• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  <title>Image Formats</title>
2
3  <para>The V4L2 API was primarily designed for devices exchanging
4image data with applications. The
5<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
6</structname> structures define the format and layout of an image in memory.
7The former is used with the single-planar API, while the latter is used with the
8multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
9negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
10capturing and output, for overlay frame buffer formats see also
11&VIDIOC-G-FBUF;.)</para>
12
13<section>
14  <title>Single-planar format structure</title>
15  <table pgwide="1" frame="none" id="v4l2-pix-format">
16    <title>struct <structname>v4l2_pix_format</structname></title>
17    <tgroup cols="3">
18      &cs-str;
19      <tbody valign="top">
20	<row>
21	  <entry>__u32</entry>
22	  <entry><structfield>width</structfield></entry>
23	  <entry>Image width in pixels.</entry>
24	</row>
25	<row>
26	  <entry>__u32</entry>
27	  <entry><structfield>height</structfield></entry>
28	  <entry>Image height in pixels. If <structfield>field</structfield> is
29	  one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
30	  or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
31	  number of lines in the field, otherwise it refers to the number of
32	  lines in the frame (which is twice the field height for interlaced
33	  formats).</entry>
34	</row>
35	<row>
36	  <entry spanname="hspan">Applications set these fields to
37request an image size, drivers return the closest possible values. In
38case of planar formats the <structfield>width</structfield> and
39<structfield>height</structfield> applies to the largest plane. To
40avoid ambiguities drivers must return values rounded up to a multiple
41of the scale factor of any smaller planes. For example when the image
42format is YUV 4:2:0, <structfield>width</structfield> and
43<structfield>height</structfield> must be multiples of two.</entry>
44	</row>
45	<row>
46	  <entry>__u32</entry>
47	  <entry><structfield>pixelformat</structfield></entry>
48	  <entry>The pixel format or type of compression, set by the
49application. This is a little endian <link
50linkend="v4l2-fourcc">four character code</link>. V4L2 defines
51standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
52linkend="yuv-formats" />, and reserved codes in <xref
53linkend="reserved-formats" /></entry>
54	</row>
55	<row>
56	  <entry>&v4l2-field;</entry>
57	  <entry><structfield>field</structfield></entry>
58	  <entry>Video images are typically interlaced. Applications
59can request to capture or output only the top or bottom field, or both
60fields interlaced or sequentially stored in one buffer or alternating
61in separate buffers. Drivers return the actual field order selected.
62For more details on fields see <xref linkend="field-order" />.</entry>
63	</row>
64	<row>
65	  <entry>__u32</entry>
66	  <entry><structfield>bytesperline</structfield></entry>
67	  <entry>Distance in bytes between the leftmost pixels in two
68adjacent lines.</entry>
69	</row>
70	<row>
71	  <entry spanname="hspan"><para>Both applications and drivers
72can set this field to request padding bytes at the end of each line.
73Drivers however may ignore the value requested by the application,
74returning <structfield>width</structfield> times bytes per pixel or a
75larger value required by the hardware. That implies applications can
76just set this field to zero to get a reasonable
77default.</para><para>Video hardware may access padding bytes,
78therefore they must reside in accessible memory. Consider cases where
79padding bytes after the last line of an image cross a system page
80boundary. Input devices may write padding bytes, the value is
81undefined. Output devices ignore the contents of padding
82bytes.</para><para>When the image format is planar the
83<structfield>bytesperline</structfield> value applies to the largest
84plane and is divided by the same factor as the
85<structfield>width</structfield> field for any smaller planes. For
86example the Cb and Cr planes of a YUV 4:2:0 image have half as many
87padding bytes following each line as the Y plane. To avoid ambiguities
88drivers must return a <structfield>bytesperline</structfield> value
89rounded up to a multiple of the scale factor.</para>
90<para>For compressed formats the <structfield>bytesperline</structfield>
91value makes no sense. Applications and drivers must set this to 0 in
92that case.</para></entry>
93	</row>
94	<row>
95	  <entry>__u32</entry>
96	  <entry><structfield>sizeimage</structfield></entry>
97	  <entry>Size in bytes of the buffer to hold a complete image,
98set by the driver. Usually this is
99<structfield>bytesperline</structfield> times
100<structfield>height</structfield>. When the image consists of variable
101length compressed data this is the maximum number of bytes required to
102hold an image.</entry>
103	</row>
104	<row>
105	  <entry>&v4l2-colorspace;</entry>
106	  <entry><structfield>colorspace</structfield></entry>
107	  <entry>This information supplements the
108<structfield>pixelformat</structfield> and must be set by the driver for
109capture streams and by the application for output streams,
110see <xref linkend="colorspaces" />.</entry>
111	</row>
112	<row>
113	  <entry>__u32</entry>
114	  <entry><structfield>priv</structfield></entry>
115	  <entry><para>This field indicates whether the remaining fields of the
116<structname>v4l2_pix_format</structname> structure, also called the extended
117fields, are valid. When set to <constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, it
118indicates that the extended fields have been correctly initialized. When set to
119any other value it indicates that the extended fields contain undefined values.
