1 /* Generic associative array implementation.
2 *
3 * See Documentation/assoc_array.txt for information.
4 *
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
12 */
13 //#define DEBUG
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/assoc_array_priv.h>
17
18 /*
19 * Iterate over an associative array. The caller must hold the RCU read lock
20 * or better.
21 */
assoc_array_subtree_iterate(const struct assoc_array_ptr * root,const struct assoc_array_ptr * stop,int (* iterator)(const void * leaf,void * iterator_data),void * iterator_data)22 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 const struct assoc_array_ptr *stop,
24 int (*iterator)(const void *leaf,
25 void *iterator_data),
26 void *iterator_data)
27 {
28 const struct assoc_array_shortcut *shortcut;
29 const struct assoc_array_node *node;
30 const struct assoc_array_ptr *cursor, *ptr, *parent;
31 unsigned long has_meta;
32 int slot, ret;
33
34 cursor = root;
35
36 begin_node:
37 if (assoc_array_ptr_is_shortcut(cursor)) {
38 /* Descend through a shortcut */
39 shortcut = assoc_array_ptr_to_shortcut(cursor);
40 smp_read_barrier_depends();
41 cursor = ACCESS_ONCE(shortcut->next_node);
42 }
43
44 node = assoc_array_ptr_to_node(cursor);
45 smp_read_barrier_depends();
46 slot = 0;
47
48 /* We perform two passes of each node.
49 *
50 * The first pass does all the leaves in this node. This means we
51 * don't miss any leaves if the node is split up by insertion whilst
52 * we're iterating over the branches rooted here (we may, however, see
53 * some leaves twice).
54 */
55 has_meta = 0;
56 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 ptr = ACCESS_ONCE(node->slots[slot]);
58 has_meta |= (unsigned long)ptr;
59 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 /* We need a barrier between the read of the pointer
61 * and dereferencing the pointer - but only if we are
62 * actually going to dereference it.
63 */
64 smp_read_barrier_depends();
65
66 /* Invoke the callback */
67 ret = iterator(assoc_array_ptr_to_leaf(ptr),
68 iterator_data);
69 if (ret)
70 return ret;
71 }
72 }
73
74 /* The second pass attends to all the metadata pointers. If we follow
75 * one of these we may find that we don't come back here, but rather go
76 * back to a replacement node with the leaves in a different layout.
77 *
78 * We are guaranteed to make progress, however, as the slot number for
79 * a particular portion of the key space cannot change - and we
80 * continue at the back pointer + 1.
81 */
82 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
83 goto finished_node;
84 slot = 0;
85
86 continue_node:
87 node = assoc_array_ptr_to_node(cursor);
88 smp_read_barrier_depends();
89
90 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 ptr = ACCESS_ONCE(node->slots[slot]);
92 if (assoc_array_ptr_is_meta(ptr)) {
93 cursor = ptr;
94 goto begin_node;
95 }
96 }
97
98 finished_node:
99 /* Move up to the parent (may need to skip back over a shortcut) */
100 parent = ACCESS_ONCE(node->back_pointer);
101 slot = node->parent_slot;
102 if (parent == stop)
103 return 0;
104
105 if (assoc_array_ptr_is_shortcut(parent)) {
106 shortcut = assoc_array_ptr_to_shortcut(parent);
107 smp_read_barrier_depends();
108 cursor = parent;
109 parent = ACCESS_ONCE(shortcut->back_pointer);
110 slot = shortcut->parent_slot;
111 if (parent == stop)
112 return 0;
113 }
114
115 /* Ascend to next slot in parent node */
116 cursor = parent;
117 slot++;
118 goto continue_node;
119 }
120
121 /**
122 * assoc_array_iterate - Pass all objects in the array to a callback
123 * @array: The array to iterate over.
124 * @iterator: The callback function.
125 * @iterator_data: Private data for the callback function.
126 *
127 * Iterate over all the objects in an associative array. Each one will be
128 * presented to the iterator function.
129 *
130 * If the array is being modified concurrently with the iteration then it is
131 * possible that some objects in the array will be passed to the iterator
132 * callback more than once - though every object should be passed at least
133 * once. If this is undesirable then the caller must lock against modification
134 * for the duration of this function.
135 *
136 * The function will return 0 if no objects were in the array or else it will
137 * return the result of the last iterator function called. Iteration stops
138 * immediately if any call to the iteration function results in a non-zero
139 * return.
140 *
141 * The caller should hold the RCU read lock or better if concurrent
142 * modification is possible.
143 */
assoc_array_iterate(const struct assoc_array * array,int (* iterator)(const void * object,void * iterator_data),void * iterator_data)144 int assoc_array_iterate(const struct assoc_array *array,
145 int (*iterator)(const void *object,
146 void *iterator_data),
147 void *iterator_data)
148 {
149 struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
150
151 if (!root)
152 return 0;
153 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
154 }
155
156 enum assoc_array_walk_status {
157 assoc_array_walk_tree_empty,
158 assoc_array_walk_found_terminal_node,
159 assoc_array_walk_found_wrong_shortcut,
160 };
161
162 struct assoc_array_walk_result {
163 struct {
164 struct assoc_array_node *node; /* Node in which leaf might be found */
165 int level;
166 int slot;
167 } terminal_node;
168 struct {
169 struct assoc_array_shortcut *shortcut;
170 int level;
171 int sc_level;
172 unsigned long sc_segments;
173 unsigned long dissimilarity;
174 } wrong_shortcut;
175 };
176
177 /*
178 * Navigate through the internal tree looking for the closest node to the key.
179 */
180 static enum assoc_array_walk_status
assoc_array_walk(const struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key,struct assoc_array_walk_result * result)181 assoc_array_walk(const struct assoc_array *array,
182 const struct assoc_array_ops *ops,
183 const void *index_key,
184 struct assoc_array_walk_result *result)
185 {
186 struct assoc_array_shortcut *shortcut;
187 struct assoc_array_node *node;
188 struct assoc_array_ptr *cursor, *ptr;
189 unsigned long sc_segments, dissimilarity;
190 unsigned long segments;
191 int level, sc_level, next_sc_level;
192 int slot;
193
194 pr_devel("-->%s()\n", __func__);
195
196 cursor = ACCESS_ONCE(array->root);
197 if (!cursor)
198 return assoc_array_walk_tree_empty;
199
200 level = 0;
201
202 /* Use segments from the key for the new leaf to navigate through the
203 * internal tree, skipping through nodes and shortcuts that are on
204 * route to the destination. Eventually we'll come to a slot that is
205 * either empty or contains a leaf at which point we've found a node in
206 * which the leaf we're looking for might be found or into which it
207 * should be inserted.
208 */
209 jumped:
210 segments = ops->get_key_chunk(index_key, level);
211 pr_devel("segments[%d]: %lx\n", level, segments);
212
213 if (assoc_array_ptr_is_shortcut(cursor))
214 goto follow_shortcut;
215
216 consider_node:
217 node = assoc_array_ptr_to_node(cursor);
218 smp_read_barrier_depends();
219
220 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 slot &= ASSOC_ARRAY_FAN_MASK;
222 ptr = ACCESS_ONCE(node->slots[slot]);
223
224 pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 slot, level, (unsigned long)ptr & 3);
226
227 if (!assoc_array_ptr_is_meta(ptr)) {
228 /* The node doesn't have a node/shortcut pointer in the slot
229 * corresponding to the index key that we have to follow.
