 struct free_area *area;
944 struct list_head *curr;
945
946 area = &(zone->free_area[order]);
947
948 list_for_each(curr, &area->free_list[mtype])
949 freecount++;
950 seq_printf(m, "%6lu ", freecount);
951 }
952 seq_putc(m, '\n');
953 }
954 }
955
956 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)957 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
958 {
959 int order;
960 pg_data_t *pgdat = (pg_data_t *)arg;
961
962 /* Print header */
963 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
964 for (order = 0; order < MAX_ORDER; ++order)
965 seq_printf(m, "%6d ", order);
966 seq_putc(m, '\n');
967
968 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
969
970 return 0;
971 }
972
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)973 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
974 pg_data_t *pgdat, struct zone *zone)
975 {
976 int mtype;
977 unsigned long pfn;
978 unsigned long start_pfn = zone->zone_start_pfn;
979 unsigned long end_pfn = zone_end_pfn(zone);
980 unsigned long count[MIGRATE_TYPES] = { 0, };
981
982 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
983 struct page *page;
984
985 if (!pfn_valid(pfn))
986 continue;
987
988 page = pfn_to_page(pfn);
989
990 /* Watch for unexpected holes punched in the memmap */
991 if (!memmap_valid_within(pfn, page, zone))
992 continue;
993
994 mtype = get_pageblock_migratetype(page);
995
996 if (mtype < MIGRATE_TYPES)
997 count[mtype]++;
998 }
999
1000 /* Print counts */
1001 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1002 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1003 seq_printf(m, "%12lu ", count[mtype]);
1004 seq_putc(m, '\n');
1005 }
1006
1007 /* Print out the free pages at each order for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1008 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1009 {
1010 int mtype;
1011 pg_data_t *pgdat = (pg_data_t *)arg;
1012
1013 seq_printf(m, "\n%-23s", "Number of blocks type ");
1014 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1015 seq_printf(m, "%12s ", migratetype_names[mtype]);
1016 seq_putc(m, '\n');
1017 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1018
1019 return 0;
1020 }
1021
1022 /*
1023 * This prints out statistics in relation to grouping pages by mobility.
1024 * It is expensive to collect so do not constantly read the file.
1025 */
pagetypeinfo_show(struct seq_file * m,void * arg)1026 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1027 {
1028 pg_data_t *pgdat = (pg_data_t *)arg;
1029
1030 /* check memoryless node */
1031 if (!node_state(pgdat->node_id, N_MEMORY))
1032 return 0;
1033
1034 seq_printf(m, "Page block order: %d\n", pageblock_order);
1035 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1036 seq_putc(m, '\n');
1037 pagetypeinfo_showfree(m, pgdat);
1038 pagetypeinfo_showblockcount(m, pgdat);
1039
1040 return 0;
1041 }
1042
1043 static const struct seq_operations fragmentation_op = {
1044 .start = frag_start,
1045 .next = frag_next,
1046 .stop = frag_stop,
1047 .show = frag_show,
1048 };
1049
fragmentation_open(struct inode * inode,struct file * file)1050 static int fragmentation_open(struct inode *inode, struct file *file)
1051 {
1052 return seq_open(file, &fragmentation_op);
1053 }
1054
1055 static const struct file_operations fragmentation_file_operations = {
1056 .open = fragmentation_open,
1057 .read = seq_read,
1058 .llseek = seq_lseek,
1059 .release = seq_release,
1060 };
1061
1062 static const struct seq_operations pagetypeinfo_op = {
1063 .start = frag_start,
1064 .next = frag_next,
1065 .stop = frag_stop,
1066 .show = pagetypeinfo_show,
1067 };
1068
pagetypeinfo_open(struct inode * inode,struct file * file)1069 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1070 {
1071 return seq_open(file, &pagetypeinfo_op);
1072 }
1073
1074 static const struct file_operations pagetypeinfo_file_ops = {
