• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25 
26 #include "internal.h"
27 
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states);
31 
sum_vm_events(unsigned long * ret)32 static void sum_vm_events(unsigned long *ret)
33 {
34 	int cpu;
35 	int i;
36 
37 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
38 
39 	for_each_online_cpu(cpu) {
40 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
41 
42 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
43 			ret[i] += this->event[i];
44 	}
45 }
46 
47 /*
48  * Accumulate the vm event counters across all CPUs.
49  * The result is unavoidably approximate - it can change
50  * during and after execution of this function.
51 */
all_vm_events(unsigned long * ret)52 void all_vm_events(unsigned long *ret)
53 {
54 	get_online_cpus();
55 	sum_vm_events(ret);
56 	put_online_cpus();
57 }
58 EXPORT_SYMBOL_GPL(all_vm_events);
59 
60 /*
61  * Fold the foreign cpu events into our own.
62  *
63  * This is adding to the events on one processor
64  * but keeps the global counts constant.
65  */
vm_events_fold_cpu(int cpu)66 void vm_events_fold_cpu(int cpu)
67 {
68 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
69 	int i;
70 
71 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
72 		count_vm_events(i, fold_state->event[i]);
73 		fold_state->event[i] = 0;
74 	}
75 }
76 
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
78 
79 /*
80  * Manage combined zone based / global counters
81  *
82  * vm_stat contains the global counters
83  */
84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 EXPORT_SYMBOL(vm_stat);
86 
87 #ifdef CONFIG_SMP
88 
calculate_pressure_threshold(struct zone * zone)89 int calculate_pressure_threshold(struct zone *zone)
90 {
91 	int threshold;
92 	int watermark_distance;
93 
94 	/*
95 	 * As vmstats are not up to date, there is drift between the estimated
96 	 * and real values. For high thresholds and a high number of CPUs, it
97 	 * is possible for the min watermark to be breached while the estimated
98 	 * value looks fine. The pressure threshold is a reduced value such
99 	 * that even the maximum amount of drift will not accidentally breach
100 	 * the min watermark
101 	 */
102 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
103 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
104 
105 	/*
106 	 * Maximum threshold is 125
107 	 */
108 	threshold = min(125, threshold);
109 
110 	return threshold;
111 }
112 
calculate_normal_threshold(struct zone * zone)113 int calculate_normal_threshold(struct zone *zone)
114 {
115 	int threshold;
116 	int mem;	/* memory in 128 MB units */
117 
118 	/*
119 	 * The threshold scales with the number of processors and the amount
120 	 * of memory per zone. More memory means that we can defer updates for
121 	 * longer, more processors could lead to more contention.
122  	 * fls() is used to have a cheap way of logarithmic scaling.
123 	 *
124 	 * Some sample thresholds:
125 	 *
126 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
127 	 * ------------------------------------------------------------------
128 	 * 8		1		1	0.9-1 GB	4
129 	 * 16		2		2	0.9-1 GB	4
130 	 * 20 		2		2	1-2 GB		5
131 	 * 24		2		2	2-4 GB		6
132 	 * 28		2		2	4-8 GB		7
133 	 * 32		2		2	8-16 GB		8
134 	 * 4		2		2	<128M		1
135 	 * 30		4		3	2-4 GB		5
136 	 * 48		4		3	8-16 GB		8
137 	 * 32		8		4	1-2 GB		4
138 	 * 32		8		4	0.9-1GB		4
139 	 * 10		16		5	<128M		1
140 	 * 40		16		5	900M		4
141 	 * 70		64		7	2-4 GB		5
142 	 * 84		64		7	4-8 GB		6
143 	 * 108		512		9	4-8 GB		6
144 	 * 125		1024		10	8-16 GB		8
145 	 * 125		1024		10	16-32 GB	9
146 	 */
147 
148 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
149 
150 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
151 
152 	/*
153 	 * Maximum threshold is 125
154 	 */
155 	threshold = min(125, threshold);
156 
157 	return threshold;
158 }
159 
160 /*
161  * Refresh the thresholds for each zone.
162  */
refresh_zone_stat_thresholds(void)163 void refresh_zone_stat_thresholds(void)
164 {
165 	struct zone *zone;
166 	int cpu;
167 	int threshold;
168 
169 	for_each_populated_zone(zone) {
170 		unsigned long max_drift, tolerate_drift;
171 
172 		threshold = calculate_normal_threshold(zone);
173 
174 		for_each_online_cpu(cpu)
175 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
176 							= threshold;
177 
178 		/*
179 		 * Only set percpu_drift_mark if there is a danger that
180 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 		 * the min watermark could be breached by an allocation
182 		 */
183 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
184 		max_drift = num_online_cpus() * threshold;
185 		if (max_drift > tolerate_drift)
186 			zone->percpu_drift_mark = high_wmark_pages(zone) +
187 					max_drift;
188 	}
189 }
190 
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))191 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
192 				int (*calculate_pressure)(struct zone *))
193 {
194 	struct zone *zone;
195 	int cpu;
196 	int threshold;
197 	int i;
198 
199 	for (i = 0; i < pgdat->nr_zones; i++) {
200 		zone = &pgdat->node_zones[i];
201 		if (!zone->percpu_drift_mark)
202 			continue;
203 
204 		threshold = (*calculate_pressure)(zone);
205 		for_each_online_cpu(cpu)
206 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
207 							= threshold;
208 	}
209 }
210 
211 /*
212  * For use when we know that interrupts are disabled,
213  * or when we know that preemption is disabled and that
214  * particular counter cannot be updated from interrupt context.
215  */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
217 				int delta)
218 {
219 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
220 	s8 __percpu *p = pcp->vm_stat_diff + item;
221 	long x;
222 	long t;
223 
224 	x = delta + __this_cpu_read(*p);
225 
226 	t = __this_cpu_read(pcp->stat_threshold);
227 
228 	if (unlikely(x > t || x < -t)) {
229 		zone_page_state_add(x, zone, item);
230 		x = 0;
231 	}
232 	__this_cpu_write(*p, x);
233 }
234 EXPORT_SYMBOL(__mod_zone_page_state);
235 
236 /*
237  * Optimized increment and decrement functions.
238  *
239  * These are only for a single page and therefore can take a struct page *
240  * argument instead of struct zone *. This allows the inclusion of the code
241  * generated for page_zone(page) into the optimized functions.
