• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Generic associative array implementation.
2  *
3  * See Documentation/assoc_array.txt for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/assoc_array_priv.h>
17 
18 /*
19  * Iterate over an associative array.  The caller must hold the RCU read lock
20  * or better.
21  */
assoc_array_subtree_iterate(const struct assoc_array_ptr * root,const struct assoc_array_ptr * stop,int (* iterator)(const void * leaf,void * iterator_data),void * iterator_data)22 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 				       const struct assoc_array_ptr *stop,
24 				       int (*iterator)(const void *leaf,
25 						       void *iterator_data),
26 				       void *iterator_data)
27 {
28 	const struct assoc_array_shortcut *shortcut;
29 	const struct assoc_array_node *node;
30 	const struct assoc_array_ptr *cursor, *ptr, *parent;
31 	unsigned long has_meta;
32 	int slot, ret;
33 
34 	cursor = root;
35 
36 begin_node:
37 	if (assoc_array_ptr_is_shortcut(cursor)) {
38 		/* Descend through a shortcut */
39 		shortcut = assoc_array_ptr_to_shortcut(cursor);
40 		smp_read_barrier_depends();
41 		cursor = ACCESS_ONCE(shortcut->next_node);
42 	}
43 
44 	node = assoc_array_ptr_to_node(cursor);
45 	smp_read_barrier_depends();
46 	slot = 0;
47 
48 	/* We perform two passes of each node.
49 	 *
50 	 * The first pass does all the leaves in this node.  This means we
51 	 * don't miss any leaves if the node is split up by insertion whilst
52 	 * we're iterating over the branches rooted here (we may, however, see
53 	 * some leaves twice).
54 	 */
55 	has_meta = 0;
56 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 		ptr = ACCESS_ONCE(node->slots[slot]);
58 		has_meta |= (unsigned long)ptr;
59 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 			/* We need a barrier between the read of the pointer
61 			 * and dereferencing the pointer - but only if we are
62 			 * actually going to dereference it.
63 			 */
64 			smp_read_barrier_depends();
65 
66 			/* Invoke the callback */
67 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
68 				       iterator_data);
69 			if (ret)
70 				return ret;
71 		}
72 	}
73 
74 	/* The second pass attends to all the metadata pointers.  If we follow
75 	 * one of these we may find that we don't come back here, but rather go
76 	 * back to a replacement node with the leaves in a different layout.
77 	 *
78 	 * We are guaranteed to make progress, however, as the slot number for
79 	 * a particular portion of the key space cannot change - and we
80 	 * continue at the back pointer + 1.
81 	 */
82 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
83 		goto finished_node;
84 	slot = 0;
85 
86 continue_node:
87 	node = assoc_array_ptr_to_node(cursor);
88 	smp_read_barrier_depends();
89 
90 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 		ptr = ACCESS_ONCE(node->slots[slot]);
92 		if (assoc_array_ptr_is_meta(ptr)) {
93 			cursor = ptr;
94 			goto begin_node;
95 		}
96 	}
97 
98 finished_node:
99 	/* Move up to the parent (may need to skip back over a shortcut) */
100 	parent = ACCESS_ONCE(node->back_pointer);
101 	slot = node->parent_slot;
102 	if (parent == stop)
103 		return 0;
104 
105 	if (assoc_array_ptr_is_shortcut(parent)) {
106 		shortcut = assoc_array_ptr_to_shortcut(parent);
107 		smp_read_barrier_depends();
108 		cursor = parent;
109 		parent = ACCESS_ONCE(shortcut->back_pointer);
110 		slot = shortcut->parent_slot;
111 		if (parent == stop)
112 			return 0;
113 	}
114 
115 	/* Ascend to next slot in parent node */
116 	cursor = parent;
117 	slot++;
118 	goto continue_node;
119 }
120 
121 /**
122  * assoc_array_iterate - Pass all objects in the array to a callback
123  * @array: The array to iterate over.
124  * @iterator: The callback function.
125  * @iterator_data: Private data for the callback function.
126  *
127  * Iterate over all the objects in an associative array.  Each one will be
128  * presented to the iterator function.
129  *
130  * If the array is being modified concurrently with the iteration then it is
131  * possible that some objects in the array will be passed to the iterator
132  * callback more than once - though every object should be passed at least
133  * once.  If this is undesirable then the caller must lock against modification
134  * for the duration of this function.
135  *
136  * The function will return 0 if no objects were in the array or else it will
137  * return the result of the last iterator function called.  Iteration stops
138  * immediately if any call to the iteration function results in a non-zero
139  * return.
140  *
141  * The caller should hold the RCU read lock or better if concurrent
142  * modification is possible.
143  */
assoc_array_iterate(const struct assoc_array * array,int (* iterator)(const void * object,void * iterator_data),void * iterator_data)144 int assoc_array_iterate(const struct assoc_array *array,
145 			int (*iterator)(const void *object,
146 					void *iterator_data),
147 			void *iterator_data)
148 {
149 	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
150 
151 	if (!root)
152 		return 0;
153 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
154 }
155 
156 enum assoc_array_walk_status {
157 	assoc_array_walk_tree_empty,
158 	assoc_array_walk_found_terminal_node,
159 	assoc_array_walk_found_wrong_shortcut,
160 };
161 
162 struct assoc_array_walk_result {
163 	struct {
164 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
165 		int		level;
166 		int		slot;
167 	} terminal_node;
168 	struct {
169 		struct assoc_array_shortcut *shortcut;
170 		int		level;
171 		int		sc_level;
172 		unsigned long	sc_segments;
173 		unsigned long	dissimilarity;
174 	} wrong_shortcut;
175 };
176 
177 /*
178  * Navigate through the internal tree looking for the closest node to the key.
179  */
180 static enum assoc_array_walk_status
assoc_array_walk(const struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key,struct assoc_array_walk_result * result)181 assoc_array_walk(const struct assoc_array *array,
182 		 const struct assoc_array_ops *ops,
183 		 const void *index_key,
184 		 struct assoc_array_walk_result *result)
185 {
186 	struct assoc_array_shortcut *shortcut;
187 	struct assoc_array_node *node;
188 	struct assoc_array_ptr *cursor, *ptr;
189 	unsigned long sc_segments, dissimilarity;
190 	unsigned long segments;
191 	int level, sc_level, next_sc_level;
192 	int slot;
193 
194 	pr_devel("-->%s()\n", __func__);
195 
196 	cursor = ACCESS_ONCE(array->root);
197 	if (!cursor)
198 		return assoc_array_walk_tree_empty;
199 
200 	level = 0;
201 
202 	/* Use segments from the key for the new leaf to navigate through the
203 	 * internal tree, skipping through nodes and shortcuts that are on
204 	 * route to the destination.  Eventually we'll come to a slot that is
205 	 * either empty or contains a leaf at which point we've found a node in
206 	 * which the leaf we're looking for might be found or into which it
207 	 * should be inserted.