120</para>
121<para>Applications that wish to use the pixel format extended fields must first
122ensure that the feature is supported by querying the device for the
123<link linkend="querycap"><constant>V4L2_CAP_EXT_PIX_FORMAT</constant></link>
124capability. If the capability isn't set the pixel format extended fields are not
125supported and using the extended fields will lead to undefined results.</para>
126<para>To use the extended fields, applications must set the
127<structfield>priv</structfield> field to
128<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, initialize all the extended fields
129and zero the unused bytes of the <structname>v4l2_format</structname>
130<structfield>raw_data</structfield> field.</para>
131<para>When the <structfield>priv</structfield> field isn't set to
132<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> drivers must act as if all the
133extended fields were set to zero. On return drivers must set the
134<structfield>priv</structfield> field to
135<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> and all the extended fields to
136applicable values.</para></entry>
137	</row>
138	<row>
139	  <entry>__u32</entry>
140	  <entry><structfield>flags</structfield></entry>
141	    <entry>Flags set by the application or driver, see <xref
142linkend="format-flags" />.</entry>
143	</row>
144      </tbody>
145    </tgroup>
146  </table>
147</section>
148
149<section>
150  <title>Multi-planar format structures</title>
151  <para>The <structname>v4l2_plane_pix_format</structname> structures define
152    size and layout for each of the planes in a multi-planar format.
153    The <structname>v4l2_pix_format_mplane</structname> structure contains
154    information common to all planes (such as image width and height) and
155    an array of <structname>v4l2_plane_pix_format</structname> structures,
156    describing all planes of that format.</para>
157  <table pgwide="1" frame="none" id="v4l2-plane-pix-format">
158    <title>struct <structname>v4l2_plane_pix_format</structname></title>
159    <tgroup cols="3">
160      &cs-str;
161      <tbody valign="top">
162        <row>
163          <entry>__u32</entry>
164          <entry><structfield>sizeimage</structfield></entry>
165          <entry>Maximum size in bytes required for image data in this plane.
166          </entry>
167        </row>
168        <row>
169          <entry>__u16</entry>
170          <entry><structfield>bytesperline</structfield></entry>
171          <entry>Distance in bytes between the leftmost pixels in two adjacent
172            lines. See &v4l2-pix-format;.</entry>
173        </row>
174        <row>
175          <entry>__u16</entry>
176          <entry><structfield>reserved[7]</structfield></entry>
177          <entry>Reserved for future extensions. Should be zeroed by the
178           application.</entry>
179        </row>
180      </tbody>
181    </tgroup>
182  </table>
183  <table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
184    <title>struct <structname>v4l2_pix_format_mplane</structname></title>
185    <tgroup cols="3">
186      &cs-str;
187      <tbody valign="top">
188        <row>
189          <entry>__u32</entry>
190          <entry><structfield>width</structfield></entry>
191          <entry>Image width in pixels. See &v4l2-pix-format;.</entry>
192        </row>
193        <row>
194          <entry>__u32</entry>
195          <entry><structfield>height</structfield></entry>
196          <entry>Image height in pixels. See &v4l2-pix-format;.</entry>
197        </row>
198        <row>
199          <entry>__u32</entry>
200          <entry><structfield>pixelformat</structfield></entry>
201          <entry>The pixel format. Both single- and multi-planar four character
202codes can be used.</entry>
203        </row>
204        <row>
205          <entry>&v4l2-field;</entry>
206          <entry><structfield>field</structfield></entry>
207          <entry>See &v4l2-pix-format;.</entry>
208        </row>
209        <row>
210          <entry>&v4l2-colorspace;</entry>
211          <entry><structfield>colorspace</structfield></entry>
212          <entry>See &v4l2-pix-format;.</entry>
213        </row>
214        <row>
215          <entry>&v4l2-plane-pix-format;</entry>
216          <entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
217          <entry>An array of structures describing format of each plane this
218          pixel format consists of. The number of valid entries in this array
219          has to be put in the <structfield>num_planes</structfield>
220          field.</entry>
221        </row>
222        <row>
223          <entry>__u8</entry>
224          <entry><structfield>num_planes</structfield></entry>
225          <entry>Number of planes (i.e. separate memory buffers) for this format
226          and the number of valid entries in the
227          <structfield>plane_fmt</structfield> array.</entry>
228        </row>
229	<row>
230	  <entry>__u8</entry>
231	  <entry><structfield>flags</structfield></entry>
232	  <entry>Flags set by the application or driver, see <xref
233linkend="format-flags" />.</entry>
234	</row>
235        <row>
236          <entry>__u8</entry>
237          <entry><structfield>reserved[10]</structfield></entry>
238          <entry>Reserved for future extensions. Should be zeroed by the
239           application.</entry>
240        </row>
241      </tbody>
242    </tgroup>
243  </table>
244</section>
245
246  <section>
247    <title>Standard Image Formats</title>
248
249    <para>In order to exchange images between drivers and
250applications, it is necessary to have standard image data formats
251which both sides will interpret the same way. V4L2 includes several
252such formats, and this section is intended to be an unambiguous
253specification of the standard image data formats in V4L2.</para>
254
255    <para>V4L2 drivers are not limited to these formats, however.