242  *
243  * No overflow check is necessary and therefore the differential can be
244  * incremented or decremented in place which may allow the compilers to
245  * generate better code.
246  * The increment or decrement is known and therefore one boundary check can
247  * be omitted.
248  *
249  * NOTE: These functions are very performance sensitive. Change only
250  * with care.
251  *
252  * Some processors have inc/dec instructions that are atomic vs an interrupt.
253  * However, the code must first determine the differential location in a zone
254  * based on the processor number and then inc/dec the counter. There is no
255  * guarantee without disabling preemption that the processor will not change
256  * in between and therefore the atomicity vs. interrupt cannot be exploited
257  * in a useful way here.
258  */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
260 {
261 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
262 	s8 __percpu *p = pcp->vm_stat_diff + item;
263 	s8 v, t;
264 
265 	v = __this_cpu_inc_return(*p);
266 	t = __this_cpu_read(pcp->stat_threshold);
267 	if (unlikely(v > t)) {
268 		s8 overstep = t >> 1;
269 
270 		zone_page_state_add(v + overstep, zone, item);
271 		__this_cpu_write(*p, -overstep);
272 	}
273 }
274 
__inc_zone_page_state(struct page * page,enum zone_stat_item item)275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
276 {
277 	__inc_zone_state(page_zone(page), item);
278 }
279 EXPORT_SYMBOL(__inc_zone_page_state);
280 
__dec_zone_state(struct zone * zone,enum zone_stat_item item)281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
282 {
283 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
284 	s8 __percpu *p = pcp->vm_stat_diff + item;
285 	s8 v, t;
286 
287 	v = __this_cpu_dec_return(*p);
288 	t = __this_cpu_read(pcp->stat_threshold);
289 	if (unlikely(v < - t)) {
290 		s8 overstep = t >> 1;
291 
292 		zone_page_state_add(v - overstep, zone, item);
293 		__this_cpu_write(*p, overstep);
294 	}
295 }
296 
__dec_zone_page_state(struct page * page,enum zone_stat_item item)297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
298 {
299 	__dec_zone_state(page_zone(page), item);
300 }
301 EXPORT_SYMBOL(__dec_zone_page_state);
302 
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
304 /*
305  * If we have cmpxchg_local support then we do not need to incur the overhead
306  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
307  *
308  * mod_state() modifies the zone counter state through atomic per cpu
309  * operations.
310  *
311  * Overstep mode specifies how overstep should handled:
312  *     0       No overstepping
313  *     1       Overstepping half of threshold
314  *     -1      Overstepping minus half of threshold
315 */
mod_state(struct zone * zone,enum zone_stat_item item,int delta,int overstep_mode)316 static inline void mod_state(struct zone *zone,
317        enum zone_stat_item item, int delta, int overstep_mode)
318 {
319 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 	s8 __percpu *p = pcp->vm_stat_diff + item;
321 	long o, n, t, z;
322 
323 	do {
324 		z = 0;  /* overflow to zone counters */
325 
326 		/*
327 		 * The fetching of the stat_threshold is racy. We may apply
328 		 * a counter threshold to the wrong the cpu if we get
329 		 * rescheduled while executing here. However, the next
330 		 * counter update will apply the threshold again and
331 		 * therefore bring the counter under the threshold again.
332 		 *
333 		 * Most of the time the thresholds are the same anyways
334 		 * for all cpus in a zone.
335 		 */
336 		t = this_cpu_read(pcp->stat_threshold);
337 
338 		o = this_cpu_read(*p);
339 		n = delta + o;
340 
341 		if (n > t || n < -t) {
342 			int os = overstep_mode * (t >> 1) ;
343 
344 			/* Overflow must be added to zone counters */
345 			z = n + os;
346 			n = -os;
347 		}
348 	} while (this_cpu_cmpxchg(*p, o, n) != o);
349 
350 	if (z)
351 		zone_page_state_add(z, zone, item);
352 }
353 
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
355 					int delta)
356 {
357 	mod_state(zone, item, delta, 0);
358 }
359 EXPORT_SYMBOL(mod_zone_page_state);
360 
inc_zone_state(struct zone * zone,enum zone_stat_item item)361 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
362 {
363 	mod_state(zone, item, 1, 1);
364 }
365 
inc_zone_page_state(struct page * page,enum zone_stat_item item)366 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
367 {
368 	mod_state(page_zone(page), item, 1, 1);
369 }
370 EXPORT_SYMBOL(inc_zone_page_state);
371 
dec_zone_page_state(struct page * page,enum zone_stat_item item)372 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
373 {
374 	mod_state(page_zone(page), item, -1, -1);
375 }
376 EXPORT_SYMBOL(dec_zone_page_state);
377 #else
378 /*
379  * Use interrupt disable to serialize counter updates
380  */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,int delta)381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
382 					int delta)
383 {
384 	unsigned long flags;
385 
386 	local_irq_save(flags);
387 	__mod_zone_page_state(zone, item, delta);
388 	local_irq_restore(flags);
389 }
390 EXPORT_SYMBOL(mod_zone_page_state);
391 
inc_zone_state(struct zone * zone,enum zone_stat_item item)392 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
393 {
394 	unsigned long flags;
395 
396 	local_irq_save(flags);
397 	__inc_zone_state(zone, item);
398 	local_irq_restore(flags);
399 }
400 
inc_zone_page_state(struct page * page,enum zone_stat_item item)401 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
402 {
403 	unsigned long flags;
404 	struct zone *zone;
405 
406 	zone = page_zone(page);
407 	local_irq_save(flags);
408 	__inc_zone_state(zone, item);
409 	local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL(inc_zone_page_state);
412 
dec_zone_page_state(struct page * page,enum zone_stat_item item)413 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
414 {
415 	unsigned long flags;
416 
417 	local_irq_save(flags);
418 	__dec_zone_page_state(page, item);
419 	local_irq_restore(flags);
420 }
421 EXPORT_SYMBOL(dec_zone_page_state);
422 #endif
423 
424 
425 /*
426  * Fold a differential into the global counters.
427  * Returns the number of counters updated.
428  */
fold_diff(int * diff)429 static int fold_diff(int *diff)
430 {
431 	int i;
432 	int changes = 0;
433 
434 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
435 		if (diff[i]) {
436 			atomic_long_add(diff[i], &vm_stat[i]);
437 			changes++;
438 	}
439 	return changes;
440 }
441 
442 /*
443  * Update the zone counters for the current cpu.