230 */
231 result->terminal_node.node = node;
232 result->terminal_node.level = level;
233 result->terminal_node.slot = slot;
234 pr_devel("<--%s() = terminal_node\n", __func__);
235 return assoc_array_walk_found_terminal_node;
236 }
237
238 if (assoc_array_ptr_is_node(ptr)) {
239 /* There is a pointer to a node in the slot corresponding to
240 * this index key segment, so we need to follow it.
241 */
242 cursor = ptr;
243 level += ASSOC_ARRAY_LEVEL_STEP;
244 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
245 goto consider_node;
246 goto jumped;
247 }
248
249 /* There is a shortcut in the slot corresponding to the index key
250 * segment. We follow the shortcut if its partial index key matches
251 * this leaf's. Otherwise we need to split the shortcut.
252 */
253 cursor = ptr;
254 follow_shortcut:
255 shortcut = assoc_array_ptr_to_shortcut(cursor);
256 smp_read_barrier_depends();
257 pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 BUG_ON(sc_level > shortcut->skip_to_level);
260
261 do {
262 /* Check the leaf against the shortcut's index key a word at a
263 * time, trimming the final word (the shortcut stores the index
264 * key completely from the root to the shortcut's target).
265 */
266 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 segments = ops->get_key_chunk(index_key, sc_level);
268
269 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 dissimilarity = segments ^ sc_segments;
271
272 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 /* Trim segments that are beyond the shortcut */
274 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 dissimilarity &= ~(ULONG_MAX << shift);
276 next_sc_level = shortcut->skip_to_level;
277 } else {
278 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
280 }
281
282 if (dissimilarity != 0) {
283 /* This shortcut points elsewhere */
284 result->wrong_shortcut.shortcut = shortcut;
285 result->wrong_shortcut.level = level;
286 result->wrong_shortcut.sc_level = sc_level;
287 result->wrong_shortcut.sc_segments = sc_segments;
288 result->wrong_shortcut.dissimilarity = dissimilarity;
289 return assoc_array_walk_found_wrong_shortcut;
290 }
291
292 sc_level = next_sc_level;
293 } while (sc_level < shortcut->skip_to_level);
294
295 /* The shortcut matches the leaf's index to this point. */
296 cursor = ACCESS_ONCE(shortcut->next_node);
297 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
298 level = sc_level;
299 goto jumped;
300 } else {
301 level = sc_level;
302 goto consider_node;
303 }
304 }
305
306 /**
307 * assoc_array_find - Find an object by index key
308 * @array: The associative array to search.
309 * @ops: The operations to use.
310 * @index_key: The key to the object.
311 *
312 * Find an object in an associative array by walking through the internal tree
313 * to the node that should contain the object and then searching the leaves
314 * there. NULL is returned if the requested object was not found in the array.
315 *
316 * The caller must hold the RCU read lock or better.
317 */
assoc_array_find(const struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key)318 void *assoc_array_find(const struct assoc_array *array,
319 const struct assoc_array_ops *ops,
320 const void *index_key)
321 {
322 struct assoc_array_walk_result result;
323 const struct assoc_array_node *node;
324 const struct assoc_array_ptr *ptr;
325 const void *leaf;
326 int slot;
327
328 if (assoc_array_walk(array, ops, index_key, &result) !=
329 assoc_array_walk_found_terminal_node)
330 return NULL;
331
332 node = result.terminal_node.node;
333 smp_read_barrier_depends();
334
335 /* If the target key is available to us, it's has to be pointed to by
336 * the terminal node.
337 */
338 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 ptr = ACCESS_ONCE(node->slots[slot]);
340 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 /* We need a barrier between the read of the pointer
342 * and dereferencing the pointer - but only if we are
343 * actually going to dereference it.
344 */
345 leaf = assoc_array_ptr_to_leaf(ptr);
346 smp_read_barrier_depends();
347 if (ops->compare_object(leaf, index_key))
348 return (void *)leaf;
349 }
350 }
351
352 return NULL;
353 }
354
355 /*
356 * Destructively iterate over an associative array. The caller must prevent
357 * other simultaneous accesses.
358 */
assoc_array_destroy_subtree(struct assoc_array_ptr * root,const struct assoc_array_ops * ops)359 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 const struct assoc_array_ops *ops)
361 {
362 struct assoc_array_shortcut *shortcut;
363 struct assoc_array_node *node;
364 struct assoc_array_ptr *cursor, *parent = NULL;
365 int slot = -1;
366
367 pr_devel("-->%s()\n", __func__);
368
369 cursor = root;
370 if (!cursor) {
371 pr_devel("empty\n");
372 return;
373 }
374
375 move_to_meta:
376 if (assoc_array_ptr_is_shortcut(cursor)) {
377 /* Descend through a shortcut */
378 pr_devel("[%d] shortcut\n", slot);
379 BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 shortcut = assoc_array_ptr_to_shortcut(cursor);
381 BUG_ON(shortcut->back_pointer != parent);
382 BUG_ON(slot != -1 && shortcut->parent_slot != slot);
383 parent = cursor;
384 cursor = shortcut->next_node;
385 slot = -1;
386 BUG_ON(!assoc_array_ptr_is_node(cursor));
387 }
388
389 pr_devel("[%d] node\n", slot);
390 node = assoc_array_ptr_to_node(cursor);
391 BUG_ON(node->back_pointer != parent);
392 BUG_ON(slot != -1 && node->parent_slot != slot);
393 slot = 0;
394
395 continue_node:
396 pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 struct assoc_array_ptr *ptr = node->slots[slot];
399 if (!ptr)
400 continue;
401 if (assoc_array_ptr_is_meta(ptr)) {
402 parent = cursor;
403 cursor = ptr;
404 goto move_to_meta;
405 }
406
407 if (ops) {
408 pr_devel("[%d] free leaf\n", slot);
409 ops->free_object(assoc_array_ptr_to_leaf(ptr));
410 }
411 }
412
413 parent = node->back_pointer;
414 slot = node->parent_slot;
415 pr_devel("free node\n");
416 kfree(node);
417 if (!parent)
418 return; /* Done */
419
420 /* Move back up to the parent (may need to free a shortcut on
421 * the way up) */
422 if (assoc_array_ptr_is_shortcut(parent)) {
423 shortcut = assoc_array_ptr_to_shortcut(parent);
424 BUG_ON(shortcut->next_node != cursor);
425 cursor = parent;
426 parent = shortcut->back_pointer;
427 slot = shortcut->parent_slot;
428 pr_devel("free shortcut\n");
429 kfree(shortcut);
430 if (!parent)
431 return;
432
433 BUG_ON(!assoc_array_ptr_is_node(parent));
434 }
435
436 /* Ascend to next slot in parent node */
437 pr_devel("ascend to %p[%d]\n", parent, slot);
438 cursor = parent;
439 node = assoc_array_ptr_to_node(cursor);
440 slot++;
441 goto continue_node;
442 }
443
444 /**
445 * assoc_array_destroy - Destroy an associative array
446 * @array: The array to destroy.