256Driver-specific formats are possible. In that case the application may
257depend on a codec to convert images to one of the standard formats
258when needed. But the data can still be stored and retrieved in the
259proprietary format. For example, a device may support a proprietary
260compressed format. Applications can still capture and save the data in
261the compressed format, saving much disk space, and later use a codec
262to convert the images to the X Windows screen format when the video is
263to be displayed.</para>
264
265    <para>Even so, ultimately, some standard formats are needed, so
266the V4L2 specification would not be complete without well-defined
267standard formats.</para>
268
269    <para>The V4L2 standard formats are mainly uncompressed formats. The
270pixels are always arranged in memory from left to right, and from top
271to bottom. The first byte of data in the image buffer is always for
272the leftmost pixel of the topmost row. Following that is the pixel
273immediately to its right, and so on until the end of the top row of
274pixels. Following the rightmost pixel of the row there may be zero or
275more bytes of padding to guarantee that each row of pixel data has a
276certain alignment. Following the pad bytes, if any, is data for the
277leftmost pixel of the second row from the top, and so on. The last row
278has just as many pad bytes after it as the other rows.</para>
279
280    <para>In V4L2 each format has an identifier which looks like
281<constant>PIX_FMT_XXX</constant>, defined in the <link
282linkend="videodev">videodev2.h</link> header file. These identifiers
283represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
284which are also listed below, however they are not the same as those
285used in the Windows world.</para>
286
287    <para>For some formats, data is stored in separate, discontiguous
288memory buffers. Those formats are identified by a separate set of FourCC codes
289and are referred to as "multi-planar formats". For example, a YUV422 frame is
290normally stored in one memory buffer, but it can also be placed in two or three
291separate buffers, with Y component in one buffer and CbCr components in another
292in the 2-planar version or with each component in its own buffer in the
2933-planar case. Those sub-buffers are referred to as "planes".</para>
294  </section>
295
296  <section id="colorspaces">
297    <title>Colorspaces</title>
298
299    <para>[intro]</para>
300
301    <!-- See proposal by Billy Biggs, video4linux-list@redhat.com
302on 11 Oct 2002, subject: "Re: [V4L] Re: v4l2 api", and
303http://vektor.theorem.ca/graphics/ycbcr/ and
304http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html -->
305
306    <para>
307      <variablelist>
308	<varlistentry>
309	  <term>Gamma Correction</term>
310	  <listitem>
311	    <para>[to do]</para>
312	    <para>E'<subscript>R</subscript> = f(R)</para>
313	    <para>E'<subscript>G</subscript> = f(G)</para>
314	    <para>E'<subscript>B</subscript> = f(B)</para>
315	  </listitem>
316	</varlistentry>
317	<varlistentry>
318	  <term>Construction of luminance and color-difference
319signals</term>
320	  <listitem>
321	    <para>[to do]</para>
322	    <para>E'<subscript>Y</subscript> =
323Coeff<subscript>R</subscript> E'<subscript>R</subscript>
324+ Coeff<subscript>G</subscript> E'<subscript>G</subscript>
325+ Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
326	    <para>(E'<subscript>R</subscript> - E'<subscript>Y</subscript>) = E'<subscript>R</subscript>
327- Coeff<subscript>R</subscript> E'<subscript>R</subscript>
328- Coeff<subscript>G</subscript> E'<subscript>G</subscript>
329- Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
330	    <para>(E'<subscript>B</subscript> - E'<subscript>Y</subscript>) = E'<subscript>B</subscript>
331- Coeff<subscript>R</subscript> E'<subscript>R</subscript>
332- Coeff<subscript>G</subscript> E'<subscript>G</subscript>
333- Coeff<subscript>B</subscript> E'<subscript>B</subscript></para>
334	  </listitem>
335	</varlistentry>
336	<varlistentry>