444  *
445  * Note that refresh_cpu_vm_stats strives to only access
446  * node local memory. The per cpu pagesets on remote zones are placed
447  * in the memory local to the processor using that pageset. So the
448  * loop over all zones will access a series of cachelines local to
449  * the processor.
450  *
451  * The call to zone_page_state_add updates the cachelines with the
452  * statistics in the remote zone struct as well as the global cachelines
453  * with the global counters. These could cause remote node cache line
454  * bouncing and will have to be only done when necessary.
455  *
456  * The function returns the number of global counters updated.
457  */
refresh_cpu_vm_stats(bool do_pagesets)458 static int refresh_cpu_vm_stats(bool do_pagesets)
459 {
460 	struct zone *zone;
461 	int i;
462 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
463 	int changes = 0;
464 
465 	for_each_populated_zone(zone) {
466 		struct per_cpu_pageset __percpu *p = zone->pageset;
467 
468 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
469 			int v;
470 
471 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
472 			if (v) {
473 
474 				atomic_long_add(v, &zone->vm_stat[i]);
475 				global_diff[i] += v;
476 #ifdef CONFIG_NUMA
477 				/* 3 seconds idle till flush */
478 				__this_cpu_write(p->expire, 3);
479 #endif
480 			}
481 		}
482 #ifdef CONFIG_NUMA
483 		if (do_pagesets) {
484 			cond_resched();
485 			/*
486 			 * Deal with draining the remote pageset of this
487 			 * processor
488 			 *
489 			 * Check if there are pages remaining in this pageset
490 			 * if not then there is nothing to expire.
491 			 */
492 			if (!__this_cpu_read(p->expire) ||
493 			       !__this_cpu_read(p->pcp.count))
494 				continue;
495 
496 			/*
497 			 * We never drain zones local to this processor.
498 			 */
499 			if (zone_to_nid(zone) == numa_node_id()) {
500 				__this_cpu_write(p->expire, 0);
501 				continue;
502 			}
503 
504 			if (__this_cpu_dec_return(p->expire))
505 				continue;
506 
507 			if (__this_cpu_read(p->pcp.count)) {
508 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
509 				changes++;
510 			}
511 		}
512 #endif
513 	}
514 	changes += fold_diff(global_diff);
515 	return changes;
516 }
517 
518 /*
519  * Fold the data for an offline cpu into the global array.
520  * There cannot be any access by the offline cpu and therefore
521  * synchronization is simplified.
522  */
cpu_vm_stats_fold(int cpu)523 void cpu_vm_stats_fold(int cpu)
524 {
525 	struct zone *zone;
526 	int i;
527 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
528 
529 	for_each_populated_zone(zone) {
530 		struct per_cpu_pageset *p;
531 
532 		p = per_cpu_ptr(zone->pageset, cpu);
533 
534 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
535 			if (p->vm_stat_diff[i]) {
536 				int v;
537 
538 				v = p->vm_stat_diff[i];
539 				p->vm_stat_diff[i] = 0;
540 				atomic_long_add(v, &zone->vm_stat[i]);
541 				global_diff[i] += v;
542 			}
543 	}
544 
545 	fold_diff(global_diff);
546 }
547 
548 /*
549  * this is only called if !populated_zone(zone), which implies no other users of
550  * pset->vm_stat_diff[] exsist.
551  */
drain_zonestat(struct zone * zone,struct per_cpu_pageset * pset)552 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
553 {
554 	int i;
555 
556 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
557 		if (pset->vm_stat_diff[i]) {
558 			int v = pset->vm_stat_diff[i];
559 			pset->vm_stat_diff[i] = 0;
560 			atomic_long_add(v, &zone->vm_stat[i]);
561 			atomic_long_add(v, &vm_stat[i]);
562 		}
563 }
564 #endif
565 
566 #ifdef CONFIG_NUMA
567 /*
568  * zonelist = the list of zones passed to the allocator
569  * z 	    = the zone from which the allocation occurred.
570  *
571  * Must be called with interrupts disabled.
572  *
573  * When __GFP_OTHER_NODE is set assume the node of the preferred
574  * zone is the local node. This is useful for daemons who allocate
575  * memory on behalf of other processes.
576  */
zone_statistics(struct zone * preferred_zone,struct zone * z,gfp_t flags)577 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
578 {
579 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
580 		__inc_zone_state(z, NUMA_HIT);
581 	} else {
582 		__inc_zone_state(z, NUMA_MISS);
583 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
584 	}
585 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
586 			preferred_zone->node : numa_node_id()))
587 		__inc_zone_state(z, NUMA_LOCAL);
588 	else
589 		__inc_zone_state(z, NUMA_OTHER);
590 }
591 #endif
592 
593 #ifdef CONFIG_COMPACTION
594 
595 struct contig_page_info {
596 	unsigned long free_pages;
597 	unsigned long free_blocks_total;
598 	unsigned long free_blocks_suitable;
599 };
600 
601 /*
602  * Calculate the number of free pages in a zone, how many contiguous
603  * pages are free and how many are large enough to satisfy an allocation of
604  * the target size. Note that this function makes no attempt to estimate
605  * how many suitable free blocks there *might* be if MOVABLE pages were
606  * migrated. Calculating that is possible, but expensive and can be
607  * figured out from userspace
608  */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)609 static void fill_contig_page_info(struct zone *zone,
610 				unsigned int suitable_order,
611 				struct contig_page_info *info)
612 {
613 	unsigned int order;
614 
615 	info->free_pages = 0;
616 	info->free_blocks_total = 0;
617 	info->free_blocks_suitable = 0;
618 
619 	for (order = 0; order < MAX_ORDER; order++) {
620 		unsigned long blocks;
621 
622 		/* Count number of free blocks */
623 		blocks = zone->free_area[order].nr_free;
624 		info->free_blocks_total += blocks;
625 
626 		/* Count free base pages */
627 		info->free_pages += blocks << order;
628 
629 		/* Count the suitable free blocks */
630 		if (order >= suitable_order)
631 			info->free_blocks_suitable += blocks <<
632 						(order - suitable_order);
633 	}
634 }
635 
636 /*
637  * A fragmentation index only makes sense if an allocation of a requested
638  * size would fail. If that is true, the fragmentation index indicates
639  * whether external fragmentation or a lack of memory was the problem.