208 	 */
209 jumped:
210 	segments = ops->get_key_chunk(index_key, level);
211 	pr_devel("segments[%d]: %lx\n", level, segments);
212 
213 	if (assoc_array_ptr_is_shortcut(cursor))
214 		goto follow_shortcut;
215 
216 consider_node:
217 	node = assoc_array_ptr_to_node(cursor);
218 	smp_read_barrier_depends();
219 
220 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 	slot &= ASSOC_ARRAY_FAN_MASK;
222 	ptr = ACCESS_ONCE(node->slots[slot]);
223 
224 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 		 slot, level, (unsigned long)ptr & 3);
226 
227 	if (!assoc_array_ptr_is_meta(ptr)) {
228 		/* The node doesn't have a node/shortcut pointer in the slot
229 		 * corresponding to the index key that we have to follow.
230 		 */
231 		result->terminal_node.node = node;
232 		result->terminal_node.level = level;
233 		result->terminal_node.slot = slot;
234 		pr_devel("<--%s() = terminal_node\n", __func__);
235 		return assoc_array_walk_found_terminal_node;
236 	}
237 
238 	if (assoc_array_ptr_is_node(ptr)) {
239 		/* There is a pointer to a node in the slot corresponding to
240 		 * this index key segment, so we need to follow it.
241 		 */
242 		cursor = ptr;
243 		level += ASSOC_ARRAY_LEVEL_STEP;
244 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
245 			goto consider_node;
246 		goto jumped;
247 	}
248 
249 	/* There is a shortcut in the slot corresponding to the index key
250 	 * segment.  We follow the shortcut if its partial index key matches
251 	 * this leaf's.  Otherwise we need to split the shortcut.
252 	 */
253 	cursor = ptr;
254 follow_shortcut:
255 	shortcut = assoc_array_ptr_to_shortcut(cursor);
256 	smp_read_barrier_depends();
257 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 	BUG_ON(sc_level > shortcut->skip_to_level);
260 
261 	do {
262 		/* Check the leaf against the shortcut's index key a word at a
263 		 * time, trimming the final word (the shortcut stores the index
264 		 * key completely from the root to the shortcut's target).
265 		 */
266 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 			segments = ops->get_key_chunk(index_key, sc_level);
268 
269 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 		dissimilarity = segments ^ sc_segments;
271 
272 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 			/* Trim segments that are beyond the shortcut */
274 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 			dissimilarity &= ~(ULONG_MAX << shift);
276 			next_sc_level = shortcut->skip_to_level;
277 		} else {
278 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
280 		}
281 
282 		if (dissimilarity != 0) {
283 			/* This shortcut points elsewhere */
284 			result->wrong_shortcut.shortcut = shortcut;
285 			result->wrong_shortcut.level = level;
286 			result->wrong_shortcut.sc_level = sc_level;
287 			result->wrong_shortcut.sc_segments = sc_segments;
288 			result->wrong_shortcut.dissimilarity = dissimilarity;
289 			return assoc_array_walk_found_wrong_shortcut;
290 		}
291 
292 		sc_level = next_sc_level;
293 	} while (sc_level < shortcut->skip_to_level);
294 
295 	/* The shortcut matches the leaf's index to this point. */
296 	cursor = ACCESS_ONCE(shortcut->next_node);
297 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
298 		level = sc_level;
299 		goto jumped;
300 	} else {
301 		level = sc_level;
302 		goto consider_node;
303 	}
304 }
305 
306 /**
307  * assoc_array_find - Find an object by index key
308  * @array: The associative array to search.
309  * @ops: The operations to use.
310  * @index_key: The key to the object.
311  *
312  * Find an object in an associative array by walking through the internal tree
313  * to the node that should contain the object and then searching the leaves
314  * there.  NULL is returned if the requested object was not found in the array.
315  *
316  * The caller must hold the RCU read lock or better.
317  */
assoc_array_find(const struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key)318 void *assoc_array_find(const struct assoc_array *array,
319 		       const struct assoc_array_ops *ops,
320 		       const void *index_key)
321 {
322 	struct assoc_array_walk_result result;
323 	const struct assoc_array_node *node;
324 	const struct assoc_array_ptr *ptr;
325 	const void *leaf;
326 	int slot;
327 
328 	if (assoc_array_walk(array, ops, index_key, &result) !=
329 	    assoc_array_walk_found_terminal_node)
330 		return NULL;
331 
332 	node = result.terminal_node.node;
333 	smp_read_barrier_depends();
334 
335 	/* If the target key is available to us, it's has to be pointed to by
336 	 * the terminal node.
337 	 */
338 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 		ptr = ACCESS_ONCE(node->slots[slot]);
340 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 			/* We need a barrier between the read of the pointer
342 			 * and dereferencing the pointer - but only if we are
343 			 * actually going to dereference it.
344 			 */
345 			leaf = assoc_array_ptr_to_leaf(ptr);
346 			smp_read_barrier_depends();
347 			if (ops->compare_object(leaf, index_key))
348 				return (void *)leaf;
349 		}
350 	}
351 
352 	return NULL;
353 }
354 
355 /*
356  * Destructively iterate over an associative array.  The caller must prevent
357  * other simultaneous accesses.
358  */
assoc_array_destroy_subtree(struct assoc_array_ptr * root,const struct assoc_array_ops * ops)359 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 					const struct assoc_array_ops *ops)
361 {
362 	struct assoc_array_shortcut *shortcut;
363 	struct assoc_array_node *node;
364 	struct assoc_array_ptr *cursor, *parent = NULL;
365 	int slot = -1;
366 
367 	pr_devel("-->%s()\n", __func__);
368 
369 	cursor = root;
370 	if (!cursor) {
371 		pr_devel("empty\n");
372 		return;
373 	}
374 
375 move_to_meta:
376 	if (assoc_array_ptr_is_shortcut(cursor)) {
377 		/* Descend through a shortcut */
378 		pr_devel("[%d] shortcut\n", slot);
379 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 		shortcut = assoc_array_ptr_to_shortcut(cursor);
381 		BUG_ON(shortcut->back_pointer != parent);
382 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
383 		parent = cursor;
384 		cursor = shortcut->next_node;
385 		slot = -1;
386 		BUG_ON(!assoc_array_ptr_is_node(cursor));
387 	}
388 
389 	pr_devel("[%d] node\n", slot);
390 	node = assoc_array_ptr_to_node(cursor);
391 	BUG_ON(node->back_pointer != parent);
392 	BUG_ON(slot != -1 && node->parent_slot != slot);
393 	slot = 0;
394 
395 continue_node:
396 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 		struct assoc_array_ptr *ptr = node->slots[slot];
399 		if (!ptr)
400 			continue;
401 		if (assoc_array_ptr_is_meta(ptr)) {
402 			parent = cursor;
403 			cursor = ptr;
404 			goto move_to_meta;
405 		}
406 
407 		if (ops) {
408 			pr_devel("[%d] free leaf\n", slot);
409 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
410 		}
411 	}
412 
413 	parent = node->back_pointer;
414 	slot = node->parent_slot;
415 	pr_devel("free node\n");
416 	kfree(node);
417 	if (!parent)
418 		return; /* Done */
419 
420 	/* Move back up to the parent (may need to free a shortcut on
421 	 * the way up) */
422 	if (assoc_array_ptr_is_shortcut(parent)) {
423 		shortcut = assoc_array_ptr_to_shortcut(parent);
424 		BUG_ON(shortcut->next_node != cursor);
425 		cursor = parent;
426 		parent = shortcut->back_pointer;
427 		slot = shortcut->parent_slot;
428 		pr_devel("free shortcut\n");
429 		kfree(shortcut);
430 		if (!parent)
431 			return;
432 
433 		BUG_ON(!assoc_array_ptr_is_node(parent));
434 	}
435 
436 	/* Ascend to next slot in parent node */
437 	pr_devel("ascend to %p[%d]\n", parent, slot);
438 	cursor = parent;
439 	node = assoc_array_ptr_to_node(cursor);
440 	slot++;
441 	goto continue_node;
442 }
443 
444 /**
445  * assoc_array_destroy - Destroy an associative array
446  * @array: The array to destroy.