447 * @ops: The operations to use.
448 *
449 * Discard all metadata and free all objects in an associative array. The
450 * array will be empty and ready to use again upon completion. This function
451 * cannot fail.
452 *
453 * The caller must prevent all other accesses whilst this takes place as no
454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455 * accesses to continue. On the other hand, no memory allocation is required.
456 */
assoc_array_destroy(struct assoc_array * array,const struct assoc_array_ops * ops)457 void assoc_array_destroy(struct assoc_array *array,
458 const struct assoc_array_ops *ops)
459 {
460 assoc_array_destroy_subtree(array->root, ops);
461 array->root = NULL;
462 }
463
464 /*
465 * Handle insertion into an empty tree.
466 */
assoc_array_insert_in_empty_tree(struct assoc_array_edit * edit)467 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
468 {
469 struct assoc_array_node *new_n0;
470
471 pr_devel("-->%s()\n", __func__);
472
473 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
474 if (!new_n0)
475 return false;
476
477 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 edit->leaf_p = &new_n0->slots[0];
479 edit->adjust_count_on = new_n0;
480 edit->set[0].ptr = &edit->array->root;
481 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
482
483 pr_devel("<--%s() = ok [no root]\n", __func__);
484 return true;
485 }
486
487 /*
488 * Handle insertion into a terminal node.
489 */
assoc_array_insert_into_terminal_node(struct assoc_array_edit * edit,const struct assoc_array_ops * ops,const void * index_key,struct assoc_array_walk_result * result)490 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 const struct assoc_array_ops *ops,
492 const void *index_key,
493 struct assoc_array_walk_result *result)
494 {
495 struct assoc_array_shortcut *shortcut, *new_s0;
496 struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 struct assoc_array_ptr *ptr;
498 unsigned long dissimilarity, base_seg, blank;
499 size_t keylen;
500 bool have_meta;
501 int level, diff;
502 int slot, next_slot, free_slot, i, j;
503
504 node = result->terminal_node.node;
505 level = result->terminal_node.level;
506 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
507
508 pr_devel("-->%s()\n", __func__);
509
510 /* We arrived at a node which doesn't have an onward node or shortcut
511 * pointer that we have to follow. This means that (a) the leaf we
512 * want must go here (either by insertion or replacement) or (b) we
513 * need to split this node and insert in one of the fragments.
514 */
515 free_slot = -1;
516
517 /* Firstly, we have to check the leaves in this node to see if there's
518 * a matching one we should replace in place.
519 */
520 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 ptr = node->slots[i];
522 if (!ptr) {
523 free_slot = i;
524 continue;
525 }
526 if (assoc_array_ptr_is_leaf(ptr) &&
527 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
528 index_key)) {
529 pr_devel("replace in slot %d\n", i);
530 edit->leaf_p = &node->slots[i];
531 edit->dead_leaf = node->slots[i];
532 pr_devel("<--%s() = ok [replace]\n", __func__);
533 return true;
534 }
535 }
536
537 /* If there is a free slot in this node then we can just insert the
538 * leaf here.
539 */
540 if (free_slot >= 0) {
541 pr_devel("insert in free slot %d\n", free_slot);
542 edit->leaf_p = &node->slots[free_slot];
543 edit->adjust_count_on = node;
544 pr_devel("<--%s() = ok [insert]\n", __func__);
545 return true;
546 }
547
548 /* The node has no spare slots - so we're either going to have to split
549 * it or insert another node before it.
550 *
551 * Whatever, we're going to need at least two new nodes - so allocate
552 * those now. We may also need a new shortcut, but we deal with that
553 * when we need it.
554 */
555 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
556 if (!new_n0)
557 return false;
558 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
559 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
560 if (!new_n1)
561 return false;
562 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
563
564 /* We need to find out how similar the leaves are. */
565 pr_devel("no spare slots\n");
566 have_meta = false;
567 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
568 ptr = node->slots[i];
569 if (assoc_array_ptr_is_meta(ptr)) {
570 edit->segment_cache[i] = 0xff;
571 have_meta = true;
572 continue;
573 }
574 base_seg = ops->get_object_key_chunk(
575 assoc_array_ptr_to_leaf(ptr), level);
576 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
577 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
578 }
579
580 if (have_meta) {
581 pr_devel("have meta\n");
582 goto split_node;
583 }
584
585 /* The node contains only leaves */
586 dissimilarity = 0;
587 base_seg = edit->segment_cache[0];
588 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
589 dissimilarity |= edit->segment_cache[i] ^ base_seg;
590
591 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
592
593 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
594 /* The old leaves all cluster in the same slot. We will need
595 * to insert a shortcut if the new node wants to cluster with them.
596 */
597 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
598 goto all_leaves_cluster_together;
599
600 /* Otherwise all the old leaves cluster in the same slot, but
601 * the new leaf wants to go into a different slot - so we
602 * create a new node (n0) to hold the new leaf and a pointer to
603 * a new node (n1) holding all the old leaves.
604 *
605 * This can be done by falling through to the node splitting
606 * path.
607 */
608 pr_devel("present leaves cluster but not new leaf\n");
609 }
610
611 split_node:
612 pr_devel("split node\n");
613
614 /* We need to split the current node. The node must contain anything
615 * from a single leaf (in the one leaf case, this leaf will cluster
616 * with the new leaf) and the rest meta-pointers, to all leaves, some
617 * of which may cluster.
618 *
619 * It won't contain the case in which all the current leaves plus the
620 * new leaves want to cluster in the same slot.
621 *
622 * We need to expel at least two leaves out of a set consisting of the
623 * leaves in the node and the new leaf. The current meta pointers can
624 * just be copied as they shouldn't cluster with any of the leaves.
625 *
626 * We need a new node (n0) to replace the current one and a new node to
627 * take the expelled nodes (n1).
628 */
629 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
630 new_n0->back_pointer = node->back_pointer;
631 new_n0->parent_slot = node->parent_slot;
632 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
633 new_n1->parent_slot = -1; /* Need to calculate this */
634
635 do_split_node:
636 pr_devel("do_split_node\n");
637
638 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
639 new_n1->nr_leaves_on_branch = 0;
640
641 /* Begin by finding two matching leaves. There have to be at least two
642 * that match - even if there are meta pointers - because any leaf that
643 * would match a slot with a meta pointer in it must be somewhere
644 * behind that meta pointer and cannot be here. Further, given N
645 * remaining leaf slots, we now have N+1 leaves to go in them.