337	  <term>Re-normalized color-difference signals</term>
338	  <listitem>
339	    <para>The color-difference signals are scaled back to unity
340range [-0.5;+0.5]:</para>
341	    <para>K<subscript>B</subscript> = 0.5 / (1 - Coeff<subscript>B</subscript>)</para>
342	    <para>K<subscript>R</subscript> = 0.5 / (1 - Coeff<subscript>R</subscript>)</para>
343	    <para>P<subscript>B</subscript> =
344K<subscript>B</subscript> (E'<subscript>B</subscript> - E'<subscript>Y</subscript>) =
345  0.5 (Coeff<subscript>R</subscript> / Coeff<subscript>B</subscript>) E'<subscript>R</subscript>
346+ 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>B</subscript>) E'<subscript>G</subscript>
347+ 0.5 E'<subscript>B</subscript></para>
348	    <para>P<subscript>R</subscript> =
349K<subscript>R</subscript> (E'<subscript>R</subscript> - E'<subscript>Y</subscript>) =
350  0.5 E'<subscript>R</subscript>
351+ 0.5 (Coeff<subscript>G</subscript> / Coeff<subscript>R</subscript>) E'<subscript>G</subscript>
352+ 0.5 (Coeff<subscript>B</subscript> / Coeff<subscript>R</subscript>) E'<subscript>B</subscript></para>
353	  </listitem>
354	</varlistentry>
355	<varlistentry>
356	  <term>Quantization</term>
357	  <listitem>
358	    <para>[to do]</para>
359	    <para>Y' = (Lum. Levels - 1) &middot; E'<subscript>Y</subscript> + Lum. Offset</para>
360	    <para>C<subscript>B</subscript> = (Chrom. Levels - 1)
361&middot; P<subscript>B</subscript> + Chrom. Offset</para>
362	    <para>C<subscript>R</subscript> = (Chrom. Levels - 1)
363&middot; P<subscript>R</subscript> + Chrom. Offset</para>
364	    <para>Rounding to the nearest integer and clamping to the range
365[0;255] finally yields the digital color components Y'CbCr
366stored in YUV images.</para>
367	  </listitem>
368	</varlistentry>
369      </variablelist>
370    </para>
371
372    <example>
373      <title>ITU-R Rec. BT.601 color conversion</title>
374
375      <para>Forward Transformation</para>
376
377      <programlisting>
378int ER, EG, EB;         /* gamma corrected RGB input [0;255] */
379int Y1, Cb, Cr;         /* output [0;255] */
380
381double r, g, b;         /* temporaries */
382double y1, pb, pr;
383
384int
385clamp (double x)
386{
387	int r = x;      /* round to nearest */
388
389	if (r &lt; 0)         return 0;
390	else if (r &gt; 255)  return 255;
391	else               return r;
392}
393
394r = ER / 255.0;
395g = EG / 255.0;
396b = EB / 255.0;
397
398y1  =  0.299  * r + 0.587 * g + 0.114  * b;
399pb  = -0.169  * r - 0.331 * g + 0.5    * b;
400pr  =  0.5    * r - 0.419 * g - 0.081  * b;
401
402Y1 = clamp (219 * y1 + 16);
403Cb = clamp (224 * pb + 128);
404Cr = clamp (224 * pr + 128);
405
406/* or shorter */
407
408y1 = 0.299 * ER + 0.587 * EG + 0.114 * EB;
409
410Y1 = clamp ( (219 / 255.0)                    *       y1  + 16);
411Cb = clamp (((224 / 255.0) / (2 - 2 * 0.114)) * (EB - y1) + 128);
412Cr = clamp (((224 / 255.0) / (2 - 2 * 0.299)) * (ER - y1) + 128);
413      </programlisting>
414
415      <para>Inverse Transformation</para>
416
417      <programlisting>
418int Y1, Cb, Cr;         /* gamma pre-corrected input [0;255] */
419int ER, EG, EB;         /* output [0;255] */
420
421double r, g, b;         /* temporaries */
422double y1, pb, pr;
423
424int
425clamp (double x)
426{
427	int r = x;      /* round to nearest */
428
429	if (r &lt; 0)         return 0;
430	else if (r &gt; 255)  return 255;
431	else               return r;
432}
433
434y1 = (Y1 - 16) / 219.0;
435pb = (Cb - 128) / 224.0;
436pr = (Cr - 128) / 224.0;
437
438r = 1.0 * y1 + 0     * pb + 1.402 * pr;
439g = 1.0 * y1 - 0.344 * pb - 0.714 * pr;
440b = 1.0 * y1 + 1.772 * pb + 0     * pr;
441
442ER = clamp (r * 255); /* [ok? one should prob. limit y1,pb,pr] */
443EG = clamp (g * 255);
444EB = clamp (b * 255);
445      </programlisting>
446    </example>
447
448    <table pgwide="1" id="v4l2-colorspace" orient="land">
449      <title>enum v4l2_colorspace</title>
450      <tgroup cols="11" align="center">
451	<colspec align="left" />
452	<colspec align="center" />
453	<colspec align="left" />