447  * @ops: The operations to use.
448  *
449  * Discard all metadata and free all objects in an associative array.  The
450  * array will be empty and ready to use again upon completion.  This function
451  * cannot fail.
452  *
453  * The caller must prevent all other accesses whilst this takes place as no
454  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455  * accesses to continue.  On the other hand, no memory allocation is required.
456  */
assoc_array_destroy(struct assoc_array * array,const struct assoc_array_ops * ops)457 void assoc_array_destroy(struct assoc_array *array,
458 			 const struct assoc_array_ops *ops)
459 {
460 	assoc_array_destroy_subtree(array->root, ops);
461 	array->root = NULL;
462 }
463 
464 /*
465  * Handle insertion into an empty tree.
466  */
assoc_array_insert_in_empty_tree(struct assoc_array_edit * edit)467 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
468 {
469 	struct assoc_array_node *new_n0;
470 
471 	pr_devel("-->%s()\n", __func__);
472 
473 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
474 	if (!new_n0)
475 		return false;
476 
477 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 	edit->leaf_p = &new_n0->slots[0];
479 	edit->adjust_count_on = new_n0;
480 	edit->set[0].ptr = &edit->array->root;
481 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
482 
483 	pr_devel("<--%s() = ok [no root]\n", __func__);
484 	return true;
485 }
486 
487 /*
488  * Handle insertion into a terminal node.
489  */
assoc_array_insert_into_terminal_node(struct assoc_array_edit * edit,const struct assoc_array_ops * ops,const void * index_key,struct assoc_array_walk_result * result)490 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 						  const struct assoc_array_ops *ops,
492 						  const void *index_key,
493 						  struct assoc_array_walk_result *result)
494 {
495 	struct assoc_array_shortcut *shortcut, *new_s0;
496 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 	struct assoc_array_ptr *ptr;
498 	unsigned long dissimilarity, base_seg, blank;
499 	size_t keylen;
500 	bool have_meta;
501 	int level, diff;
502 	int slot, next_slot, free_slot, i, j;
503 
504 	node	= result->terminal_node.node;
505 	level	= result->terminal_node.level;
506 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
507 
508 	pr_devel("-->%s()\n", __func__);
509 
510 	/* We arrived at a node which doesn't have an onward node or shortcut
511 	 * pointer that we have to follow.  This means that (a) the leaf we
512 	 * want must go here (either by insertion or replacement) or (b) we
513 	 * need to split this node and insert in one of the fragments.
514 	 */
515 	free_slot = -1;
516 
517 	/* Firstly, we have to check the leaves in this node to see if there's
518 	 * a matching one we should replace in place.
519 	 */
520 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 		ptr = node->slots[i];
522 		if (!ptr) {
523 			free_slot = i;
524 			continue;
525 		}
526 		if (assoc_array_ptr_is_leaf(ptr) &&
527 		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
528 					index_key)) {
529 			pr_devel("replace in slot %d\n", i);
530 			edit->leaf_p = &node->slots[i];
531 			edit->dead_leaf = node->slots[i];
532 			pr_devel("<--%s() = ok [replace]\n", __func__);
533 			return true;
534 		}
535 	}
536 
537 	/* If there is a free slot in this node then we can just insert the
538 	 * leaf here.
539 	 */
540 	if (free_slot >= 0) {
541 		pr_devel("insert in free slot %d\n", free_slot);
542 		edit->leaf_p = &node->slots[free_slot];
543 		edit->adjust_count_on = node;
544 		pr_devel("<--%s() = ok [insert]\n", __func__);
545 		return true;
546 	}
547 
548 	/* The node has no spare slots - so we're either going to have to split
549 	 * it or insert another node before it.
550 	 *
551 	 * Whatever, we're going to need at least two new nodes - so allocate
552 	 * those now.  We may also need a new shortcut, but we deal with that
553 	 * when we need it.
554 	 */
555 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
556 	if (!new_n0)
557 		return false;
558 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
559 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
560 	if (!new_n1)
561 		return false;
562 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
563 
564 	/* We need to find out how similar the leaves are. */
565 	pr_devel("no spare slots\n");
566 	have_meta = false;
567 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
568 		ptr = node->slots[i];
569 		if (assoc_array_ptr_is_meta(ptr)) {
570 			edit->segment_cache[i] = 0xff;
571 			have_meta = true;
572 			continue;
573 		}
574 		base_seg = ops->get_object_key_chunk(
575 			assoc_array_ptr_to_leaf(ptr), level);
576 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
577 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
578 	}
579 
580 	if (have_meta) {
581 		pr_devel("have meta\n");
582 		goto split_node;
583 	}
584 
585 	/* The node contains only leaves */
586 	dissimilarity = 0;
587 	base_seg = edit->segment_cache[0];
588 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
589 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
590 
591 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
592 
593 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
594 		/* The old leaves all cluster in the same slot.  We will need
595 		 * to insert a shortcut if the new node wants to cluster with them.
596 		 */
597 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
598 			goto all_leaves_cluster_together;
599 
600 		/* Otherwise all the old leaves cluster in the same slot, but
601 		 * the new leaf wants to go into a different slot - so we
602 		 * create a new node (n0) to hold the new leaf and a pointer to
603 		 * a new node (n1) holding all the old leaves.
604 		 *
605 		 * This can be done by falling through to the node splitting
606 		 * path.
607 		 */
608 		pr_devel("present leaves cluster but not new leaf\n");
609 	}
610 
611 split_node:
612 	pr_devel("split node\n");
613 
614 	/* We need to split the current node.  The node must contain anything
615 	 * from a single leaf (in the one leaf case, this leaf will cluster
616 	 * with the new leaf) and the rest meta-pointers, to all leaves, some
617 	 * of which may cluster.
618 	 *
619 	 * It won't contain the case in which all the current leaves plus the
620 	 * new leaves want to cluster in the same slot.
621 	 *
622 	 * We need to expel at least two leaves out of a set consisting of the
623 	 * leaves in the node and the new leaf.  The current meta pointers can
624 	 * just be copied as they shouldn't cluster with any of the leaves.
625 	 *
626 	 * We need a new node (n0) to replace the current one and a new node to
627 	 * take the expelled nodes (n1).
628 	 */
629 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
630 	new_n0->back_pointer = node->back_pointer;
631 	new_n0->parent_slot = node->parent_slot;
632 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
633 	new_n1->parent_slot = -1; /* Need to calculate this */
634 
635 do_split_node:
636 	pr_devel("do_split_node\n");
637 
638 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
639 	new_n1->nr_leaves_on_branch = 0;
640 
641 	/* Begin by finding two matching leaves.  There have to be at least two
642 	 * that match - even if there are meta pointers - because any leaf that
643 	 * would match a slot with a meta pointer in it must be somewhere
644 	 * behind that meta pointer and cannot be here.  Further, given N
645 	 * remaining leaf slots, we now have N+1 leaves to go in them.