646 */
647 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
648 slot = edit->segment_cache[i];
649 if (slot != 0xff)
650 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
651 if (edit->segment_cache[j] == slot)
652 goto found_slot_for_multiple_occupancy;
653 }
654 found_slot_for_multiple_occupancy:
655 pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
656 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
657 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
658 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
659
660 new_n1->parent_slot = slot;
661
662 /* Metadata pointers cannot change slot */
663 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
664 if (assoc_array_ptr_is_meta(node->slots[i]))
665 new_n0->slots[i] = node->slots[i];
666 else
667 new_n0->slots[i] = NULL;
668 BUG_ON(new_n0->slots[slot] != NULL);
669 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
670
671 /* Filter the leaf pointers between the new nodes */
672 free_slot = -1;
673 next_slot = 0;
674 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
675 if (assoc_array_ptr_is_meta(node->slots[i]))
676 continue;
677 if (edit->segment_cache[i] == slot) {
678 new_n1->slots[next_slot++] = node->slots[i];
679 new_n1->nr_leaves_on_branch++;
680 } else {
681 do {
682 free_slot++;
683 } while (new_n0->slots[free_slot] != NULL);
684 new_n0->slots[free_slot] = node->slots[i];
685 }
686 }
687
688 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
689
690 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
691 do {
692 free_slot++;
693 } while (new_n0->slots[free_slot] != NULL);
694 edit->leaf_p = &new_n0->slots[free_slot];
695 edit->adjust_count_on = new_n0;
696 } else {
697 edit->leaf_p = &new_n1->slots[next_slot++];
698 edit->adjust_count_on = new_n1;
699 }
700
701 BUG_ON(next_slot <= 1);
702
703 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
704 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
705 if (edit->segment_cache[i] == 0xff) {
706 ptr = node->slots[i];
707 BUG_ON(assoc_array_ptr_is_leaf(ptr));
708 if (assoc_array_ptr_is_node(ptr)) {
709 side = assoc_array_ptr_to_node(ptr);
710 edit->set_backpointers[i] = &side->back_pointer;
711 } else {
712 shortcut = assoc_array_ptr_to_shortcut(ptr);
713 edit->set_backpointers[i] = &shortcut->back_pointer;
714 }
715 }
716 }
717
718 ptr = node->back_pointer;
719 if (!ptr)
720 edit->set[0].ptr = &edit->array->root;
721 else if (assoc_array_ptr_is_node(ptr))
722 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
723 else
724 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
725 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
726 pr_devel("<--%s() = ok [split node]\n", __func__);
727 return true;
728
729 all_leaves_cluster_together:
730 /* All the leaves, new and old, want to cluster together in this node
731 * in the same slot, so we have to replace this node with a shortcut to
732 * skip over the identical parts of the key and then place a pair of
733 * nodes, one inside the other, at the end of the shortcut and
734 * distribute the keys between them.
735 *
736 * Firstly we need to work out where the leaves start diverging as a
737 * bit position into their keys so that we know how big the shortcut
738 * needs to be.
739 *
740 * We only need to make a single pass of N of the N+1 leaves because if
741 * any keys differ between themselves at bit X then at least one of
742 * them must also differ with the base key at bit X or before.
743 */
744 pr_devel("all leaves cluster together\n");
745 diff = INT_MAX;
746 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
747 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
748 index_key);
749 if (x < diff) {
750 BUG_ON(x < 0);
751 diff = x;
752 }
753 }
754 BUG_ON(diff == INT_MAX);
755 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
756
757 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
758 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
759
760 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
761 keylen * sizeof(unsigned long), GFP_KERNEL);
762 if (!new_s0)
763 return false;
764 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
765
766 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
767 new_s0->back_pointer = node->back_pointer;
768 new_s0->parent_slot = node->parent_slot;
769 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
770 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
771 new_n0->parent_slot = 0;
772 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
773 new_n1->parent_slot = -1; /* Need to calculate this */
774
775 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
776 pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
777 BUG_ON(level <= 0);
778
779 for (i = 0; i < keylen; i++)
780 new_s0->index_key[i] =
781 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
782
783 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
784 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
785 new_s0->index_key[keylen - 1] &= ~blank;
786
787 /* This now reduces to a node splitting exercise for which we'll need
788 * to regenerate the disparity table.
789 */
790 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
791 ptr = node->slots[i];
792 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
793 level);
794 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
795 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
796 }
797
798 base_seg = ops->get_key_chunk(index_key, level);
799 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
800 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
801 goto do_split_node;
802 }
803
804 /*
805 * Handle insertion into the middle of a shortcut.
806 */
assoc_array_insert_mid_shortcut(struct assoc_array_edit * edit,const struct assoc_array_ops * ops,struct assoc_array_walk_result * result)807 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
808 const struct assoc_array_ops *ops,
809 struct assoc_array_walk_result *result)
810 {
811 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
812 struct assoc_array_node *node, *new_n0, *side;
813 unsigned long sc_segments, dissimilarity, blank;
814 size_t keylen;
815 int level, sc_level, diff;
816 int sc_slot;
817
818 shortcut = result->wrong_shortcut.shortcut;
819 level = result->wrong_shortcut.level;
820 sc_level = result->wrong_shortcut.sc_level;
821 sc_segments = result->wrong_shortcut.sc_segments;
822 dissimilarity = result->wrong_shortcut.dissimilarity;
823
824 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
825 __func__, level, dissimilarity, sc_level);
826
827 /* We need to split a shortcut and insert a node between the two
828 * pieces. Zero-length pieces will be dispensed with entirely.
829 *
830 * First of all, we need to find out in which level the first
831 * difference was.
832 */
833 diff = __ffs(dissimilarity);
834 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
835 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
836 pr_devel("diff=%d\n", diff);
837
838 if (!shortcut->back_pointer) {
839 edit->set[0].ptr = &edit->array->root;
840 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
841 node = assoc_array_ptr_to_node(shortcut->back_pointer);
842 edit->set[0].ptr = &node->slots[shortcut->parent_slot];
843 } else {
844 BUG();
845 }
846
847 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
848
849 /* Create a new node now since we're going to need it anyway */
850 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
851 if (!new_n0)
852 return false;
853 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
854 edit->adjust_count_on = new_n0;
855
856 /* Insert a new shortcut before the new node if this segment isn't of
857 * zero length - otherwise we just connect the new node directly to the
858 * parent.
859 */
860 level += ASSOC_ARRAY_LEVEL_STEP;
861 if (diff > level) {
862 pr_devel("pre-shortcut %d...%d\n", level, diff);
863 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
864 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
865
866 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
867 keylen * sizeof(unsigned long), GFP_KERNEL);
868 if (!new_s0)
869 return false;
870 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
871 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
872 new_s0->back_pointer = shortcut->back_pointer;
873 new_s0->parent_slot = shortcut->parent_slot;
874 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
875 new_s0->skip_to_level = diff;
876
877 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
878 new_n0->parent_slot = 0;
879
880 memcpy(new_s0->index_key, shortcut->index_key,
881 keylen * sizeof(unsigned long));
882
883 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
884 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
885 new_s0->index_key[keylen - 1] &= ~blank;
886 } else {
887 pr_devel("no pre-shortcut\n");
888 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
889 new_n0->back_pointer = shortcut->back_pointer;
890 new_n0->parent_slot = shortcut->parent_slot;
891 }
892
893 side = assoc_array_ptr_to_node(shortcut->next_node);
894 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
895
896 /* We need to know which slot in the new node is going to take a
897 * metadata pointer.