454	<colspec colname="cr" />
455	<colspec colname="cg" />
456	<colspec colname="cb" />
457	<colspec colname="wp" />
458	<colspec colname="gc" />
459	<colspec colname="lum" />
460	<colspec colname="qy" />
461	<colspec colname="qc" />
462	<spanspec namest="cr" nameend="cb" spanname="chrom" />
463	<spanspec namest="qy" nameend="qc" spanname="quant" />
464	<spanspec namest="lum" nameend="qc" spanname="spam" />
465	<thead>
466	  <row>
467	    <entry morerows="1">Identifier</entry>
468	    <entry morerows="1">Value</entry>
469	    <entry morerows="1">Description</entry>
470	    <entry spanname="chrom">Chromaticities<footnote>
471		<para>The coordinates of the color primaries are
472given in the CIE system (1931)</para>
473	      </footnote></entry>
474	    <entry morerows="1">White Point</entry>
475	    <entry morerows="1">Gamma Correction</entry>
476	    <entry morerows="1">Luminance E'<subscript>Y</subscript></entry>
477	    <entry spanname="quant">Quantization</entry>
478	  </row>
479	  <row>
480	    <entry>Red</entry>
481	    <entry>Green</entry>
482	    <entry>Blue</entry>
483	    <entry>Y'</entry>
484	    <entry>Cb, Cr</entry>
485	  </row>
486	</thead>
487	<tbody valign="top">
488	  <row>
489	    <entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
490	    <entry>1</entry>
491	    <entry>NTSC/PAL according to <xref linkend="smpte170m" />,
492<xref linkend="itu601" /></entry>
493	    <entry>x&nbsp;=&nbsp;0.630, y&nbsp;=&nbsp;0.340</entry>
494	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.595</entry>
495	    <entry>x&nbsp;=&nbsp;0.155, y&nbsp;=&nbsp;0.070</entry>
496	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
497	    Illuminant D<subscript>65</subscript></entry>
498	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
4991.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
500	    <entry>0.299&nbsp;E'<subscript>R</subscript>
501+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
502+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
503	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
504	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
505	  </row>
506	  <row>
507	    <entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
508	    <entry>2</entry>
509	    <entry>1125-Line (US) HDTV, see <xref
510linkend="smpte240m" /></entry>
511	    <entry>x&nbsp;=&nbsp;0.630, y&nbsp;=&nbsp;0.340</entry>
512	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.595</entry>
513	    <entry>x&nbsp;=&nbsp;0.155, y&nbsp;=&nbsp;0.070</entry>
514	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
515	    Illuminant D<subscript>65</subscript></entry>
516	    <entry>E' = 4&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.0228,
5171.1115&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.1115&nbsp;for&nbsp;0.0228&nbsp;&lt;&nbsp;I</entry>
518	    <entry>0.212&nbsp;E'<subscript>R</subscript>
519+&nbsp;0.701&nbsp;E'<subscript>G</subscript>
520+&nbsp;0.087&nbsp;E'<subscript>B</subscript></entry>
521	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
522	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
523	  </row>
524	  <row>
525	    <entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
526	    <entry>3</entry>
527	    <entry>HDTV and modern devices, see <xref
528linkend="itu709" /></entry>
529	    <entry>x&nbsp;=&nbsp;0.640, y&nbsp;=&nbsp;0.330</entry>
530	    <entry>x&nbsp;=&nbsp;0.300, y&nbsp;=&nbsp;0.600</entry>
531	    <entry>x&nbsp;=&nbsp;0.150, y&nbsp;=&nbsp;0.060</entry>
532	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
533	    Illuminant D<subscript>65</subscript></entry>
534	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
5351.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
536	    <entry>0.2125&nbsp;E'<subscript>R</subscript>
537+&nbsp;0.7154&nbsp;E'<subscript>G</subscript>
538+&nbsp;0.0721&nbsp;E'<subscript>B</subscript></entry>
539	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
540	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
541	  </row>
542	  <row>
543	    <entry><constant>V4L2_COLORSPACE_BT878</constant></entry>