640  * The value can be used to determine if page reclaim or compaction
641  * should be used
642  */
__fragmentation_index(unsigned int order,struct contig_page_info * info)643 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
644 {
645 	unsigned long requested = 1UL << order;
646 
647 	if (!info->free_blocks_total)
648 		return 0;
649 
650 	/* Fragmentation index only makes sense when a request would fail */
651 	if (info->free_blocks_suitable)
652 		return -1000;
653 
654 	/*
655 	 * Index is between 0 and 1 so return within 3 decimal places
656 	 *
657 	 * 0 => allocation would fail due to lack of memory
658 	 * 1 => allocation would fail due to fragmentation
659 	 */
660 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
661 }
662 
663 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)664 int fragmentation_index(struct zone *zone, unsigned int order)
665 {
666 	struct contig_page_info info;
667 
668 	fill_contig_page_info(zone, order, &info);
669 	return __fragmentation_index(order, &info);
670 }
671 #endif
672 
673 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
674 #include <linux/proc_fs.h>
675 #include <linux/seq_file.h>
676 
677 static char * const migratetype_names[MIGRATE_TYPES] = {
678 	"Unmovable",
679 	"Reclaimable",
680 	"Movable",
681 	"Reserve",
682 #ifdef CONFIG_CMA
683 	"CMA",
684 #endif
685 #ifdef CONFIG_MEMORY_ISOLATION
686 	"Isolate",
687 #endif
688 };
689 
frag_start(struct seq_file * m,loff_t * pos)690 static void *frag_start(struct seq_file *m, loff_t *pos)
691 {
692 	pg_data_t *pgdat;
693 	loff_t node = *pos;
694 	for (pgdat = first_online_pgdat();
695 	     pgdat && node;
696 	     pgdat = next_online_pgdat(pgdat))
697 		--node;
698 
699 	return pgdat;
700 }
701 
frag_next(struct seq_file * m,void * arg,loff_t * pos)702 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
703 {
704 	pg_data_t *pgdat = (pg_data_t *)arg;
705 
706 	(*pos)++;
707 	return next_online_pgdat(pgdat);
708 }
709 
frag_stop(struct seq_file * m,void * arg)710 static void frag_stop(struct seq_file *m, void *arg)
711 {
712 }
713 
714 /* Walk all the zones in a node and print using a callback */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))715 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
716 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
717 {
718 	struct zone *zone;
719 	struct zone *node_zones = pgdat->node_zones;
720 	unsigned long flags;
721 
722 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
723 		if (!populated_zone(zone))
724 			continue;
725 
726 		spin_lock_irqsave(&zone->lock, flags);
727 		print(m, pgdat, zone);
728 		spin_unlock_irqrestore(&zone->lock, flags);
729 	}
730 }
731 #endif
732 
733 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
734 #ifdef CONFIG_ZONE_DMA
735 #define TEXT_FOR_DMA(xx) xx "_dma",
736 #else
737 #define TEXT_FOR_DMA(xx)
738 #endif
739 
740 #ifdef CONFIG_ZONE_DMA32
741 #define TEXT_FOR_DMA32(xx) xx "_dma32",
742 #else
743 #define TEXT_FOR_DMA32(xx)
744 #endif
745 
746 #ifdef CONFIG_HIGHMEM
747 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
748 #else
749 #define TEXT_FOR_HIGHMEM(xx)
750 #endif
751 
752 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
753 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
754 
755 const char * const vmstat_text[] = {
756 	/* enum zone_stat_item countes */
757 	"nr_free_pages",
758 	"nr_alloc_batch",
759 	"nr_inactive_anon",
760 	"nr_active_anon",
761 	"nr_inactive_file",
762 	"nr_active_file",
763 	"nr_unevictable",
764 	"nr_mlock",
765 	"nr_anon_pages",
766 	"nr_mapped",
767 	"nr_file_pages",
768 	"nr_dirty",
769 	"nr_writeback",
770 	"nr_slab_reclaimable",
771 	"nr_slab_unreclaimable",
772 	"nr_page_table_pages",
773 	"nr_kernel_stack",
774 	"nr_unstable",
775 	"nr_bounce",
776 	"nr_vmscan_write",
777 	"nr_vmscan_immediate_reclaim",
778 	"nr_writeback_temp",
779 	"nr_isolated_anon",
780 	"nr_isolated_file",
781 	"nr_shmem",
782 	"nr_dirtied",
783 	"nr_written",
784 	"nr_pages_scanned",
785 
786 #ifdef CONFIG_NUMA
787 	"numa_hit",
788 	"numa_miss",
789 	"numa_foreign",
790 	"numa_interleave",
791 	"numa_local",
792 	"numa_other",
793 #endif
794 	"workingset_refault",
795 	"workingset_activate",
796 	"workingset_nodereclaim",
797 	"nr_anon_transparent_hugepages",
798 	"nr_free_cma",
799 
800 	/* enum writeback_stat_item counters */
801 	"nr_dirty_threshold",
802 	"nr_dirty_background_threshold",
803 
804 #ifdef CONFIG_VM_EVENT_COUNTERS
805 	/* enum vm_event_item counters */
806 	"pgpgin",
807 	"pgpgout",
808 	"pswpin",
809 	"pswpout",
810 
811 	TEXTS_FOR_ZONES("pgalloc")
812 
813 	"pgfree",
814 	"pgactivate",
815 	"pgdeactivate",
816 
817 	"pgfault",
818 	"pgmajfault",
819 
820 	TEXTS_FOR_ZONES("pgrefill")
821 	TEXTS_FOR_ZONES("pgsteal_kswapd")
822 	TEXTS_FOR_ZONES("pgsteal_direct")
823 	TEXTS_FOR_ZONES("pgscan_kswapd")
824 	TEXTS_FOR_ZONES("pgscan_direct")
825 	"pgscan_direct_throttle",
826 
827 #ifdef CONFIG_NUMA
828 	"zone_reclaim_failed",
829 #endif
830 	"pginodesteal",
831 	"slabs_scanned",
832 	"kswapd_inodesteal",
833 	"kswapd_low_wmark_hit_quickly",
834 	"kswapd_high_wmark_hit_quickly",
835 	"pageoutrun",
836 	"allocstall",
837 
838 	"pgrotated",
839 
840 	"drop_pagecache",
841 	"drop_slab",
842 