1075 .open = pagetypeinfo_open,
1076 .read = seq_read,
1077 .llseek = seq_lseek,
1078 .release = seq_release,
1079 };
1080
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1081 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1082 struct zone *zone)
1083 {
1084 int i;
1085 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1086 seq_printf(m,
1087 "\n pages free %lu"
1088 "\n min %lu"
1089 "\n low %lu"
1090 "\n high %lu"
1091 "\n scanned %lu"
1092 "\n spanned %lu"
1093 "\n present %lu"
1094 "\n managed %lu",
1095 zone_page_state(zone, NR_FREE_PAGES),
1096 min_wmark_pages(zone),
1097 low_wmark_pages(zone),
1098 high_wmark_pages(zone),
1099 zone_page_state(zone, NR_PAGES_SCANNED),
1100 zone->spanned_pages,
1101 zone->present_pages,
1102 zone->managed_pages);
1103
1104 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1105 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1106 zone_page_state(zone, i));
1107
1108 seq_printf(m,
1109 "\n protection: (%ld",
1110 zone->lowmem_reserve[0]);
1111 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1112 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1113 seq_printf(m,
1114 ")"
1115 "\n pagesets");
1116 for_each_online_cpu(i) {
1117 struct per_cpu_pageset *pageset;
1118
1119 pageset = per_cpu_ptr(zone->pageset, i);
1120 seq_printf(m,
1121 "\n cpu: %i"
1122 "\n count: %i"
1123 "\n high: %i"
1124 "\n batch: %i",
1125 i,
1126 pageset->pcp.count,
1127 pageset->pcp.high,
1128 pageset->pcp.batch);
1129 #ifdef CONFIG_SMP
1130 seq_printf(m, "\n vm stats threshold: %d",
1131 pageset->stat_threshold);
1132 #endif
1133 }
1134 seq_printf(m,
1135 "\n all_unreclaimable: %u"
1136 "\n start_pfn: %lu"
1137 "\n inactive_ratio: %u",
1138 !zone_reclaimable(zone),
1139 zone->zone_start_pfn,
1140 zone->inactive_ratio);
1141 seq_putc(m, '\n');
1142 }
1143
1144 /*
1145 * Output information about zones in @pgdat.
1146 */
zoneinfo_show(struct seq_file * m,void * arg)1147 static int zoneinfo_show(struct seq_file *m, void *arg)
1148 {
1149 pg_data_t *pgdat = (pg_data_t *)arg;
1150 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1151 return 0;
1152 }
1153
1154 static const struct seq_operations zoneinfo_op = {
1155 .start = frag_start, /* iterate over all zones. The same as in
1156 * fragmentation. */
1157 .next = frag_next,
1158 .stop = frag_stop,
1159 .show = zoneinfo_show,
1160 };
1161
zoneinfo_open(struct inode * inode,struct file * file)1162 static int zoneinfo_open(struct inode *inode, struct file *file)
1163 {
1164 return seq_open(file, &zoneinfo_op);
1165 }
1166
1167 static const struct file_operations proc_zoneinfo_file_operations = {
1168 .open = zoneinfo_open,
1169 .read = seq_read,
1170 .llseek = seq_lseek,
1171 .release = seq_release,
1172 };
1173
1174 enum writeback_stat_item {
1175 NR_DIRTY_THRESHOLD,
1176 NR_DIRTY_BG_THRESHOLD,
1177 NR_VM_WRITEBACK_STAT_ITEMS,
1178 };
1179
vmstat_start(struct seq_file * m,loff_t * pos)1180 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1181 {
1182 unsigned long *v;
1183 int i, stat_items_size;
1184
1185 if (*pos >= ARRAY_SIZE(vmstat_text))
1186 return NULL;
1187 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1188 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1189
1190 #ifdef CONFIG_VM_EVENT_COUNTERS
1191 stat_items_size += sizeof(struct vm_event_state);
1192 #endif
1193
1194 v = kmalloc(stat_items_size, GFP_KERNEL);
1195 m->private = v;
1196 if (!v)
1197 return ERR_PTR(-ENOMEM);
1198 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1199 v[i] = global_page_state(i);
1200 v += NR_VM_ZONE_STAT_ITEMS;
1201
1202 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1203 v + NR_DIRTY_THRESHOLD);
1204 v += NR_VM_WRITEBACK_STAT_ITEMS;
1205
1206 #ifdef CONFIG_VM_EVENT_COUNTERS
1207 all_vm_events(v);
1208 v[PGPGIN] /= 2; /* sectors -> kbytes */
1209 v[PGPGOUT] /= 2;
1210 #endif
1211 return (unsigned long *)m->private + *pos;