544	    <entry>4</entry>
545	    <entry>Broken Bt878 extents<footnote>
546		<para>The ubiquitous Bt878 video capture chip
547quantizes E'<subscript>Y</subscript> to 238 levels, yielding a range
548of Y' = 16 &hellip; 253, unlike Rec. 601 Y' = 16 &hellip;
549235. This is not a typo in the Bt878 documentation, it has been
550implemented in silicon. The chroma extents are unclear.</para>
551	      </footnote>, <xref linkend="itu601" /></entry>
552	    <entry>?</entry>
553	    <entry>?</entry>
554	    <entry>?</entry>
555	    <entry>?</entry>
556	    <entry>?</entry>
557	    <entry>0.299&nbsp;E'<subscript>R</subscript>
558+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
559+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
560	    <entry><emphasis>237</emphasis>&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
561	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128 (probably)</entry>
562	  </row>
563	  <row>
564	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
565	    <entry>5</entry>
566	    <entry>M/NTSC<footnote>
567		<para>No identifier exists for M/PAL which uses
568the chromaticities of M/NTSC, the remaining parameters are equal to B and
569G/PAL.</para>
570	      </footnote> according to <xref linkend="itu470" />, <xref
571		linkend="itu601" /></entry>
572	    <entry>x&nbsp;=&nbsp;0.67, y&nbsp;=&nbsp;0.33</entry>
573	    <entry>x&nbsp;=&nbsp;0.21, y&nbsp;=&nbsp;0.71</entry>
574	    <entry>x&nbsp;=&nbsp;0.14, y&nbsp;=&nbsp;0.08</entry>
575	    <entry>x&nbsp;=&nbsp;0.310, y&nbsp;=&nbsp;0.316, Illuminant C</entry>
576	    <entry>?</entry>
577	    <entry>0.299&nbsp;E'<subscript>R</subscript>
578+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
579+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
580	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
581	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
582	  </row>
583	  <row>
584	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
585	    <entry>6</entry>
586	    <entry>625-line PAL and SECAM systems according to <xref
587linkend="itu470" />, <xref linkend="itu601" /></entry>
588	    <entry>x&nbsp;=&nbsp;0.64, y&nbsp;=&nbsp;0.33</entry>
589	    <entry>x&nbsp;=&nbsp;0.29, y&nbsp;=&nbsp;0.60</entry>
590	    <entry>x&nbsp;=&nbsp;0.15, y&nbsp;=&nbsp;0.06</entry>
591	    <entry>x&nbsp;=&nbsp;0.313, y&nbsp;=&nbsp;0.329,
592Illuminant D<subscript>65</subscript></entry>
593	    <entry>?</entry>
594	    <entry>0.299&nbsp;E'<subscript>R</subscript>
595+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
596+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
597	    <entry>219&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16</entry>
598	    <entry>224&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
599	  </row>
600	  <row>
601	    <entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
602	    <entry>7</entry>
603	    <entry>JPEG Y'CbCr, see <xref linkend="jfif" />, <xref linkend="itu601" /></entry>
604	    <entry>?</entry>
605	    <entry>?</entry>
606	    <entry>?</entry>
607	    <entry>?</entry>
608	    <entry>?</entry>
609	    <entry>0.299&nbsp;E'<subscript>R</subscript>
610+&nbsp;0.587&nbsp;E'<subscript>G</subscript>
611+&nbsp;0.114&nbsp;E'<subscript>B</subscript></entry>
612	    <entry>256&nbsp;E'<subscript>Y</subscript>&nbsp;+&nbsp;16<footnote>
613		<para>Note JFIF quantizes
614Y'P<subscript>B</subscript>P<subscript>R</subscript> in range [0;+1] and
615[-0.5;+0.5] to <emphasis>257</emphasis> levels, however Y'CbCr signals
616are still clamped to [0;255].</para>
617	      </footnote></entry>
618	    <entry>256&nbsp;P<subscript>B,R</subscript>&nbsp;+&nbsp;128</entry>
619	  </row>
620	  <row>
621	    <entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
622	    <entry>8</entry>
623	    <entry>[?]</entry>
624	    <entry>x&nbsp;=&nbsp;0.640, y&nbsp;=&nbsp;0.330</entry>
625	    <entry>x&nbsp;=&nbsp;0.300, y&nbsp;=&nbsp;0.600</entry>
626	    <entry>x&nbsp;=&nbsp;0.150, y&nbsp;=&nbsp;0.060</entry>
627	    <entry>x&nbsp;=&nbsp;0.3127, y&nbsp;=&nbsp;0.3290,