843 #ifdef CONFIG_NUMA_BALANCING
844 	"numa_pte_updates",
845 	"numa_huge_pte_updates",
846 	"numa_hint_faults",
847 	"numa_hint_faults_local",
848 	"numa_pages_migrated",
849 #endif
850 #ifdef CONFIG_MIGRATION
851 	"pgmigrate_success",
852 	"pgmigrate_fail",
853 #endif
854 #ifdef CONFIG_COMPACTION
855 	"compact_migrate_scanned",
856 	"compact_free_scanned",
857 	"compact_isolated",
858 	"compact_stall",
859 	"compact_fail",
860 	"compact_success",
861 #endif
862 
863 #ifdef CONFIG_HUGETLB_PAGE
864 	"htlb_buddy_alloc_success",
865 	"htlb_buddy_alloc_fail",
866 #endif
867 	"unevictable_pgs_culled",
868 	"unevictable_pgs_scanned",
869 	"unevictable_pgs_rescued",
870 	"unevictable_pgs_mlocked",
871 	"unevictable_pgs_munlocked",
872 	"unevictable_pgs_cleared",
873 	"unevictable_pgs_stranded",
874 
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 	"thp_fault_alloc",
877 	"thp_fault_fallback",
878 	"thp_collapse_alloc",
879 	"thp_collapse_alloc_failed",
880 	"thp_split",
881 	"thp_zero_page_alloc",
882 	"thp_zero_page_alloc_failed",
883 #endif
884 #ifdef CONFIG_MEMORY_BALLOON
885 	"balloon_inflate",
886 	"balloon_deflate",
887 #ifdef CONFIG_BALLOON_COMPACTION
888 	"balloon_migrate",
889 #endif
890 #endif /* CONFIG_MEMORY_BALLOON */
891 #ifdef CONFIG_DEBUG_TLBFLUSH
892 #ifdef CONFIG_SMP
893 	"nr_tlb_remote_flush",
894 	"nr_tlb_remote_flush_received",
895 #endif /* CONFIG_SMP */
896 	"nr_tlb_local_flush_all",
897 	"nr_tlb_local_flush_one",
898 #endif /* CONFIG_DEBUG_TLBFLUSH */
899 
900 #ifdef CONFIG_DEBUG_VM_VMACACHE
901 	"vmacache_find_calls",
902 	"vmacache_find_hits",
903 #endif
904 #endif /* CONFIG_VM_EVENTS_COUNTERS */
905 };
906 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
907 
908 
909 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)910 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
911 						struct zone *zone)
912 {
913 	int order;
914 
915 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
916 	for (order = 0; order < MAX_ORDER; ++order)
917 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
918 	seq_putc(m, '\n');
919 }
920 
921 /*
922  * This walks the free areas for each zone.
923  */
frag_show(struct seq_file * m,void * arg)924 static int frag_show(struct seq_file *m, void *arg)
925 {
926 	pg_data_t *pgdat = (pg_data_t *)arg;
927 	walk_zones_in_node(m, pgdat, frag_show_print);
928 	return 0;
929 }
930 
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)931 static void pagetypeinfo_showfree_print(struct seq_file *m,
932 					pg_data_t *pgdat, struct zone *zone)
933 {
934 	int order, mtype;
935 
936 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
937 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
938 					pgdat->node_id,
939 					zone->name,
940 					migratetype_names[mtype]);
941 		for (order = 0; order < MAX_ORDER; ++order) {
942 			unsigned long freecount = 0;
943 			struct free_area *area;
944 			struct list_head *curr;
945 
946 			area = &(zone->free_area[order]);
947 
948 			list_for_each(curr, &area->free_list[mtype])
949 				freecount++;
950 			seq_printf(m, "%6lu ", freecount);
951 		}
952 		seq_putc(m, '\n');
953 	}
954 }
955 
956 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)957 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
958 {
959 	int order;
960 	pg_data_t *pgdat = (pg_data_t *)arg;
961 
962 	/* Print header */
963 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
964 	for (order = 0; order < MAX_ORDER; ++order)
965 		seq_printf(m, "%6d ", order);
966 	seq_putc(m, '\n');
967 
968 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
969 
970 	return 0;
971 }
972 
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)973 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
974 					pg_data_t *pgdat, struct zone *zone)
975 {
976 	int mtype;
977 	unsigned long pfn;
978 	unsigned long start_pfn = zone->zone_start_pfn;
979 	unsigned long end_pfn = zone_end_pfn(zone);
980 	unsigned long count[MIGRATE_TYPES] = { 0, };
981 
982 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
983 		struct page *page;
984 
985 		if (!pfn_valid(pfn))
986 			continue;
987 
988 		page = pfn_to_page(pfn);
989 
990 		/* Watch for unexpected holes punched in the memmap */
991 		if (!memmap_valid_within(pfn, page, zone))
992 			continue;
993 
994 		mtype = get_pageblock_migratetype(page);
995 
996 		if (mtype < MIGRATE_TYPES)
997 			count[mtype]++;
998 	}
999 
1000 	/* Print counts */
1001 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1002 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1003 		seq_printf(m, "%12lu ", count[mtype]);
1004 	seq_putc(m, '\n');
1005 }
1006 
1007 /* Print out the free pages at each order for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1008 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1009 {
1010 	int mtype;
1011 	pg_data_t *pgdat = (pg_data_t *)arg;
1012 
1013 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1014 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1015 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1016 	seq_putc(m, '\n');
1017 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * This prints out statistics in relation to grouping pages by mobility.
1024  * It is expensive to collect so do not constantly read the file.