898 */
899 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
900 sc_slot &= ASSOC_ARRAY_FAN_MASK;
901
902 pr_devel("new slot %lx >> %d -> %d\n",
903 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
904
905 /* Determine whether we need to follow the new node with a replacement
906 * for the current shortcut. We could in theory reuse the current
907 * shortcut if its parent slot number doesn't change - but that's a
908 * 1-in-16 chance so not worth expending the code upon.
909 */
910 level = diff + ASSOC_ARRAY_LEVEL_STEP;
911 if (level < shortcut->skip_to_level) {
912 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
913 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
914 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
915
916 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
917 keylen * sizeof(unsigned long), GFP_KERNEL);
918 if (!new_s1)
919 return false;
920 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
921
922 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
923 new_s1->parent_slot = sc_slot;
924 new_s1->next_node = shortcut->next_node;
925 new_s1->skip_to_level = shortcut->skip_to_level;
926
927 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
928
929 memcpy(new_s1->index_key, shortcut->index_key,
930 keylen * sizeof(unsigned long));
931
932 edit->set[1].ptr = &side->back_pointer;
933 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
934 } else {
935 pr_devel("no post-shortcut\n");
936
937 /* We don't have to replace the pointed-to node as long as we
938 * use memory barriers to make sure the parent slot number is
939 * changed before the back pointer (the parent slot number is
940 * irrelevant to the old parent shortcut).
941 */
942 new_n0->slots[sc_slot] = shortcut->next_node;
943 edit->set_parent_slot[0].p = &side->parent_slot;
944 edit->set_parent_slot[0].to = sc_slot;
945 edit->set[1].ptr = &side->back_pointer;
946 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
947 }
948
949 /* Install the new leaf in a spare slot in the new node. */
950 if (sc_slot == 0)
951 edit->leaf_p = &new_n0->slots[1];
952 else
953 edit->leaf_p = &new_n0->slots[0];
954
955 pr_devel("<--%s() = ok [split shortcut]\n", __func__);
956 return edit;
957 }
958
959 /**
960 * assoc_array_insert - Script insertion of an object into an associative array
961 * @array: The array to insert into.
962 * @ops: The operations to use.
963 * @index_key: The key to insert at.
964 * @object: The object to insert.
965 *
966 * Precalculate and preallocate a script for the insertion or replacement of an
967 * object in an associative array. This results in an edit script that can
968 * either be applied or cancelled.
969 *
970 * The function returns a pointer to an edit script or -ENOMEM.
971 *
972 * The caller should lock against other modifications and must continue to hold
973 * the lock until assoc_array_apply_edit() has been called.
974 *
975 * Accesses to the tree may take place concurrently with this function,
976 * provided they hold the RCU read lock.
977 */
assoc_array_insert(struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key,void * object)978 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
979 const struct assoc_array_ops *ops,
980 const void *index_key,
981 void *object)
982 {
983 struct assoc_array_walk_result result;
984 struct assoc_array_edit *edit;
985
986 pr_devel("-->%s()\n", __func__);
987
988 /* The leaf pointer we're given must not have the bottom bit set as we
989 * use those for type-marking the pointer. NULL pointers are also not
990 * allowed as they indicate an empty slot but we have to allow them
991 * here as they can be updated later.
992 */
993 BUG_ON(assoc_array_ptr_is_meta(object));
994
995 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
996 if (!edit)
997 return ERR_PTR(-ENOMEM);
998 edit->array = array;
999 edit->ops = ops;
1000 edit->leaf = assoc_array_leaf_to_ptr(object);
1001 edit->adjust_count_by = 1;
1002
1003 switch (assoc_array_walk(array, ops, index_key, &result)) {
1004 case assoc_array_walk_tree_empty:
1005 /* Allocate a root node if there isn't one yet */
1006 if (!assoc_array_insert_in_empty_tree(edit))
1007 goto enomem;
1008 return edit;
1009
1010 case assoc_array_walk_found_terminal_node:
1011 /* We found a node that doesn't have a node/shortcut pointer in
1012 * the slot corresponding to the index key that we have to
1013 * follow.
1014 */
1015 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1016 &result))
1017 goto enomem;
1018 return edit;
1019
1020 case assoc_array_walk_found_wrong_shortcut:
1021 /* We found a shortcut that didn't match our key in a slot we
1022 * needed to follow.
1023 */
1024 if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1025 goto enomem;
1026 return edit;
1027 }
1028
1029 enomem:
1030 /* Clean up after an out of memory error */
1031 pr_devel("enomem\n");
1032 assoc_array_cancel_edit(edit);
1033 return ERR_PTR(-ENOMEM);
1034 }
1035
1036 /**
1037 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1038 * @edit: The edit script to modify.
1039 * @object: The object pointer to set.
1040 *
1041 * Change the object to be inserted in an edit script. The object pointed to
1042 * by the old object is not freed. This must be done prior to applying the
1043 * script.
1044 */
assoc_array_insert_set_object(struct assoc_array_edit * edit,void * object)1045 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1046 {
1047 BUG_ON(!object);
1048 edit->leaf = assoc_array_leaf_to_ptr(object);
1049 }
1050
1051 struct assoc_array_delete_collapse_context {
1052 struct assoc_array_node *node;
1053 const void *skip_leaf;
1054 int slot;
1055 };
1056
1057 /*
1058 * Subtree collapse to node iterator.
1059 */
assoc_array_delete_collapse_iterator(const void * leaf,void * iterator_data)1060 static int assoc_array_delete_collapse_iterator(const void *leaf,
1061 void *iterator_data)
1062 {
1063 struct assoc_array_delete_collapse_context *collapse = iterator_data;
1064
1065 if (leaf == collapse->skip_leaf)
1066 return 0;
1067
1068 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1069
1070 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1071 return 0;
1072 }
1073
1074 /**
1075 * assoc_array_delete - Script deletion of an object from an associative array
1076 * @array: The array to search.
1077 * @ops: The operations to use.
1078 * @index_key: The key to the object.
1079 *
1080 * Precalculate and preallocate a script for the deletion of an object from an
1081 * associative array. This results in an edit script that can either be
1082 * applied or cancelled.
1083 *
1084 * The function returns a pointer to an edit script if the object was found,
1085 * NULL if the object was not found or -ENOMEM.
1086 *
1087 * The caller should lock against other modifications and must continue to hold
1088 * the lock until assoc_array_apply_edit() has been called.
1089 *
1090 * Accesses to the tree may take place concurrently with this function,
1091 * provided they hold the RCU read lock.