628	    Illuminant D<subscript>65</subscript></entry>
629	    <entry>E' = 4.5&nbsp;I&nbsp;for&nbsp;I&nbsp;&le;0.018,
6301.099&nbsp;I<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&lt;&nbsp;I</entry>
631	    <entry spanname="spam">n/a</entry>
632	  </row>
633	</tbody>
634      </tgroup>
635    </table>
636  </section>
637
638  <section id="pixfmt-indexed">
639    <title>Indexed Format</title>
640
641    <para>In this format each pixel is represented by an 8 bit index
642into a 256 entry ARGB palette. It is intended for <link
643linkend="osd">Video Output Overlays</link> only. There are no ioctls to
644access the palette, this must be done with ioctls of the Linux framebuffer API.</para>
645
646    <table pgwide="0" frame="none">
647      <title>Indexed Image Format</title>
648      <tgroup cols="37" align="center">
649	<colspec colname="id" align="left" />
650	<colspec colname="fourcc" />
651	<colspec colname="bit" />
652
653	<colspec colnum="4" colname="b07" align="center" />
654	<colspec colnum="5" colname="b06" align="center" />
655	<colspec colnum="6" colname="b05" align="center" />
656	<colspec colnum="7" colname="b04" align="center" />
657	<colspec colnum="8" colname="b03" align="center" />
658	<colspec colnum="9" colname="b02" align="center" />
659	<colspec colnum="10" colname="b01" align="center" />
660	<colspec colnum="11" colname="b00" align="center" />
661
662	<spanspec namest="b07" nameend="b00" spanname="b0" />
663	<spanspec namest="b17" nameend="b10" spanname="b1" />
664	<spanspec namest="b27" nameend="b20" spanname="b2" />
665	<spanspec namest="b37" nameend="b30" spanname="b3" />
666	<thead>
667	  <row>
668	    <entry>Identifier</entry>
669	    <entry>Code</entry>
670	    <entry>&nbsp;</entry>
671	    <entry spanname="b0">Byte&nbsp;0</entry>
672	  </row>
673	  <row>
674	    <entry>&nbsp;</entry>
675	    <entry>&nbsp;</entry>
676	    <entry>Bit</entry>
677	    <entry>7</entry>
678	    <entry>6</entry>
679	    <entry>5</entry>
680	    <entry>4</entry>
681	    <entry>3</entry>
682	    <entry>2</entry>
683	    <entry>1</entry>
684	    <entry>0</entry>
685	  </row>
686	</thead>
687	<tbody valign="top">
688	  <row id="V4L2-PIX-FMT-PAL8">
689	    <entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
690	    <entry>'PAL8'</entry>
691	    <entry></entry>
692	    <entry>i<subscript>7</subscript></entry>
693	    <entry>i<subscript>6</subscript></entry>
694	    <entry>i<subscript>5</subscript></entry>
695	    <entry>i<subscript>4</subscript></entry>
696	    <entry>i<subscript>3</subscript></entry>
697	    <entry>i<subscript>2</subscript></entry>
698	    <entry>i<subscript>1</subscript></entry>
699	    <entry>i<subscript>0</subscript></entry>
700	  </row>
701	</tbody>
702      </tgroup>
703    </table>
704  </section>
705
706  <section id="pixfmt-rgb">
707    <title>RGB Formats</title>
708
709    &sub-packed-rgb;
710    &sub-sbggr8;
711    &sub-sgbrg8;
712    &sub-sgrbg8;
713    &sub-srggb8;
714    &sub-sbggr16;
715    &sub-srggb10;
716    &sub-srggb10alaw8;
717    &sub-srggb10dpcm8;
718    &sub-srggb12;
719  </section>
720
721  <section id="yuv-formats">
722    <title>YUV Formats</title>
723
724    <para>YUV is the format native to TV broadcast and composite video
725signals. It separates the brightness information (Y) from the color
726information (U and V or Cb and Cr). The color information consists of
727red and blue <emphasis>color difference</emphasis> signals, this way
728the green component can be reconstructed by subtracting from the
729brightness component. See <xref linkend="colorspaces" /> for conversion
730examples. YUV was chosen because early television would only transmit
731brightness information. To add color in a way compatible with existing
732receivers a new signal carrier was added to transmit the color
733difference signals. Secondary in the YUV format the U and V components
734usually have lower resolution than the Y component. This is an analog
735video compression technique taking advantage of a property of the
736human visual system, being more sensitive to brightness