646 	 */
647 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
648 		slot = edit->segment_cache[i];
649 		if (slot != 0xff)
650 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
651 				if (edit->segment_cache[j] == slot)
652 					goto found_slot_for_multiple_occupancy;
653 	}
654 found_slot_for_multiple_occupancy:
655 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
656 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
657 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
658 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
659 
660 	new_n1->parent_slot = slot;
661 
662 	/* Metadata pointers cannot change slot */
663 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
664 		if (assoc_array_ptr_is_meta(node->slots[i]))
665 			new_n0->slots[i] = node->slots[i];
666 		else
667 			new_n0->slots[i] = NULL;
668 	BUG_ON(new_n0->slots[slot] != NULL);
669 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
670 
671 	/* Filter the leaf pointers between the new nodes */
672 	free_slot = -1;
673 	next_slot = 0;
674 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
675 		if (assoc_array_ptr_is_meta(node->slots[i]))
676 			continue;
677 		if (edit->segment_cache[i] == slot) {
678 			new_n1->slots[next_slot++] = node->slots[i];
679 			new_n1->nr_leaves_on_branch++;
680 		} else {
681 			do {
682 				free_slot++;
683 			} while (new_n0->slots[free_slot] != NULL);
684 			new_n0->slots[free_slot] = node->slots[i];
685 		}
686 	}
687 
688 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
689 
690 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
691 		do {
692 			free_slot++;
693 		} while (new_n0->slots[free_slot] != NULL);
694 		edit->leaf_p = &new_n0->slots[free_slot];
695 		edit->adjust_count_on = new_n0;
696 	} else {
697 		edit->leaf_p = &new_n1->slots[next_slot++];
698 		edit->adjust_count_on = new_n1;
699 	}
700 
701 	BUG_ON(next_slot <= 1);
702 
703 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
704 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
705 		if (edit->segment_cache[i] == 0xff) {
706 			ptr = node->slots[i];
707 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
708 			if (assoc_array_ptr_is_node(ptr)) {
709 				side = assoc_array_ptr_to_node(ptr);
710 				edit->set_backpointers[i] = &side->back_pointer;
711 			} else {
712 				shortcut = assoc_array_ptr_to_shortcut(ptr);
713 				edit->set_backpointers[i] = &shortcut->back_pointer;
714 			}
715 		}
716 	}
717 
718 	ptr = node->back_pointer;
719 	if (!ptr)
720 		edit->set[0].ptr = &edit->array->root;
721 	else if (assoc_array_ptr_is_node(ptr))
722 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
723 	else
724 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
725 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
726 	pr_devel("<--%s() = ok [split node]\n", __func__);
727 	return true;
728 
729 all_leaves_cluster_together:
730 	/* All the leaves, new and old, want to cluster together in this node
731 	 * in the same slot, so we have to replace this node with a shortcut to
732 	 * skip over the identical parts of the key and then place a pair of
733 	 * nodes, one inside the other, at the end of the shortcut and
734 	 * distribute the keys between them.
735 	 *
736 	 * Firstly we need to work out where the leaves start diverging as a
737 	 * bit position into their keys so that we know how big the shortcut
738 	 * needs to be.
739 	 *
740 	 * We only need to make a single pass of N of the N+1 leaves because if
741 	 * any keys differ between themselves at bit X then at least one of
742 	 * them must also differ with the base key at bit X or before.
743 	 */
744 	pr_devel("all leaves cluster together\n");
745 	diff = INT_MAX;
746 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
747 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
748 					  index_key);
749 		if (x < diff) {
750 			BUG_ON(x < 0);
751 			diff = x;
752 		}
753 	}
754 	BUG_ON(diff == INT_MAX);
755 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
756 
757 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
758 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
759 
760 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
761 			 keylen * sizeof(unsigned long), GFP_KERNEL);
762 	if (!new_s0)
763 		return false;
764 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
765 
766 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
767 	new_s0->back_pointer = node->back_pointer;
768 	new_s0->parent_slot = node->parent_slot;
769 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
770 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
771 	new_n0->parent_slot = 0;
772 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
773 	new_n1->parent_slot = -1; /* Need to calculate this */
774 
775 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
776 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
777 	BUG_ON(level <= 0);
778 
779 	for (i = 0; i < keylen; i++)
780 		new_s0->index_key[i] =
781 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
782 
783 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
784 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
785 	new_s0->index_key[keylen - 1] &= ~blank;
786 
787 	/* This now reduces to a node splitting exercise for which we'll need
788 	 * to regenerate the disparity table.
789 	 */
790 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
791 		ptr = node->slots[i];
792 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
793 						     level);
794 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
795 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
796 	}
797 
798 	base_seg = ops->get_key_chunk(index_key, level);
799 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
800 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
801 	goto do_split_node;
802 }
803 
804 /*
805  * Handle insertion into the middle of a shortcut.
806  */
assoc_array_insert_mid_shortcut(struct assoc_array_edit * edit,const struct assoc_array_ops * ops,struct assoc_array_walk_result * result)807 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
808 					    const struct assoc_array_ops *ops,
809 					    struct assoc_array_walk_result *result)
810 {
811 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
812 	struct assoc_array_node *node, *new_n0, *side;
813 	unsigned long sc_segments, dissimilarity, blank;
814 	size_t keylen;
815 	int level, sc_level, diff;
816 	int sc_slot;
817 
818 	shortcut	= result->wrong_shortcut.shortcut;
819 	level		= result->wrong_shortcut.level;
820 	sc_level	= result->wrong_shortcut.sc_level;
821 	sc_segments	= result->wrong_shortcut.sc_segments;
822 	dissimilarity	= result->wrong_shortcut.dissimilarity;
823 
824 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
825 		 __func__, level, dissimilarity, sc_level);
826 
827 	/* We need to split a shortcut and insert a node between the two
828 	 * pieces.  Zero-length pieces will be dispensed with entirely.
829 	 *
830 	 * First of all, we need to find out in which level the first
831 	 * difference was.
832 	 */
833 	diff = __ffs(dissimilarity);
834 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
835 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
836 	pr_devel("diff=%d\n", diff);
837 
838 	if (!shortcut->back_pointer) {
839 		edit->set[0].ptr = &edit->array->root;
840 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
841 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
842 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
843 	} else {
844 		BUG();
845 	}
846 
847 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
848 
849 	/* Create a new node now since we're going to need it anyway */
850 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
851 	if (!new_n0)
852 		return false;
853 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
854 	edit->adjust_count_on = new_n0;
855 
856 	/* Insert a new shortcut before the new node if this segment isn't of
857 	 * zero length - otherwise we just connect the new node directly to the
858 	 * parent.