1212 }
1213
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1214 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1215 {
1216 (*pos)++;
1217 if (*pos >= ARRAY_SIZE(vmstat_text))
1218 return NULL;
1219 return (unsigned long *)m->private + *pos;
1220 }
1221
vmstat_show(struct seq_file * m,void * arg)1222 static int vmstat_show(struct seq_file *m, void *arg)
1223 {
1224 unsigned long *l = arg;
1225 unsigned long off = l - (unsigned long *)m->private;
1226
1227 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1228 return 0;
1229 }
1230
vmstat_stop(struct seq_file * m,void * arg)1231 static void vmstat_stop(struct seq_file *m, void *arg)
1232 {
1233 kfree(m->private);
1234 m->private = NULL;
1235 }
1236
1237 static const struct seq_operations vmstat_op = {
1238 .start = vmstat_start,
1239 .next = vmstat_next,
1240 .stop = vmstat_stop,
1241 .show = vmstat_show,
1242 };
1243
vmstat_open(struct inode * inode,struct file * file)1244 static int vmstat_open(struct inode *inode, struct file *file)
1245 {
1246 return seq_open(file, &vmstat_op);
1247 }
1248
1249 static const struct file_operations proc_vmstat_file_operations = {
1250 .open = vmstat_open,
1251 .read = seq_read,
1252 .llseek = seq_lseek,
1253 .release = seq_release,
1254 };
1255 #endif /* CONFIG_PROC_FS */
1256
1257 #ifdef CONFIG_SMP
1258 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1259 int sysctl_stat_interval __read_mostly = HZ;
1260 static cpumask_var_t cpu_stat_off;
1261
vmstat_update(struct work_struct * w)1262 static void vmstat_update(struct work_struct *w)
1263 {
1264 if (refresh_cpu_vm_stats(true)) {
1265 /*
1266 * Counters were updated so we expect more updates
1267 * to occur in the future. Keep on running the
1268 * update worker thread.
1269 */
1270 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1271 round_jiffies_relative(sysctl_stat_interval));
1272 } else {
1273 /*
1274 * We did not update any counters so the app may be in
1275 * a mode where it does not cause counter updates.
1276 * We may be uselessly running vmstat_update.
1277 * Defer the checking for differentials to the
1278 * shepherd thread on a different processor.
1279 */
1280 int r;
1281 /*
1282 * Shepherd work thread does not race since it never
1283 * changes the bit if its zero but the cpu
1284 * online / off line code may race if
1285 * worker threads are still allowed during
1286 * shutdown / startup.
1287 */
1288 r = cpumask_test_and_set_cpu(smp_processor_id(),
1289 cpu_stat_off);
1290 VM_BUG_ON(r);
1291 }
1292 }
1293
1294 /*
1295 * Switch off vmstat processing and then fold all the remaining differentials
1296 * until the diffs stay at zero. The function is used by NOHZ and can only be
1297 * invoked when tick processing is not active.
1298 */
quiet_vmstat(void)1299 void quiet_vmstat(void)
1300 {
1301 if (system_state != SYSTEM_RUNNING)
1302 return;
1303
1304 do {
1305 if (!cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1306 cancel_delayed_work(this_cpu_ptr(&vmstat_work));
1307
1308 } while (refresh_cpu_vm_stats(false));
1309 }
1310
1311 /*
1312 * Check if the diffs for a certain cpu indicate that
1313 * an update is needed.
1314 */
need_update(int cpu)1315 static bool need_update(int cpu)
1316 {
1317 struct zone *zone;
1318
1319 for_each_populated_zone(zone) {
1320 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1321
1322 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1323 /*
1324 * The fast way of checking if there are any vmstat diffs.
1325 * This works because the diffs are byte sized items.
1326 */
1327 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1328 return true;
1329
1330 }
1331 return false;
1332 }
1333
1334
1335 /*
1336 * Shepherd worker thread that checks the
1337 * differentials of processors that have their worker
1338 * threads for vm statistics updates disabled because of
1339 * inactivity.