1025  */
pagetypeinfo_show(struct seq_file * m,void * arg)1026 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1027 {
1028 	pg_data_t *pgdat = (pg_data_t *)arg;
1029 
1030 	/* check memoryless node */
1031 	if (!node_state(pgdat->node_id, N_MEMORY))
1032 		return 0;
1033 
1034 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1035 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1036 	seq_putc(m, '\n');
1037 	pagetypeinfo_showfree(m, pgdat);
1038 	pagetypeinfo_showblockcount(m, pgdat);
1039 
1040 	return 0;
1041 }
1042 
1043 static const struct seq_operations fragmentation_op = {
1044 	.start	= frag_start,
1045 	.next	= frag_next,
1046 	.stop	= frag_stop,
1047 	.show	= frag_show,
1048 };
1049 
fragmentation_open(struct inode * inode,struct file * file)1050 static int fragmentation_open(struct inode *inode, struct file *file)
1051 {
1052 	return seq_open(file, &fragmentation_op);
1053 }
1054 
1055 static const struct file_operations fragmentation_file_operations = {
1056 	.open		= fragmentation_open,
1057 	.read		= seq_read,
1058 	.llseek		= seq_lseek,
1059 	.release	= seq_release,
1060 };
1061 
1062 static const struct seq_operations pagetypeinfo_op = {
1063 	.start	= frag_start,
1064 	.next	= frag_next,
1065 	.stop	= frag_stop,
1066 	.show	= pagetypeinfo_show,
1067 };
1068 
pagetypeinfo_open(struct inode * inode,struct file * file)1069 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1070 {
1071 	return seq_open(file, &pagetypeinfo_op);
1072 }
1073 
1074 static const struct file_operations pagetypeinfo_file_ops = {
1075 	.open		= pagetypeinfo_open,
1076 	.read		= seq_read,
1077 	.llseek		= seq_lseek,
1078 	.release	= seq_release,
1079 };
1080 
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1081 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1082 							struct zone *zone)
1083 {
1084 	int i;
1085 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1086 	seq_printf(m,
1087 		   "\n  pages free     %lu"
1088 		   "\n        min      %lu"
1089 		   "\n        low      %lu"
1090 		   "\n        high     %lu"
1091 		   "\n        scanned  %lu"
1092 		   "\n        spanned  %lu"
1093 		   "\n        present  %lu"
1094 		   "\n        managed  %lu",
1095 		   zone_page_state(zone, NR_FREE_PAGES),
1096 		   min_wmark_pages(zone),
1097 		   low_wmark_pages(zone),
1098 		   high_wmark_pages(zone),
1099 		   zone_page_state(zone, NR_PAGES_SCANNED),
1100 		   zone->spanned_pages,
1101 		   zone->present_pages,
1102 		   zone->managed_pages);
1103 
1104 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1105 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1106 				zone_page_state(zone, i));
1107 
1108 	seq_printf(m,
1109 		   "\n        protection: (%ld",
1110 		   zone->lowmem_reserve[0]);
1111 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1112 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1113 	seq_printf(m,
1114 		   ")"
1115 		   "\n  pagesets");
1116 	for_each_online_cpu(i) {
1117 		struct per_cpu_pageset *pageset;
1118 
1119 		pageset = per_cpu_ptr(zone->pageset, i);
1120 		seq_printf(m,
1121 			   "\n    cpu: %i"
1122 			   "\n              count: %i"
1123 			   "\n              high:  %i"
1124 			   "\n              batch: %i",
1125 			   i,
1126 			   pageset->pcp.count,
1127 			   pageset->pcp.high,
1128 			   pageset->pcp.batch);
1129 #ifdef CONFIG_SMP
1130 		seq_printf(m, "\n  vm stats threshold: %d",
1131 				pageset->stat_threshold);
1132 #endif
1133 	}
1134 	seq_printf(m,
1135 		   "\n  all_unreclaimable: %u"
1136 		   "\n  start_pfn:         %lu"
1137 		   "\n  inactive_ratio:    %u",
1138 		   !zone_reclaimable(zone),
1139 		   zone->zone_start_pfn,
1140 		   zone->inactive_ratio);
1141 	seq_putc(m, '\n');
1142 }
1143 
1144 /*
1145  * Output information about zones in @pgdat.
1146  */
zoneinfo_show(struct seq_file * m,void * arg)1147 static int zoneinfo_show(struct seq_file *m, void *arg)
1148 {
1149 	pg_data_t *pgdat = (pg_data_t *)arg;
1150 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1151 	return 0;
1152 }
1153 
1154 static const struct seq_operations zoneinfo_op = {
1155 	.start	= frag_start, /* iterate over all zones. The same as in
1156 			       * fragmentation. */
1157 	.next	= frag_next,
1158 	.stop	= frag_stop,
1159 	.show	= zoneinfo_show,
1160 };
1161 
zoneinfo_open(struct inode * inode,struct file * file)1162 static int zoneinfo_open(struct inode *inode, struct file *file)
1163 {
1164 	return seq_open(file, &zoneinfo_op);
1165 }
1166 
1167 static const struct file_operations proc_zoneinfo_file_operations = {
1168 	.open		= zoneinfo_open,
1169 	.read		= seq_read,
1170 	.llseek		= seq_lseek,
1171 	.release	= seq_release,
1172 };
1173 
1174 enum writeback_stat_item {
1175 	NR_DIRTY_THRESHOLD,
1176 	NR_DIRTY_BG_THRESHOLD,
1177 	NR_VM_WRITEBACK_STAT_ITEMS,
1178 };
1179 
vmstat_start(struct seq_file * m,loff_t * pos)1180 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1181 {
1182 	unsigned long *v;
1183 	int i, stat_items_size;
1184 
1185 	if (*pos >= ARRAY_SIZE(vmstat_text))
1186 		return NULL;
1187 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1188 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1189 
1190 #ifdef CONFIG_VM_EVENT_COUNTERS
1191 	stat_items_size += sizeof(struct vm_event_state);
1192 #endif
1193 
1194 	v = kmalloc(stat_items_size, GFP_KERNEL);
1195 	m->private = v;
1196 	if (!v)
1197 		return ERR_PTR(-ENOMEM);
1198 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1199 		v[i] = global_page_state(i);
1200 	v += NR_VM_ZONE_STAT_ITEMS;
1201 
1202 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1203 			    v + NR_DIRTY_THRESHOLD);
1204 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1205 
1206 #ifdef CONFIG_VM_EVENT_COUNTERS
1207 	all_vm_events(v);
1208 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1209 	v[PGPGOUT] /= 2;
1210 #endif
1211 	return (unsigned long *)m->private + *pos;
1212 }
1213 
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1214 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1215 {
1216 	(*pos)++;
1217 	if (*pos >= ARRAY_SIZE(vmstat_text))
1218 		return NULL;
1219 	return (unsigned long *)m->private + *pos;
1220 }
1221 
vmstat_show(struct seq_file * m,void * arg)1222 static int vmstat_show(struct seq_file *m, void *arg)
1223 {
1224 	unsigned long *l = arg;
1225 	unsigned long off = l - (unsigned long *)m->private;
1226 
1227 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1228 	return 0;
1229 }
1230 
vmstat_stop(struct seq_file * m,void * arg)1231 static void vmstat_stop(struct seq_file *m, void *arg)
1232 {
1233 	kfree(m->private);
1234 	m->private = NULL;
1235 }
1236 
1237 static const struct seq_operations vmstat_op = {
1238 	.start	= vmstat_start,
1239 	.next	= vmstat_next,
1240 	.stop	= vmstat_stop,
1241 	.show	= vmstat_show,
1242 };
1243 
vmstat_open(struct inode * inode,struct file * file)1244 static int vmstat_open(struct inode *inode, struct file *file)
1245 {
1246 	return seq_open(file, &vmstat_op);
1247 }
1248 
1249 static const struct file_operations proc_vmstat_file_operations = {
1250 	.open		= vmstat_open,
1251 	.read		= seq_read,
1252 	.llseek		= seq_lseek,
1253 	.release	= seq_release,
1254 };
1255 #endif /* CONFIG_PROC_FS */
1256 
1257 #ifdef CONFIG_SMP
1258 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1259 int sysctl_stat_interval __read_mostly = HZ;
1260 static cpumask_var_t cpu_stat_off;
1261 
vmstat_update(struct work_struct * w)1262 static void vmstat_update(struct work_struct *w)
1263 {
1264 	if (refresh_cpu_vm_stats(true)) {
1265 		/*
1266 		 * Counters were updated so we expect more updates
1267 		 * to occur in the future. Keep on running the
1268 		 * update worker thread.