859 	 */
860 	level += ASSOC_ARRAY_LEVEL_STEP;
861 	if (diff > level) {
862 		pr_devel("pre-shortcut %d...%d\n", level, diff);
863 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
864 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
865 
866 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
867 				 keylen * sizeof(unsigned long), GFP_KERNEL);
868 		if (!new_s0)
869 			return false;
870 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
871 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
872 		new_s0->back_pointer = shortcut->back_pointer;
873 		new_s0->parent_slot = shortcut->parent_slot;
874 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
875 		new_s0->skip_to_level = diff;
876 
877 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
878 		new_n0->parent_slot = 0;
879 
880 		memcpy(new_s0->index_key, shortcut->index_key,
881 		       keylen * sizeof(unsigned long));
882 
883 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
884 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
885 		new_s0->index_key[keylen - 1] &= ~blank;
886 	} else {
887 		pr_devel("no pre-shortcut\n");
888 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
889 		new_n0->back_pointer = shortcut->back_pointer;
890 		new_n0->parent_slot = shortcut->parent_slot;
891 	}
892 
893 	side = assoc_array_ptr_to_node(shortcut->next_node);
894 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
895 
896 	/* We need to know which slot in the new node is going to take a
897 	 * metadata pointer.
898 	 */
899 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
900 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
901 
902 	pr_devel("new slot %lx >> %d -> %d\n",
903 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
904 
905 	/* Determine whether we need to follow the new node with a replacement
906 	 * for the current shortcut.  We could in theory reuse the current
907 	 * shortcut if its parent slot number doesn't change - but that's a
908 	 * 1-in-16 chance so not worth expending the code upon.
909 	 */
910 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
911 	if (level < shortcut->skip_to_level) {
912 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
913 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
914 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
915 
916 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
917 				 keylen * sizeof(unsigned long), GFP_KERNEL);
918 		if (!new_s1)
919 			return false;
920 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
921 
922 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
923 		new_s1->parent_slot = sc_slot;
924 		new_s1->next_node = shortcut->next_node;
925 		new_s1->skip_to_level = shortcut->skip_to_level;
926 
927 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
928 
929 		memcpy(new_s1->index_key, shortcut->index_key,
930 		       keylen * sizeof(unsigned long));
931 
932 		edit->set[1].ptr = &side->back_pointer;
933 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
934 	} else {
935 		pr_devel("no post-shortcut\n");
936 
937 		/* We don't have to replace the pointed-to node as long as we
938 		 * use memory barriers to make sure the parent slot number is
939 		 * changed before the back pointer (the parent slot number is
940 		 * irrelevant to the old parent shortcut).
941 		 */
942 		new_n0->slots[sc_slot] = shortcut->next_node;
943 		edit->set_parent_slot[0].p = &side->parent_slot;
944 		edit->set_parent_slot[0].to = sc_slot;
945 		edit->set[1].ptr = &side->back_pointer;
946 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
947 	}
948 
949 	/* Install the new leaf in a spare slot in the new node. */
950 	if (sc_slot == 0)
951 		edit->leaf_p = &new_n0->slots[1];
952 	else
953 		edit->leaf_p = &new_n0->slots[0];
954 
955 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
956 	return edit;
957 }
958 
959 /**
960  * assoc_array_insert - Script insertion of an object into an associative array
961  * @array: The array to insert into.
962  * @ops: The operations to use.
963  * @index_key: The key to insert at.
964  * @object: The object to insert.
965  *
966  * Precalculate and preallocate a script for the insertion or replacement of an
967  * object in an associative array.  This results in an edit script that can
968  * either be applied or cancelled.
969  *
970  * The function returns a pointer to an edit script or -ENOMEM.
971  *
972  * The caller should lock against other modifications and must continue to hold
973  * the lock until assoc_array_apply_edit() has been called.
974  *
975  * Accesses to the tree may take place concurrently with this function,
976  * provided they hold the RCU read lock.
977  */
assoc_array_insert(struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key,void * object)978 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
979 					    const struct assoc_array_ops *ops,
980 					    const void *index_key,
981 					    void *object)
982 {
983 	struct assoc_array_walk_result result;
984 	struct assoc_array_edit *edit;
985 
986 	pr_devel("-->%s()\n", __func__);
987 
988 	/* The leaf pointer we're given must not have the bottom bit set as we
989 	 * use those for type-marking the pointer.  NULL pointers are also not
990 	 * allowed as they indicate an empty slot but we have to allow them
991 	 * here as they can be updated later.
992 	 */
993 	BUG_ON(assoc_array_ptr_is_meta(object));
994 
995 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
996 	if (!edit)
997 		return ERR_PTR(-ENOMEM);
998 	edit->array = array;
999 	edit->ops = ops;
1000 	edit->leaf = assoc_array_leaf_to_ptr(object);
1001 	edit->adjust_count_by = 1;
1002 
1003 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1004 	case assoc_array_walk_tree_empty:
1005 		/* Allocate a root node if there isn't one yet */
1006 		if (!assoc_array_insert_in_empty_tree(edit))
1007 			goto enomem;
1008 		return edit;
1009 
1010 	case assoc_array_walk_found_terminal_node:
1011 		/* We found a node that doesn't have a node/shortcut pointer in
1012 		 * the slot corresponding to the index key that we have to
1013 		 * follow.
1014 		 */
1015 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1016 							   &result))
1017 			goto enomem;
1018 		return edit;
1019 
1020 	case assoc_array_walk_found_wrong_shortcut:
1021 		/* We found a shortcut that didn't match our key in a slot we
1022 		 * needed to follow.
1023 		 */
1024 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1025 			goto enomem;
1026 		return edit;
1027 	}
1028 
1029 enomem:
1030 	/* Clean up after an out of memory error */
1031 	pr_devel("enomem\n");
1032 	assoc_array_cancel_edit(edit);
1033 	return ERR_PTR(-ENOMEM);
1034 }
1035 
1036 /**
1037  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1038  * @edit: The edit script to modify.
1039  * @object: The object pointer to set.
1040  *
1041  * Change the object to be inserted in an edit script.  The object pointed to
1042  * by the old object is not freed.  This must be done prior to applying the
1043  * script.
1044  */
assoc_array_insert_set_object(struct assoc_array_edit * edit,void * object)1045 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1046 {
1047 	BUG_ON(!object);
1048 	edit->leaf = assoc_array_leaf_to_ptr(object);
1049 }
1050 
1051 struct assoc_array_delete_collapse_context {
1052 	struct assoc_array_node	*node;
1053 	const void		*skip_leaf;
1054 	int			slot;
1055 };
1056 
1057 /*
1058  * Subtree collapse to node iterator.
1059  */
assoc_array_delete_collapse_iterator(const void * leaf,void * iterator_data)1060 static int assoc_array_delete_collapse_iterator(const void *leaf,
1061 						void *iterator_data)
1062 {
1063 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1064 
1065 	if (leaf == collapse->skip_leaf)
1066 		return 0;
1067 
1068 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1069 
1070 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1071 	return 0;
1072 }
1073 
1074 /**
1075  * assoc_array_delete - Script deletion of an object from an associative array
1076  * @array: The array to search.
1077  * @ops: The operations to use.
1078  * @index_key: The key to the object.
1079  *
1080  * Precalculate and preallocate a script for the deletion of an object from an
1081  * associative array.  This results in an edit script that can either be
1082  * applied or cancelled.
1083  *
1084  * The function returns a pointer to an edit script if the object was found,
1085  * NULL if the object was not found or -ENOMEM.
1086  *
1087  * The caller should lock against other modifications and must continue to hold
1088  * the lock until assoc_array_apply_edit() has been called.