1340 */
1341 static void vmstat_shepherd(struct work_struct *w);
1342
1343 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1344
vmstat_shepherd(struct work_struct * w)1345 static void vmstat_shepherd(struct work_struct *w)
1346 {
1347 int cpu;
1348
1349 get_online_cpus();
1350 /* Check processors whose vmstat worker threads have been disabled */
1351 for_each_cpu(cpu, cpu_stat_off)
1352 if (need_update(cpu) &&
1353 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1354
1355 schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1356 __round_jiffies_relative(sysctl_stat_interval, cpu));
1357
1358 put_online_cpus();
1359
1360 schedule_delayed_work(&shepherd,
1361 round_jiffies_relative(sysctl_stat_interval));
1362
1363 }
1364
start_shepherd_timer(void)1365 static void __init start_shepherd_timer(void)
1366 {
1367 int cpu;
1368
1369 for_each_possible_cpu(cpu)
1370 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1371 vmstat_update);
1372
1373 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1374 BUG();
1375 cpumask_copy(cpu_stat_off, cpu_online_mask);
1376
1377 schedule_delayed_work(&shepherd,
1378 round_jiffies_relative(sysctl_stat_interval));
1379 }
1380
vmstat_cpu_dead(int node)1381 static void vmstat_cpu_dead(int node)
1382 {
1383 int cpu;
1384
1385 get_online_cpus();
1386 for_each_online_cpu(cpu)
1387 if (cpu_to_node(cpu) == node)
1388 goto end;
1389
1390 node_clear_state(node, N_CPU);
1391 end:
1392 put_online_cpus();
1393 }
1394
1395 /*
1396 * Use the cpu notifier to insure that the thresholds are recalculated
1397 * when necessary.
1398 */
vmstat_cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1399 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1400 unsigned long action,
1401 void *hcpu)
1402 {
1403 long cpu = (long)hcpu;
1404
1405 switch (action) {
1406 case CPU_ONLINE:
1407 case CPU_ONLINE_FROZEN:
1408 refresh_zone_stat_thresholds();
1409 node_set_state(cpu_to_node(cpu), N_CPU);
1410 cpumask_set_cpu(cpu, cpu_stat_off);
1411 break;
1412 case CPU_DOWN_PREPARE:
1413 case CPU_DOWN_PREPARE_FROZEN:
1414 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1415 cpumask_clear_cpu(cpu, cpu_stat_off);
1416 break;
1417 case CPU_DOWN_FAILED:
1418 case CPU_DOWN_FAILED_FROZEN:
1419 cpumask_set_cpu(cpu, cpu_stat_off);
1420 break;
1421 case CPU_DEAD:
1422 case CPU_DEAD_FROZEN:
1423 refresh_zone_stat_thresholds();
1424 vmstat_cpu_dead(cpu_to_node(cpu));
1425 break;
1426 default:
1427 break;
1428 }
1429 return NOTIFY_OK;
1430 }
1431
1432 static struct notifier_block vmstat_notifier =
1433 { &vmstat_cpuup_callback, NULL, 0 };
1434 #endif
1435
setup_vmstat(void)1436 static int __init setup_vmstat(void)
1437 {
1438 #ifdef CONFIG_SMP
1439 cpu_notifier_register_begin();
1440 __register_cpu_notifier(&vmstat_notifier);
1441
1442 start_shepherd_timer();
1443 cpu_notifier_register_done();
1444 #endif
1445 #ifdef CONFIG_PROC_FS
1446 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1447 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1448 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1449 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1450 #endif
1451 return 0;
1452 }
module_init(setup_vmstat)1453 module_init(setup_vmstat)
1454
1455 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1456 #include <linux/debugfs.h>
1457
1458
1459 /*
1460 * Return an index indicating how much of the available free memory is
1461 * unusable for an allocation of the requested size.
1462 */
1463 static int unusable_free_index(unsigned int order,
1464 struct contig_page_info *info)
1465 {
1466 /* No free memory is interpreted as all free memory is unusable */
1467 if (info->free_pages == 0)
1468 return 1000;
1469
1470 /*
1471 * Index should be a value between 0 and 1. Return a value to 3
1472 * decimal places.