1092 */
assoc_array_delete(struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key)1093 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1094 const struct assoc_array_ops *ops,
1095 const void *index_key)
1096 {
1097 struct assoc_array_delete_collapse_context collapse;
1098 struct assoc_array_walk_result result;
1099 struct assoc_array_node *node, *new_n0;
1100 struct assoc_array_edit *edit;
1101 struct assoc_array_ptr *ptr;
1102 bool has_meta;
1103 int slot, i;
1104
1105 pr_devel("-->%s()\n", __func__);
1106
1107 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1108 if (!edit)
1109 return ERR_PTR(-ENOMEM);
1110 edit->array = array;
1111 edit->ops = ops;
1112 edit->adjust_count_by = -1;
1113
1114 switch (assoc_array_walk(array, ops, index_key, &result)) {
1115 case assoc_array_walk_found_terminal_node:
1116 /* We found a node that should contain the leaf we've been
1117 * asked to remove - *if* it's in the tree.
1118 */
1119 pr_devel("terminal_node\n");
1120 node = result.terminal_node.node;
1121
1122 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1123 ptr = node->slots[slot];
1124 if (ptr &&
1125 assoc_array_ptr_is_leaf(ptr) &&
1126 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1127 index_key))
1128 goto found_leaf;
1129 }
1130 case assoc_array_walk_tree_empty:
1131 case assoc_array_walk_found_wrong_shortcut:
1132 default:
1133 assoc_array_cancel_edit(edit);
1134 pr_devel("not found\n");
1135 return NULL;
1136 }
1137
1138 found_leaf:
1139 BUG_ON(array->nr_leaves_on_tree <= 0);
1140
1141 /* In the simplest form of deletion we just clear the slot and release
1142 * the leaf after a suitable interval.
1143 */
1144 edit->dead_leaf = node->slots[slot];
1145 edit->set[0].ptr = &node->slots[slot];
1146 edit->set[0].to = NULL;
1147 edit->adjust_count_on = node;
1148
1149 /* If that concludes erasure of the last leaf, then delete the entire
1150 * internal array.
1151 */
1152 if (array->nr_leaves_on_tree == 1) {
1153 edit->set[1].ptr = &array->root;
1154 edit->set[1].to = NULL;
1155 edit->adjust_count_on = NULL;
1156 edit->excised_subtree = array->root;
1157 pr_devel("all gone\n");
1158 return edit;
1159 }
1160
1161 /* However, we'd also like to clear up some metadata blocks if we
1162 * possibly can.
1163 *
1164 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1165 * leaves in it, then attempt to collapse it - and attempt to
1166 * recursively collapse up the tree.
1167 *
1168 * We could also try and collapse in partially filled subtrees to take
1169 * up space in this node.
1170 */
1171 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1172 struct assoc_array_node *parent, *grandparent;
1173 struct assoc_array_ptr *ptr;
1174
1175 /* First of all, we need to know if this node has metadata so
1176 * that we don't try collapsing if all the leaves are already
1177 * here.
1178 */
1179 has_meta = false;
1180 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1181 ptr = node->slots[i];
1182 if (assoc_array_ptr_is_meta(ptr)) {
1183 has_meta = true;
1184 break;
1185 }
1186 }
1187
1188 pr_devel("leaves: %ld [m=%d]\n",
1189 node->nr_leaves_on_branch - 1, has_meta);
1190
1191 /* Look further up the tree to see if we can collapse this node
1192 * into a more proximal node too.
1193 */
1194 parent = node;
1195 collapse_up:
1196 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1197
1198 ptr = parent->back_pointer;
1199 if (!ptr)
1200 goto do_collapse;
1201 if (assoc_array_ptr_is_shortcut(ptr)) {
1202 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1203 ptr = s->back_pointer;
1204 if (!ptr)
1205 goto do_collapse;
1206 }
1207
1208 grandparent = assoc_array_ptr_to_node(ptr);
1209 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1210 parent = grandparent;
1211 goto collapse_up;
1212 }
1213
1214 do_collapse:
1215 /* There's no point collapsing if the original node has no meta
1216 * pointers to discard and if we didn't merge into one of that
1217 * node's ancestry.
1218 */
1219 if (has_meta || parent != node) {
1220 node = parent;
1221
1222 /* Create a new node to collapse into */
1223 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1224 if (!new_n0)
1225 goto enomem;
1226 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1227
1228 new_n0->back_pointer = node->back_pointer;
1229 new_n0->parent_slot = node->parent_slot;
1230 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1231 edit->adjust_count_on = new_n0;
1232
1233 collapse.node = new_n0;
1234 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1235 collapse.slot = 0;
1236 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1237 node->back_pointer,
1238 assoc_array_delete_collapse_iterator,
1239 &collapse);
1240 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1241 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1242
1243 if (!node->back_pointer) {
1244 edit->set[1].ptr = &array->root;
1245 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1246 BUG();
1247 } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1248 struct assoc_array_node *p =
1249 assoc_array_ptr_to_node(node->back_pointer);
1250 edit->set[1].ptr = &p->slots[node->parent_slot];
1251 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1252 struct assoc_array_shortcut *s =
1253 assoc_array_ptr_to_shortcut(node->back_pointer);
1254 edit->set[1].ptr = &s->next_node;
1255 }
1256 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1257 edit->excised_subtree = assoc_array_node_to_ptr(node);
1258 }
1259 }
1260
1261 return edit;
1262
1263 enomem:
1264 /* Clean up after an out of memory error */
1265 pr_devel("enomem\n");
1266 assoc_array_cancel_edit(edit);
1267 return ERR_PTR(-ENOMEM);
1268 }
1269
1270 /**
1271 * assoc_array_clear - Script deletion of all objects from an associative array
1272 * @array: The array to clear.
1273 * @ops: The operations to use.
1274 *
1275 * Precalculate and preallocate a script for the deletion of all the objects
1276 * from an associative array. This results in an edit script that can either
1277 * be applied or cancelled.
1278 *
1279 * The function returns a pointer to an edit script if there are objects to be
1280 * deleted, NULL if there are no objects in the array or -ENOMEM.
1281 *
1282 * The caller should lock against other modifications and must continue to hold
1283 * the lock until assoc_array_apply_edit() has been called.
1284 *
1285 * Accesses to the tree may take place concurrently with this function,
1286 * provided they hold the RCU read lock.
1287 */
assoc_array_clear(struct assoc_array * array,const struct assoc_array_ops * ops)1288 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1289 const struct assoc_array_ops *ops)
1290 {
1291 struct assoc_array_edit *edit;
1292
1293 pr_devel("-->%s()\n", __func__);
1294
1295 if (!array->root)
1296 return NULL;
1297
1298 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1299 if (!edit)
1300 return ERR_PTR(-ENOMEM);
1301 edit->array = array;
1302 edit->ops = ops;
1303 edit->set[1].ptr = &array->root;
1304 edit->set[1].to = NULL;
1305 edit->excised_subtree = array->root;
1306 edit->ops_for_excised_subtree = ops;
1307 pr_devel("all gone\n");
1308 return edit;
1309 }
1310
1311 /*
1312 * Handle the deferred destruction after an applied edit.