1089  *
1090  * Accesses to the tree may take place concurrently with this function,
1091  * provided they hold the RCU read lock.
1092  */
assoc_array_delete(struct assoc_array * array,const struct assoc_array_ops * ops,const void * index_key)1093 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1094 					    const struct assoc_array_ops *ops,
1095 					    const void *index_key)
1096 {
1097 	struct assoc_array_delete_collapse_context collapse;
1098 	struct assoc_array_walk_result result;
1099 	struct assoc_array_node *node, *new_n0;
1100 	struct assoc_array_edit *edit;
1101 	struct assoc_array_ptr *ptr;
1102 	bool has_meta;
1103 	int slot, i;
1104 
1105 	pr_devel("-->%s()\n", __func__);
1106 
1107 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1108 	if (!edit)
1109 		return ERR_PTR(-ENOMEM);
1110 	edit->array = array;
1111 	edit->ops = ops;
1112 	edit->adjust_count_by = -1;
1113 
1114 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1115 	case assoc_array_walk_found_terminal_node:
1116 		/* We found a node that should contain the leaf we've been
1117 		 * asked to remove - *if* it's in the tree.
1118 		 */
1119 		pr_devel("terminal_node\n");
1120 		node = result.terminal_node.node;
1121 
1122 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1123 			ptr = node->slots[slot];
1124 			if (ptr &&
1125 			    assoc_array_ptr_is_leaf(ptr) &&
1126 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1127 						index_key))
1128 				goto found_leaf;
1129 		}
1130 	case assoc_array_walk_tree_empty:
1131 	case assoc_array_walk_found_wrong_shortcut:
1132 	default:
1133 		assoc_array_cancel_edit(edit);
1134 		pr_devel("not found\n");
1135 		return NULL;
1136 	}
1137 
1138 found_leaf:
1139 	BUG_ON(array->nr_leaves_on_tree <= 0);
1140 
1141 	/* In the simplest form of deletion we just clear the slot and release
1142 	 * the leaf after a suitable interval.
1143 	 */
1144 	edit->dead_leaf = node->slots[slot];
1145 	edit->set[0].ptr = &node->slots[slot];
1146 	edit->set[0].to = NULL;
1147 	edit->adjust_count_on = node;
1148 
1149 	/* If that concludes erasure of the last leaf, then delete the entire
1150 	 * internal array.
1151 	 */
1152 	if (array->nr_leaves_on_tree == 1) {
1153 		edit->set[1].ptr = &array->root;
1154 		edit->set[1].to = NULL;
1155 		edit->adjust_count_on = NULL;
1156 		edit->excised_subtree = array->root;
1157 		pr_devel("all gone\n");
1158 		return edit;
1159 	}
1160 
1161 	/* However, we'd also like to clear up some metadata blocks if we
1162 	 * possibly can.
1163 	 *
1164 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1165 	 * leaves in it, then attempt to collapse it - and attempt to
1166 	 * recursively collapse up the tree.
1167 	 *
1168 	 * We could also try and collapse in partially filled subtrees to take
1169 	 * up space in this node.
1170 	 */
1171 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1172 		struct assoc_array_node *parent, *grandparent;
1173 		struct assoc_array_ptr *ptr;
1174 
1175 		/* First of all, we need to know if this node has metadata so
1176 		 * that we don't try collapsing if all the leaves are already
1177 		 * here.
1178 		 */
1179 		has_meta = false;
1180 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1181 			ptr = node->slots[i];
1182 			if (assoc_array_ptr_is_meta(ptr)) {
1183 				has_meta = true;
1184 				break;
1185 			}
1186 		}
1187 
1188 		pr_devel("leaves: %ld [m=%d]\n",
1189 			 node->nr_leaves_on_branch - 1, has_meta);
1190 
1191 		/* Look further up the tree to see if we can collapse this node
1192 		 * into a more proximal node too.
1193 		 */
1194 		parent = node;
1195 	collapse_up:
1196 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1197 
1198 		ptr = parent->back_pointer;
1199 		if (!ptr)
1200 			goto do_collapse;
1201 		if (assoc_array_ptr_is_shortcut(ptr)) {
1202 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1203 			ptr = s->back_pointer;
1204 			if (!ptr)
1205 				goto do_collapse;
1206 		}
1207 
1208 		grandparent = assoc_array_ptr_to_node(ptr);
1209 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1210 			parent = grandparent;
1211 			goto collapse_up;
1212 		}
1213 
1214 	do_collapse:
1215 		/* There's no point collapsing if the original node has no meta
1216 		 * pointers to discard and if we didn't merge into one of that
1217 		 * node's ancestry.
1218 		 */
1219 		if (has_meta || parent != node) {
1220 			node = parent;
1221 
1222 			/* Create a new node to collapse into */
1223 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1224 			if (!new_n0)
1225 				goto enomem;
1226 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1227 
1228 			new_n0->back_pointer = node->back_pointer;
1229 			new_n0->parent_slot = node->parent_slot;
1230 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1231 			edit->adjust_count_on = new_n0;
1232 
1233 			collapse.node = new_n0;
1234 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1235 			collapse.slot = 0;
1236 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1237 						    node->back_pointer,
1238 						    assoc_array_delete_collapse_iterator,
1239 						    &collapse);
1240 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1241 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1242 
1243 			if (!node->back_pointer) {
1244 				edit->set[1].ptr = &array->root;
1245 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1246 				BUG();
1247 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1248 				struct assoc_array_node *p =
1249 					assoc_array_ptr_to_node(node->back_pointer);
1250 				edit->set[1].ptr = &p->slots[node->parent_slot];
1251 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1252 				struct assoc_array_shortcut *s =
1253 					assoc_array_ptr_to_shortcut(node->back_pointer);
1254 				edit->set[1].ptr = &s->next_node;
1255 			}
1256 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1257 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1258 		}
1259 	}
1260 
1261 	return edit;
1262 
1263 enomem:
1264 	/* Clean up after an out of memory error */
1265 	pr_devel("enomem\n");
1266 	assoc_array_cancel_edit(edit);
1267 	return ERR_PTR(-ENOMEM);
1268 }
1269 
1270 /**
1271  * assoc_array_clear - Script deletion of all objects from an associative array
1272  * @array: The array to clear.
1273  * @ops: The operations to use.
1274  *
1275  * Precalculate and preallocate a script for the deletion of all the objects
1276  * from an associative array.  This results in an edit script that can either
1277  * be applied or cancelled.
1278  *
1279  * The function returns a pointer to an edit script if there are objects to be
1280  * deleted, NULL if there are no objects in the array or -ENOMEM.
1281  *
1282  * The caller should lock against other modifications and must continue to hold
1283  * the lock until assoc_array_apply_edit() has been called.
1284  *
1285  * Accesses to the tree may take place concurrently with this function,
1286  * provided they hold the RCU read lock.
1287  */
assoc_array_clear(struct assoc_array * array,const struct assoc_array_ops * ops)1288 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1289 					   const struct assoc_array_ops *ops)
1290 {
1291 	struct assoc_array_edit *edit;
1292 
1293 	pr_devel("-->%s()\n", __func__);
1294 
1295 	if (!array->root)
1296 		return NULL;
1297 
1298 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1299 	if (!edit)
1300 		return ERR_PTR(-ENOMEM);
1301 	edit->array = array;
1302 	edit->ops = ops;
1303 	edit->set[1].ptr = &array->root;
1304 	edit->set[1].to = NULL;
1305 	edit->excised_subtree = array->root;
1306 	edit->ops_for_excised_subtree = ops;
1307 	pr_devel("all gone\n");
1308 	return edit;
1309 }
1310 
1311 /*
1312  * Handle the deferred destruction after an applied edit.