1473 *
1474 * 0 => no fragmentation
1475 * 1 => high fragmentation
1476 */
1477 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1478
1479 }
1480
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1481 static void unusable_show_print(struct seq_file *m,
1482 pg_data_t *pgdat, struct zone *zone)
1483 {
1484 unsigned int order;
1485 int index;
1486 struct contig_page_info info;
1487
1488 seq_printf(m, "Node %d, zone %8s ",
1489 pgdat->node_id,
1490 zone->name);
1491 for (order = 0; order < MAX_ORDER; ++order) {
1492 fill_contig_page_info(zone, order, &info);
1493 index = unusable_free_index(order, &info);
1494 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1495 }
1496
1497 seq_putc(m, '\n');
1498 }
1499
1500 /*
1501 * Display unusable free space index
1502 *
1503 * The unusable free space index measures how much of the available free
1504 * memory cannot be used to satisfy an allocation of a given size and is a
1505 * value between 0 and 1. The higher the value, the more of free memory is
1506 * unusable and by implication, the worse the external fragmentation is. This
1507 * can be expressed as a percentage by multiplying by 100.
1508 */
unusable_show(struct seq_file * m,void * arg)1509 static int unusable_show(struct seq_file *m, void *arg)
1510 {
1511 pg_data_t *pgdat = (pg_data_t *)arg;
1512
1513 /* check memoryless node */
1514 if (!node_state(pgdat->node_id, N_MEMORY))
1515 return 0;
1516
1517 walk_zones_in_node(m, pgdat, unusable_show_print);
1518
1519 return 0;
1520 }
1521
1522 static const struct seq_operations unusable_op = {
1523 .start = frag_start,
1524 .next = frag_next,
1525 .stop = frag_stop,
1526 .show = unusable_show,
1527 };
1528
unusable_open(struct inode * inode,struct file * file)1529 static int unusable_open(struct inode *inode, struct file *file)
1530 {
1531 return seq_open(file, &unusable_op);
1532 }
1533
1534 static const struct file_operations unusable_file_ops = {
1535 .open = unusable_open,
1536 .read = seq_read,
1537 .llseek = seq_lseek,
1538 .release = seq_release,
1539 };
1540
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1541 static void extfrag_show_print(struct seq_file *m,
1542 pg_data_t *pgdat, struct zone *zone)
1543 {
1544 unsigned int order;
1545 int index;
1546
1547 /* Alloc on stack as interrupts are disabled for zone walk */
1548 struct contig_page_info info;
1549
1550 seq_printf(m, "Node %d, zone %8s ",
1551 pgdat->node_id,
1552 zone->name);
1553 for (order = 0; order < MAX_ORDER; ++order) {
1554 fill_contig_page_info(zone, order, &info);
1555 index = __fragmentation_index(order, &info);
1556 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1557 }
1558
1559 seq_putc(m, '\n');
1560 }
1561
1562 /*
1563 * Display fragmentation index for orders that allocations would fail for
1564 */
extfrag_show(struct seq_file * m,void * arg)1565 static int extfrag_show(struct seq_file *m, void *arg)
1566 {
1567 pg_data_t *pgdat = (pg_data_t *)arg;
1568
1569 walk_zones_in_node(m, pgdat, extfrag_show_print);
1570
1571 return 0;
1572 }
1573
1574 static const struct seq_operations extfrag_op = {
1575 .start = frag_start,
1576 .next = frag_next,
1577 .stop = frag_stop,
1578 .show = extfrag_show,
1579 };
1580
extfrag_open(struct inode * inode,struct file * file)1581 static int extfrag_open(struct inode *inode, struct file *file)
1582 {
1583 return seq_open(file, &extfrag_op);
1584 }
1585
1586 static const struct file_operations extfrag_file_ops = {
1587 .open = extfrag_open,
1588 .read = seq_read,
1589 .llseek = seq_lseek,
1590 .release = seq_release,
1591 };
1592
extfrag_debug_init(void)1593 static int __init extfrag_debug_init(void)
1594 {
1595 struct dentry *extfrag_debug_root;
1596
1597 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1598 if (!extfrag_debug_root)
1599 return -ENOMEM;
1600
1601 if (!debugfs_create_file("unusable_index", 0444,
1602 extfrag_debug_root, NULL, &unusable_file_ops))
1603 goto fail;
1604
1605 if (!debugfs_create_file("extfrag_index", 0444,
1606 extfrag_debug_root, NULL, &extfrag_file_ops))
1607 goto fail;
1608
1609 return 0;
1610 fail:
1611 debugfs_remove_recursive(extfrag_debug_root);
1612 return -ENOMEM;
1613 }
1614
1615 module_init(extfrag_debug_init);
1616 #endif
1617