1269 		 */
1270 		schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1271 			round_jiffies_relative(sysctl_stat_interval));
1272 	} else {
1273 		/*
1274 		 * We did not update any counters so the app may be in
1275 		 * a mode where it does not cause counter updates.
1276 		 * We may be uselessly running vmstat_update.
1277 		 * Defer the checking for differentials to the
1278 		 * shepherd thread on a different processor.
1279 		 */
1280 		int r;
1281 		/*
1282 		 * Shepherd work thread does not race since it never
1283 		 * changes the bit if its zero but the cpu
1284 		 * online / off line code may race if
1285 		 * worker threads are still allowed during
1286 		 * shutdown / startup.
1287 		 */
1288 		r = cpumask_test_and_set_cpu(smp_processor_id(),
1289 			cpu_stat_off);
1290 		VM_BUG_ON(r);
1291 	}
1292 }
1293 
1294 /*
1295  * Switch off vmstat processing and then fold all the remaining differentials
1296  * until the diffs stay at zero. The function is used by NOHZ and can only be
1297  * invoked when tick processing is not active.
1298  */
quiet_vmstat(void)1299 void quiet_vmstat(void)
1300 {
1301 	if (system_state != SYSTEM_RUNNING)
1302 		return;
1303 
1304 	do {
1305 		if (!cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1306 			cancel_delayed_work(this_cpu_ptr(&vmstat_work));
1307 
1308 	} while (refresh_cpu_vm_stats(false));
1309 }
1310 
1311 /*
1312  * Check if the diffs for a certain cpu indicate that
1313  * an update is needed.
1314  */
need_update(int cpu)1315 static bool need_update(int cpu)
1316 {
1317 	struct zone *zone;
1318 
1319 	for_each_populated_zone(zone) {
1320 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1321 
1322 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1323 		/*
1324 		 * The fast way of checking if there are any vmstat diffs.
1325 		 * This works because the diffs are byte sized items.
1326 		 */
1327 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1328 			return true;
1329 
1330 	}
1331 	return false;
1332 }
1333 
1334 
1335 /*
1336  * Shepherd worker thread that checks the
1337  * differentials of processors that have their worker
1338  * threads for vm statistics updates disabled because of
1339  * inactivity.
1340  */
1341 static void vmstat_shepherd(struct work_struct *w);
1342 
1343 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1344 
vmstat_shepherd(struct work_struct * w)1345 static void vmstat_shepherd(struct work_struct *w)
1346 {
1347 	int cpu;
1348 
1349 	get_online_cpus();
1350 	/* Check processors whose vmstat worker threads have been disabled */
1351 	for_each_cpu(cpu, cpu_stat_off)
1352 		if (need_update(cpu) &&
1353 			cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1354 
1355 			schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1356 				__round_jiffies_relative(sysctl_stat_interval, cpu));
1357 
1358 	put_online_cpus();
1359 
1360 	schedule_delayed_work(&shepherd,
1361 		round_jiffies_relative(sysctl_stat_interval));
1362 
1363 }
1364 
start_shepherd_timer(void)1365 static void __init start_shepherd_timer(void)
1366 {
1367 	int cpu;
1368 
1369 	for_each_possible_cpu(cpu)
1370 		INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1371 			vmstat_update);
1372 
1373 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1374 		BUG();
1375 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1376 
1377 	schedule_delayed_work(&shepherd,
1378 		round_jiffies_relative(sysctl_stat_interval));
1379 }
1380 
vmstat_cpu_dead(int node)1381 static void vmstat_cpu_dead(int node)
1382 {
1383 	int cpu;
1384 
1385 	get_online_cpus();
1386 	for_each_online_cpu(cpu)
1387 		if (cpu_to_node(cpu) == node)
1388 			goto end;
1389 
1390 	node_clear_state(node, N_CPU);
1391 end:
1392 	put_online_cpus();
1393 }
1394 
1395 /*
1396  * Use the cpu notifier to insure that the thresholds are recalculated
1397  * when necessary.