1313  */
assoc_array_rcu_cleanup(struct rcu_head * head)1314 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1315 {
1316 	struct assoc_array_edit *edit =
1317 		container_of(head, struct assoc_array_edit, rcu);
1318 	int i;
1319 
1320 	pr_devel("-->%s()\n", __func__);
1321 
1322 	if (edit->dead_leaf)
1323 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1324 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1325 		if (edit->excised_meta[i])
1326 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1327 
1328 	if (edit->excised_subtree) {
1329 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1330 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1331 			struct assoc_array_node *n =
1332 				assoc_array_ptr_to_node(edit->excised_subtree);
1333 			n->back_pointer = NULL;
1334 		} else {
1335 			struct assoc_array_shortcut *s =
1336 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1337 			s->back_pointer = NULL;
1338 		}
1339 		assoc_array_destroy_subtree(edit->excised_subtree,
1340 					    edit->ops_for_excised_subtree);
1341 	}
1342 
1343 	kfree(edit);
1344 }
1345 
1346 /**
1347  * assoc_array_apply_edit - Apply an edit script to an associative array
1348  * @edit: The script to apply.
1349  *
1350  * Apply an edit script to an associative array to effect an insertion,
1351  * deletion or clearance.  As the edit script includes preallocated memory,
1352  * this is guaranteed not to fail.
1353  *
1354  * The edit script, dead objects and dead metadata will be scheduled for
1355  * destruction after an RCU grace period to permit those doing read-only
1356  * accesses on the array to continue to do so under the RCU read lock whilst
1357  * the edit is taking place.
1358  */
assoc_array_apply_edit(struct assoc_array_edit * edit)1359 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1360 {
1361 	struct assoc_array_shortcut *shortcut;
1362 	struct assoc_array_node *node;
1363 	struct assoc_array_ptr *ptr;
1364 	int i;
1365 
1366 	pr_devel("-->%s()\n", __func__);
1367 
1368 	smp_wmb();
1369 	if (edit->leaf_p)
1370 		*edit->leaf_p = edit->leaf;
1371 
1372 	smp_wmb();
1373 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1374 		if (edit->set_parent_slot[i].p)
1375 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1376 
1377 	smp_wmb();
1378 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1379 		if (edit->set_backpointers[i])
1380 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1381 
1382 	smp_wmb();
1383 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1384 		if (edit->set[i].ptr)
1385 			*edit->set[i].ptr = edit->set[i].to;
1386 
1387 	if (edit->array->root == NULL) {
1388 		edit->array->nr_leaves_on_tree = 0;
1389 	} else if (edit->adjust_count_on) {
1390 		node = edit->adjust_count_on;
1391 		for (;;) {
1392 			node->nr_leaves_on_branch += edit->adjust_count_by;
1393 
1394 			ptr = node->back_pointer;
1395 			if (!ptr)
1396 				break;
1397 			if (assoc_array_ptr_is_shortcut(ptr)) {
1398 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1399 				ptr = shortcut->back_pointer;
1400 				if (!ptr)
1401 					break;
1402 			}
1403 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1404 			node = assoc_array_ptr_to_node(ptr);
1405 		}
1406 
1407 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1408 	}
1409 
1410 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1411 }
1412 
1413 /**
1414  * assoc_array_cancel_edit - Discard an edit script.
1415  * @edit: The script to discard.
1416  *
1417  * Free an edit script and all the preallocated data it holds without making
1418  * any changes to the associative array it was intended for.
1419  *
1420  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1421  * that was to be inserted.  That is left to the caller.
1422  */
assoc_array_cancel_edit(struct assoc_array_edit * edit)1423 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1424 {
1425 	struct assoc_array_ptr *ptr;
1426 	int i;
1427 
1428 	pr_devel("-->%s()\n", __func__);
1429 
1430 	/* Clean up after an out of memory error */
1431 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1432 		ptr = edit->new_meta[i];
1433 		if (ptr) {
1434 			if (assoc_array_ptr_is_node(ptr))
1435 				kfree(assoc_array_ptr_to_node(ptr));
1436 			else
1437 				kfree(assoc_array_ptr_to_shortcut(ptr));
1438 		}
1439 	}
1440 	kfree(edit);
1441 }
1442 
1443 /**
1444  * assoc_array_gc - Garbage collect an associative array.
1445  * @array: The array to clean.
1446  * @ops: The operations to use.
1447  * @iterator: A callback function to pass judgement on each object.
1448  * @iterator_data: Private data for the callback function.
1449  *
1450  * Collect garbage from an associative array and pack down the internal tree to
1451  * save memory.
1452  *
1453  * The iterator function is asked to pass judgement upon each object in the
1454  * array.  If it returns false, the object is discard and if it returns true,
1455  * the object is kept.  If it returns true, it must increment the object's
1456  * usage count (or whatever it needs to do to retain it) before returning.
1457  *
1458  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1459  * latter case, the array is not changed.
1460  *
1461  * The caller should lock against other modifications and must continue to hold
1462  * the lock until assoc_array_apply_edit() has been called.
1463  *
1464  * Accesses to the tree may take place concurrently with this function,
1465  * provided they hold the RCU read lock.
1466  */
assoc_array_gc(struct assoc_array * array,const struct assoc_array_ops * ops,bool (* iterator)(void * object,void * iterator_data),void * iterator_data)1467 int assoc_array_gc(struct assoc_array *array,
1468 		   const struct assoc_array_ops *ops,
1469 		   bool (*iterator)(void *object, void *iterator_data),
1470 		   void *iterator_data)
1471 {
1472 	struct assoc_array_shortcut *shortcut, *new_s;
1473 	struct assoc_array_node *node, *new_n;
1474 	struct assoc_array_edit *edit;
1475 	struct assoc_array_ptr *cursor, *ptr;
1476 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1477 	unsigned long nr_leaves_on_tree;
1478 	int keylen, slot, nr_free, next_slot, i;
1479 
1480 	pr_devel("-->%s()\n", __func__);
1481 
1482 	if (!array->root)
1483 		return 0;
1484 
1485 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1486 	if (!edit)
1487 		return -ENOMEM;
1488 	edit->array = array;
1489 	edit->ops = ops;
1490 	edit->ops_for_excised_subtree = ops;
1491 	edit->set[0].ptr = &array->root;
1492 	edit->excised_subtree = array->root;
1493 
1494 	new_root = new_parent = NULL;
1495 	new_ptr_pp = &new_root;
1496 	cursor = array->root;
1497 
1498 descend:
1499 	/* If this point is a shortcut, then we need to duplicate it and
1500 	 * advance the target cursor.