1313 */
assoc_array_rcu_cleanup(struct rcu_head * head)1314 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1315 {
1316 struct assoc_array_edit *edit =
1317 container_of(head, struct assoc_array_edit, rcu);
1318 int i;
1319
1320 pr_devel("-->%s()\n", __func__);
1321
1322 if (edit->dead_leaf)
1323 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1324 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1325 if (edit->excised_meta[i])
1326 kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1327
1328 if (edit->excised_subtree) {
1329 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1330 if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1331 struct assoc_array_node *n =
1332 assoc_array_ptr_to_node(edit->excised_subtree);
1333 n->back_pointer = NULL;
1334 } else {
1335 struct assoc_array_shortcut *s =
1336 assoc_array_ptr_to_shortcut(edit->excised_subtree);
1337 s->back_pointer = NULL;
1338 }
1339 assoc_array_destroy_subtree(edit->excised_subtree,
1340 edit->ops_for_excised_subtree);
1341 }
1342
1343 kfree(edit);
1344 }
1345
1346 /**
1347 * assoc_array_apply_edit - Apply an edit script to an associative array
1348 * @edit: The script to apply.
1349 *
1350 * Apply an edit script to an associative array to effect an insertion,
1351 * deletion or clearance. As the edit script includes preallocated memory,
1352 * this is guaranteed not to fail.
1353 *
1354 * The edit script, dead objects and dead metadata will be scheduled for
1355 * destruction after an RCU grace period to permit those doing read-only
1356 * accesses on the array to continue to do so under the RCU read lock whilst
1357 * the edit is taking place.
1358 */
assoc_array_apply_edit(struct assoc_array_edit * edit)1359 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1360 {
1361 struct assoc_array_shortcut *shortcut;
1362 struct assoc_array_node *node;
1363 struct assoc_array_ptr *ptr;
1364 int i;
1365
1366 pr_devel("-->%s()\n", __func__);
1367
1368 smp_wmb();
1369 if (edit->leaf_p)
1370 *edit->leaf_p = edit->leaf;
1371
1372 smp_wmb();
1373 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1374 if (edit->set_parent_slot[i].p)
1375 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1376
1377 smp_wmb();
1378 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1379 if (edit->set_backpointers[i])
1380 *edit->set_backpointers[i] = edit->set_backpointers_to;
1381
1382 smp_wmb();
1383 for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1384 if (edit->set[i].ptr)
1385 *edit->set[i].ptr = edit->set[i].to;
1386
1387 if (edit->array->root == NULL) {
1388 edit->array->nr_leaves_on_tree = 0;
1389 } else if (edit->adjust_count_on) {
1390 node = edit->adjust_count_on;
1391 for (;;) {
1392 node->nr_leaves_on_branch += edit->adjust_count_by;
1393
1394 ptr = node->back_pointer;
1395 if (!ptr)
1396 break;
1397 if (assoc_array_ptr_is_shortcut(ptr)) {
1398 shortcut = assoc_array_ptr_to_shortcut(ptr);
1399 ptr = shortcut->back_pointer;
1400 if (!ptr)
1401 break;
1402 }
1403 BUG_ON(!assoc_array_ptr_is_node(ptr));
1404 node = assoc_array_ptr_to_node(ptr);
1405 }
1406
1407 edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1408 }
1409
1410 call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1411 }
1412
1413 /**
1414 * assoc_array_cancel_edit - Discard an edit script.
1415 * @edit: The script to discard.
1416 *
1417 * Free an edit script and all the preallocated data it holds without making
1418 * any changes to the associative array it was intended for.
1419 *
1420 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1421 * that was to be inserted. That is left to the caller.
1422 */
assoc_array_cancel_edit(struct assoc_array_edit * edit)1423 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1424 {
1425 struct assoc_array_ptr *ptr;
1426 int i;
1427
1428 pr_devel("-->%s()\n", __func__);
1429
1430 /* Clean up after an out of memory error */
1431 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1432 ptr = edit->new_meta[i];
1433 if (ptr) {
1434 if (assoc_array_ptr_is_node(ptr))
1435 kfree(assoc_array_ptr_to_node(ptr));
1436 else
1437 kfree(assoc_array_ptr_to_shortcut(ptr));
1438 }
1439 }
1440 kfree(edit);
1441 }
1442
1443 /**
1444 * assoc_array_gc - Garbage collect an associative array.
1445 * @array: The array to clean.
1446 * @ops: The operations to use.
1447 * @iterator: A callback function to pass judgement on each object.
1448 * @iterator_data: Private data for the callback function.
1449 *
1450 * Collect garbage from an associative array and pack down the internal tree to
1451 * save memory.
1452 *
1453 * The iterator function is asked to pass judgement upon each object in the
1454 * array. If it returns false, the object is discard and if it returns true,
1455 * the object is kept. If it returns true, it must increment the object's
1456 * usage count (or whatever it needs to do to retain it) before returning.
1457 *
1458 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1459 * latter case, the array is not changed.
1460 *
1461 * The caller should lock against other modifications and must continue to hold
1462 * the lock until assoc_array_apply_edit() has been called.
1463 *
1464 * Accesses to the tree may take place concurrently with this function,
1465 * provided they hold the RCU read lock.
1466 */
assoc_array_gc(struct assoc_array * array,const struct assoc_array_ops * ops,bool (* iterator)(void * object,void * iterator_data),void * iterator_data)1467 int assoc_array_gc(struct assoc_array *array,
1468 const struct assoc_array_ops *ops,
1469 bool (*iterator)(void *object, void *iterator_data),
1470 void *iterator_data)
1471 {
1472 struct assoc_array_shortcut *shortcut, *new_s;
1473 struct assoc_array_node *node, *new_n;
1474 struct assoc_array_edit *edit;
1475 struct assoc_array_ptr *cursor, *ptr;
1476 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1477 unsigned long nr_leaves_on_tree;
1478 int keylen, slot, nr_free, next_slot, i;
1479
1480 pr_devel("-->%s()\n", __func__);
1481
1482 if (!array->root)
1483 return 0;
1484
1485 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1486 if (!edit)
1487 return -ENOMEM;
1488 edit->array = array;
1489 edit->ops = ops;
1490 edit->ops_for_excised_subtree = ops;
1491 edit->set[0].ptr = &array->root;
1492 edit->excised_subtree = array->root;
1493
1494 new_root = new_parent = NULL;
1495 new_ptr_pp = &new_root;
1496 cursor = array->root;
1497
1498 descend:
1499 /* If this point is a shortcut, then we need to duplicate it and
1500 * advance the target cursor.