1398  */
vmstat_cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1399 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1400 		unsigned long action,
1401 		void *hcpu)
1402 {
1403 	long cpu = (long)hcpu;
1404 
1405 	switch (action) {
1406 	case CPU_ONLINE:
1407 	case CPU_ONLINE_FROZEN:
1408 		refresh_zone_stat_thresholds();
1409 		node_set_state(cpu_to_node(cpu), N_CPU);
1410 		cpumask_set_cpu(cpu, cpu_stat_off);
1411 		break;
1412 	case CPU_DOWN_PREPARE:
1413 	case CPU_DOWN_PREPARE_FROZEN:
1414 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1415 		cpumask_clear_cpu(cpu, cpu_stat_off);
1416 		break;
1417 	case CPU_DOWN_FAILED:
1418 	case CPU_DOWN_FAILED_FROZEN:
1419 		cpumask_set_cpu(cpu, cpu_stat_off);
1420 		break;
1421 	case CPU_DEAD:
1422 	case CPU_DEAD_FROZEN:
1423 		refresh_zone_stat_thresholds();
1424 		vmstat_cpu_dead(cpu_to_node(cpu));
1425 		break;
1426 	default:
1427 		break;
1428 	}
1429 	return NOTIFY_OK;
1430 }
1431 
1432 static struct notifier_block vmstat_notifier =
1433 	{ &vmstat_cpuup_callback, NULL, 0 };
1434 #endif
1435 
setup_vmstat(void)1436 static int __init setup_vmstat(void)
1437 {
1438 #ifdef CONFIG_SMP
1439 	cpu_notifier_register_begin();
1440 	__register_cpu_notifier(&vmstat_notifier);
1441 
1442 	start_shepherd_timer();
1443 	cpu_notifier_register_done();
1444 #endif
1445 #ifdef CONFIG_PROC_FS
1446 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1447 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1448 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1449 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1450 #endif
1451 	return 0;
1452 }
module_init(setup_vmstat)1453 module_init(setup_vmstat)
1454 
1455 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1456 #include <linux/debugfs.h>
1457 
1458 
1459 /*
1460  * Return an index indicating how much of the available free memory is
1461  * unusable for an allocation of the requested size.
1462  */
1463 static int unusable_free_index(unsigned int order,
1464 				struct contig_page_info *info)
1465 {
1466 	/* No free memory is interpreted as all free memory is unusable */
1467 	if (info->free_pages == 0)
1468 		return 1000;
1469 
1470 	/*
1471 	 * Index should be a value between 0 and 1. Return a value to 3
1472 	 * decimal places.
1473 	 *
1474 	 * 0 => no fragmentation
1475 	 * 1 => high fragmentation
1476 	 */
1477 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1478 
1479 }
1480 
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1481 static void unusable_show_print(struct seq_file *m,
1482 					pg_data_t *pgdat, struct zone *zone)
1483 {
1484 	unsigned int order;
1485 	int index;
1486 	struct contig_page_info info;
1487 
1488 	seq_printf(m, "Node %d, zone %8s ",
1489 				pgdat->node_id,
1490 				zone->name);
1491 	for (order = 0; order < MAX_ORDER; ++order) {
1492 		fill_contig_page_info(zone, order, &info);
1493 		index = unusable_free_index(order, &info);
1494 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1495 	}
1496 
1497 	seq_putc(m, '\n');
1498 }
1499 
1500 /*
1501  * Display unusable free space index
1502  *
1503  * The unusable free space index measures how much of the available free
1504  * memory cannot be used to satisfy an allocation of a given size and is a
1505  * value between 0 and 1. The higher the value, the more of free memory is
1506  * unusable and by implication, the worse the external fragmentation is. This
1507  * can be expressed as a percentage by multiplying by 100.
1508  */
unusable_show(struct seq_file * m,void * arg)1509 static int unusable_show(struct seq_file *m, void *arg)
1510 {
1511 	pg_data_t *pgdat = (pg_data_t *)arg;
1512 
1513 	/* check memoryless node */
1514 	if (!node_state(pgdat->node_id, N_MEMORY))
1515 		return 0;
1516 
1517 	walk_zones_in_node(m, pgdat, unusable_show_print);
1518 
1519 	return 0;
1520 }
1521 
1522 static const struct seq_operations unusable_op = {
1523 	.start	= frag_start,
1524 	.next	= frag_next,
1525 	.stop	= frag_stop,
1526 	.show	= unusable_show,
1527 };
1528 
unusable_open(struct inode * inode,struct file * file)1529 static int unusable_open(struct inode *inode, struct file *file)
1530 {
1531 	return seq_open(file, &unusable_op);
1532 }
1533 
1534 static const struct file_operations unusable_file_ops = {
1535 	.open		= unusable_open,
1536 	.read		= seq_read,
1537 	.llseek		= seq_lseek,
1538 	.release	= seq_release,
1539 };
1540 
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1541 static void extfrag_show_print(struct seq_file *m,
1542 					pg_data_t *pgdat, struct zone *zone)
1543 {
1544 	unsigned int order;
1545 	int index;
1546 
1547 	/* Alloc on stack as interrupts are disabled for zone walk */
1548 	struct contig_page_info info;
1549 
1550 	seq_printf(m, "Node %d, zone %8s ",
1551 				pgdat->node_id,
1552 				zone->name);
1553 	for (order = 0; order < MAX_ORDER; ++order) {
1554 		fill_contig_page_info(zone, order, &info);
1555 		index = __fragmentation_index(order, &info);
1556 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1557 	}
1558 
1559 	seq_putc(m, '\n');
1560 }
1561 
1562 /*
1563  * Display fragmentation index for orders that allocations would fail for
1564  */
extfrag_show(struct seq_file * m,void * arg)1565 static int extfrag_show(struct seq_file *m, void *arg)
1566 {
1567 	pg_data_t *pgdat = (pg_data_t *)arg;
1568 
1569 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1570 
1571 	return 0;
1572 }
1573 
1574 static const struct seq_operations extfrag_op = {
1575 	.start	= frag_start,
1576 	.next	= frag_next,
1577 	.stop	= frag_stop,
1578 	.show	= extfrag_show,
1579 };
1580 
extfrag_open(struct inode * inode,struct file * file)1581 static int extfrag_open(struct inode *inode, struct file *file)
1582 {
1583 	return seq_open(file, &extfrag_op);
1584 }
1585 
1586 static const struct file_operations extfrag_file_ops = {
1587 	.open		= extfrag_open,
1588 	.read		= seq_read,
1589 	.llseek		= seq_lseek,
1590 	.release	= seq_release,
1591 };
1592 
extfrag_debug_init(void)1593 static int __init extfrag_debug_init(void)
1594 {
1595 	struct dentry *extfrag_debug_root;
1596 
1597 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1598 	if (!extfrag_debug_root)
1599 		return -ENOMEM;
1600 
1601 	if (!debugfs_create_file("unusable_index", 0444,
1602 			extfrag_debug_root, NULL, &unusable_file_ops))
1603 		goto fail;
1604 
1605 	if (!debugfs_create_file("extfrag_index", 0444,
1606 			extfrag_debug_root, NULL, &extfrag_file_ops))
1607 		goto fail;
1608 
1609 	return 0;
1610 fail:
1611 	debugfs_remove_recursive(extfrag_debug_root);
1612 	return -ENOMEM;
1613 }
1614 
1615 module_init(extfrag_debug_init);
1616 #endif
1617