1501 	 */
1502 	if (assoc_array_ptr_is_shortcut(cursor)) {
1503 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1504 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1505 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1506 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1507 				keylen * sizeof(unsigned long), GFP_KERNEL);
1508 		if (!new_s)
1509 			goto enomem;
1510 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1511 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1512 					 keylen * sizeof(unsigned long)));
1513 		new_s->back_pointer = new_parent;
1514 		new_s->parent_slot = shortcut->parent_slot;
1515 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1516 		new_ptr_pp = &new_s->next_node;
1517 		cursor = shortcut->next_node;
1518 	}
1519 
1520 	/* Duplicate the node at this position */
1521 	node = assoc_array_ptr_to_node(cursor);
1522 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1523 	if (!new_n)
1524 		goto enomem;
1525 	pr_devel("dup node %p -> %p\n", node, new_n);
1526 	new_n->back_pointer = new_parent;
1527 	new_n->parent_slot = node->parent_slot;
1528 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1529 	new_ptr_pp = NULL;
1530 	slot = 0;
1531 
1532 continue_node:
1533 	/* Filter across any leaves and gc any subtrees */
1534 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1535 		ptr = node->slots[slot];
1536 		if (!ptr)
1537 			continue;
1538 
1539 		if (assoc_array_ptr_is_leaf(ptr)) {
1540 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1541 				     iterator_data))
1542 				/* The iterator will have done any reference
1543 				 * counting on the object for us.
1544 				 */
1545 				new_n->slots[slot] = ptr;
1546 			continue;
1547 		}
1548 
1549 		new_ptr_pp = &new_n->slots[slot];
1550 		cursor = ptr;
1551 		goto descend;
1552 	}
1553 
1554 	pr_devel("-- compress node %p --\n", new_n);
1555 
1556 	/* Count up the number of empty slots in this node and work out the
1557 	 * subtree leaf count.
1558 	 */
1559 	new_n->nr_leaves_on_branch = 0;
1560 	nr_free = 0;
1561 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1562 		ptr = new_n->slots[slot];
1563 		if (!ptr)
1564 			nr_free++;
1565 		else if (assoc_array_ptr_is_leaf(ptr))
1566 			new_n->nr_leaves_on_branch++;
1567 	}
1568 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1569 
1570 	/* See what we can fold in */
1571 	next_slot = 0;
1572 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1573 		struct assoc_array_shortcut *s;
1574 		struct assoc_array_node *child;
1575 
1576 		ptr = new_n->slots[slot];
1577 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1578 			continue;
1579 
1580 		s = NULL;
1581 		if (assoc_array_ptr_is_shortcut(ptr)) {
1582 			s = assoc_array_ptr_to_shortcut(ptr);
1583 			ptr = s->next_node;
1584 		}
1585 
1586 		child = assoc_array_ptr_to_node(ptr);
1587 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1588 
1589 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1590 			/* Fold the child node into this one */
1591 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1592 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1593 				 next_slot);
1594 
1595 			/* We would already have reaped an intervening shortcut
1596 			 * on the way back up the tree.
1597 			 */
1598 			BUG_ON(s);
1599 
1600 			new_n->slots[slot] = NULL;
1601 			nr_free++;
1602 			if (slot < next_slot)
1603 				next_slot = slot;
1604 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1605 				struct assoc_array_ptr *p = child->slots[i];
1606 				if (!p)
1607 					continue;
1608 				BUG_ON(assoc_array_ptr_is_meta(p));
1609 				while (new_n->slots[next_slot])
1610 					next_slot++;
1611 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1612 				new_n->slots[next_slot++] = p;
1613 				nr_free--;
1614 			}
1615 			kfree(child);
1616 		} else {
1617 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1618 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1619 				 next_slot);
1620 		}
1621 	}
1622 
1623 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1624 
1625 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1626 
1627 	/* Excise this node if it is singly occupied by a shortcut */
1628 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1629 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1630 			if ((ptr = new_n->slots[slot]))
1631 				break;
1632 
1633 		if (assoc_array_ptr_is_meta(ptr) &&
1634 		    assoc_array_ptr_is_shortcut(ptr)) {
1635 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1636 			new_s = assoc_array_ptr_to_shortcut(ptr);
1637 			new_parent = new_n->back_pointer;
1638 			slot = new_n->parent_slot;
1639 			kfree(new_n);
1640 			if (!new_parent) {
1641 				new_s->back_pointer = NULL;
1642 				new_s->parent_slot = 0;
1643 				new_root = ptr;
1644 				goto gc_complete;
1645 			}
1646 
1647 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1648 				/* We can discard any preceding shortcut also */
1649 				struct assoc_array_shortcut *s =
1650 					assoc_array_ptr_to_shortcut(new_parent);
1651 
1652 				pr_devel("excise preceding shortcut\n");
1653 
1654 				new_parent = new_s->back_pointer = s->back_pointer;
1655 				slot = new_s->parent_slot = s->parent_slot;
1656 				kfree(s);
1657 				if (!new_parent) {
1658 					new_s->back_pointer = NULL;
1659 					new_s->parent_slot = 0;
1660 					new_root = ptr;
1661 					goto gc_complete;
1662 				}
1663 			}
1664 
1665 			new_s->back_pointer = new_parent;
1666 			new_s->parent_slot = slot;
1667 			new_n = assoc_array_ptr_to_node(new_parent);
1668 			new_n->slots[slot] = ptr;
1669 			goto ascend_old_tree;
1670 		}
1671 	}
1672 
1673 	/* Excise any shortcuts we might encounter that point to nodes that
1674 	 * only contain leaves.
1675 	 */
1676 	ptr = new_n->back_pointer;
1677 	if (!ptr)
1678 		goto gc_complete;
1679 
1680 	if (assoc_array_ptr_is_shortcut(ptr)) {
1681 		new_s = assoc_array_ptr_to_shortcut(ptr);
1682 		new_parent = new_s->back_pointer;
1683 		slot = new_s->parent_slot;
1684 
1685 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1686 			struct assoc_array_node *n;
1687 
1688 			pr_devel("excise shortcut\n");
1689 			new_n->back_pointer = new_parent;
1690 			new_n->parent_slot = slot;
1691 			kfree(new_s);
1692 			if (!new_parent) {
1693 				new_root = assoc_array_node_to_ptr(new_n);
1694 				goto gc_complete;
1695 			}
1696 
1697 			n = assoc_array_ptr_to_node(new_parent);
1698 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1699 		}
1700 	} else {
1701 		new_parent = ptr;
1702 	}
1703 	new_n = assoc_array_ptr_to_node(new_parent);
1704 
1705 ascend_old_tree:
1706 	ptr = node->back_pointer;
1707 	if (assoc_array_ptr_is_shortcut(ptr)) {
1708 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1709 		slot = shortcut->parent_slot;
1710 		cursor = shortcut->back_pointer;
1711 		if (!cursor)
1712 			goto gc_complete;
1713 	} else {
1714 		slot = node->parent_slot;
1715 		cursor = ptr;
1716 	}
1717 	BUG_ON(!cursor);
1718 	node = assoc_array_ptr_to_node(cursor);
1719 	slot++;
1720 	goto continue_node;
1721 
1722 gc_complete:
1723 	edit->set[0].to = new_root;
1724 	assoc_array_apply_edit(edit);
1725 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1726 	return 0;
1727 
1728 enomem:
1729 	pr_devel("enomem\n");
1730 	assoc_array_destroy_subtree(new_root, edit->ops);
1731 	kfree(edit);
1732 	return -ENOMEM;
1733 }
1734