1501 */
1502 if (assoc_array_ptr_is_shortcut(cursor)) {
1503 shortcut = assoc_array_ptr_to_shortcut(cursor);
1504 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1505 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1506 new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1507 keylen * sizeof(unsigned long), GFP_KERNEL);
1508 if (!new_s)
1509 goto enomem;
1510 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1511 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1512 keylen * sizeof(unsigned long)));
1513 new_s->back_pointer = new_parent;
1514 new_s->parent_slot = shortcut->parent_slot;
1515 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1516 new_ptr_pp = &new_s->next_node;
1517 cursor = shortcut->next_node;
1518 }
1519
1520 /* Duplicate the node at this position */
1521 node = assoc_array_ptr_to_node(cursor);
1522 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1523 if (!new_n)
1524 goto enomem;
1525 pr_devel("dup node %p -> %p\n", node, new_n);
1526 new_n->back_pointer = new_parent;
1527 new_n->parent_slot = node->parent_slot;
1528 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1529 new_ptr_pp = NULL;
1530 slot = 0;
1531
1532 continue_node:
1533 /* Filter across any leaves and gc any subtrees */
1534 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1535 ptr = node->slots[slot];
1536 if (!ptr)
1537 continue;
1538
1539 if (assoc_array_ptr_is_leaf(ptr)) {
1540 if (iterator(assoc_array_ptr_to_leaf(ptr),
1541 iterator_data))
1542 /* The iterator will have done any reference
1543 * counting on the object for us.
1544 */
1545 new_n->slots[slot] = ptr;
1546 continue;
1547 }
1548
1549 new_ptr_pp = &new_n->slots[slot];
1550 cursor = ptr;
1551 goto descend;
1552 }
1553
1554 pr_devel("-- compress node %p --\n", new_n);
1555
1556 /* Count up the number of empty slots in this node and work out the
1557 * subtree leaf count.
1558 */
1559 new_n->nr_leaves_on_branch = 0;
1560 nr_free = 0;
1561 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1562 ptr = new_n->slots[slot];
1563 if (!ptr)
1564 nr_free++;
1565 else if (assoc_array_ptr_is_leaf(ptr))
1566 new_n->nr_leaves_on_branch++;
1567 }
1568 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1569
1570 /* See what we can fold in */
1571 next_slot = 0;
1572 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1573 struct assoc_array_shortcut *s;
1574 struct assoc_array_node *child;
1575
1576 ptr = new_n->slots[slot];
1577 if (!ptr || assoc_array_ptr_is_leaf(ptr))
1578 continue;
1579
1580 s = NULL;
1581 if (assoc_array_ptr_is_shortcut(ptr)) {
1582 s = assoc_array_ptr_to_shortcut(ptr);
1583 ptr = s->next_node;
1584 }
1585
1586 child = assoc_array_ptr_to_node(ptr);
1587 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1588
1589 if (child->nr_leaves_on_branch <= nr_free + 1) {
1590 /* Fold the child node into this one */
1591 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1592 slot, child->nr_leaves_on_branch, nr_free + 1,
1593 next_slot);
1594
1595 /* We would already have reaped an intervening shortcut
1596 * on the way back up the tree.
1597 */
1598 BUG_ON(s);
1599
1600 new_n->slots[slot] = NULL;
1601 nr_free++;
1602 if (slot < next_slot)
1603 next_slot = slot;
1604 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1605 struct assoc_array_ptr *p = child->slots[i];
1606 if (!p)
1607 continue;
1608 BUG_ON(assoc_array_ptr_is_meta(p));
1609 while (new_n->slots[next_slot])
1610 next_slot++;
1611 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1612 new_n->slots[next_slot++] = p;
1613 nr_free--;
1614 }
1615 kfree(child);
1616 } else {
1617 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1618 slot, child->nr_leaves_on_branch, nr_free + 1,
1619 next_slot);
1620 }
1621 }
1622
1623 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1624
1625 nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1626
1627 /* Excise this node if it is singly occupied by a shortcut */
1628 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1629 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1630 if ((ptr = new_n->slots[slot]))
1631 break;
1632
1633 if (assoc_array_ptr_is_meta(ptr) &&
1634 assoc_array_ptr_is_shortcut(ptr)) {
1635 pr_devel("excise node %p with 1 shortcut\n", new_n);
1636 new_s = assoc_array_ptr_to_shortcut(ptr);
1637 new_parent = new_n->back_pointer;
1638 slot = new_n->parent_slot;
1639 kfree(new_n);
1640 if (!new_parent) {
1641 new_s->back_pointer = NULL;
1642 new_s->parent_slot = 0;
1643 new_root = ptr;
1644 goto gc_complete;
1645 }
1646
1647 if (assoc_array_ptr_is_shortcut(new_parent)) {
1648 /* We can discard any preceding shortcut also */
1649 struct assoc_array_shortcut *s =
1650 assoc_array_ptr_to_shortcut(new_parent);
1651
1652 pr_devel("excise preceding shortcut\n");
1653
1654 new_parent = new_s->back_pointer = s->back_pointer;
1655 slot = new_s->parent_slot = s->parent_slot;
1656 kfree(s);
1657 if (!new_parent) {
1658 new_s->back_pointer = NULL;
1659 new_s->parent_slot = 0;
1660 new_root = ptr;
1661 goto gc_complete;
1662 }
1663 }
1664
1665 new_s->back_pointer = new_parent;
1666 new_s->parent_slot = slot;
1667 new_n = assoc_array_ptr_to_node(new_parent);
1668 new_n->slots[slot] = ptr;
1669 goto ascend_old_tree;
1670 }
1671 }
1672
1673 /* Excise any shortcuts we might encounter that point to nodes that
1674 * only contain leaves.
1675 */
1676 ptr = new_n->back_pointer;
1677 if (!ptr)
1678 goto gc_complete;
1679
1680 if (assoc_array_ptr_is_shortcut(ptr)) {
1681 new_s = assoc_array_ptr_to_shortcut(ptr);
1682 new_parent = new_s->back_pointer;
1683 slot = new_s->parent_slot;
1684
1685 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1686 struct assoc_array_node *n;
1687
1688 pr_devel("excise shortcut\n");
1689 new_n->back_pointer = new_parent;
1690 new_n->parent_slot = slot;
1691 kfree(new_s);
1692 if (!new_parent) {
1693 new_root = assoc_array_node_to_ptr(new_n);
1694 goto gc_complete;
1695 }
1696
1697 n = assoc_array_ptr_to_node(new_parent);
1698 n->slots[slot] = assoc_array_node_to_ptr(new_n);
1699 }
1700 } else {
1701 new_parent = ptr;
1702 }
1703 new_n = assoc_array_ptr_to_node(new_parent);
1704
1705 ascend_old_tree:
1706 ptr = node->back_pointer;
1707 if (assoc_array_ptr_is_shortcut(ptr)) {
1708 shortcut = assoc_array_ptr_to_shortcut(ptr);
1709 slot = shortcut->parent_slot;
1710 cursor = shortcut->back_pointer;
1711 if (!cursor)
1712 goto gc_complete;
1713 } else {
1714 slot = node->parent_slot;
1715 cursor = ptr;
1716 }
1717 BUG_ON(!cursor);
1718 node = assoc_array_ptr_to_node(cursor);
1719 slot++;
1720 goto continue_node;
1721
1722 gc_complete:
1723 edit->set[0].to = new_root;
1724 assoc_array_apply_edit(edit);
1725 array->nr_leaves_on_tree = nr_leaves_on_tree;
1726 return 0;
1727
1728 enomem:
1729 pr_devel("enomem\n");
1730 assoc_array_destroy_subtree(new_root, edit->ops);
1731 kfree(edit);
1732 return -ENOMEM;
1733 }
1734