737information.</para>
738
739    &sub-packed-yuv;
740    &sub-grey;
741    &sub-y10;
742    &sub-y12;
743    &sub-y10b;
744    &sub-y16;
745    &sub-uv8;
746    &sub-yuyv;
747    &sub-uyvy;
748    &sub-yvyu;
749    &sub-vyuy;
750    &sub-y41p;
751    &sub-yuv420;
752    &sub-yuv420m;
753    &sub-yvu420m;
754    &sub-yuv410;
755    &sub-yuv422p;
756    &sub-yuv411p;
757    &sub-nv12;
758    &sub-nv12m;
759    &sub-nv12mt;
760    &sub-nv16;
761    &sub-nv16m;
762    &sub-nv24;
763    &sub-m420;
764  </section>
765
766  <section>
767    <title>Compressed Formats</title>
768
769    <table pgwide="1" frame="none" id="compressed-formats">
770      <title>Compressed Image Formats</title>
771      <tgroup cols="3" align="left">
772	&cs-def;
773	<thead>
774	  <row>
775	    <entry>Identifier</entry>
776	    <entry>Code</entry>
777	    <entry>Details</entry>
778	  </row>
779	</thead>
780	<tbody valign="top">
781	 <row id="V4L2-PIX-FMT-JPEG">
782	    <entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
783	    <entry>'JPEG'</entry>
784	    <entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
785	    &VIDIOC-S-JPEGCOMP;.</entry>
786	  </row>
787	  <row id="V4L2-PIX-FMT-MPEG">
788	    <entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
789	    <entry>'MPEG'</entry>
790	    <entry>MPEG multiplexed stream. The actual format is determined by
791extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
792<xref linkend="mpeg-control-id" />.</entry>
793	  </row>
794	  <row id="V4L2-PIX-FMT-H264">
795		<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
796		<entry>'H264'</entry>
797		<entry>H264 video elementary stream with start codes.</entry>
798	  </row>
799	  <row id="V4L2-PIX-FMT-H264-NO-SC">
800		<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
801		<entry>'AVC1'</entry>
802		<entry>H264 video elementary stream without start codes.</entry>
803	  </row>
804	  <row id="V4L2-PIX-FMT-H264-MVC">
805		<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
806		<entry>'M264'</entry>
807		<entry>H264 MVC video elementary stream.</entry>
808	  </row>
809	  <row id="V4L2-PIX-FMT-H263">
810		<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
811		<entry>'H263'</entry>
812		<entry>H263 video elementary stream.</entry>
813	  </row>
814	  <row id="V4L2-PIX-FMT-MPEG1">
815		<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
816		<entry>'MPG1'</entry>
817		<entry>MPEG1 video elementary stream.</entry>
818	  </row>
819	  <row id="V4L2-PIX-FMT-MPEG2">
820		<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
821		<entry>'MPG2'</entry>
822		<entry>MPEG2 video elementary stream.</entry>
823	  </row>
824	  <row id="V4L2-PIX-FMT-MPEG4">
825		<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
826		<entry>'MPG4'</entry>
827		<entry>MPEG4 video elementary stream.</entry>
828	  </row>
829	  <row id="V4L2-PIX-FMT-XVID">
830		<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
831		<entry>'XVID'</entry>
832		<entry>Xvid video elementary stream.</entry>
833	  </row>
834	  <row id="V4L2-PIX-FMT-VC1-ANNEX-G">
835		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
836		<entry>'VC1G'</entry>
837		<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
838	  </row>
839	  <row id="V4L2-PIX-FMT-VC1-ANNEX-L">
840		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
841		<entry>'VC1L'</entry>
842		<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
843	  </row>
844	  <row id="V4L2-PIX-FMT-VP8">
845		<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
846		<entry>'VP80'</entry>
847		<entry>VP8 video elementary stream.</entry>
848	  </row>
849	</tbody>
850      </tgroup>
851    </table>
852  </section>
853
854  <section id="sdr-formats">
855    <title>SDR Formats</title>
856
857    <para>These formats are used for <link linkend="sdr">SDR Capture</link>
858interface only.</para>
859
860    &sub-sdr-cu08;
861    &sub-sdr-cu16le;
862    &sub-sdr-cs08;
863    &sub-sdr-cs14le;
864    &sub-sdr-ru12le;
865
866  </section>
867
868  <section id="pixfmt-reserved">
869    <title>Reserved Format Identifiers</title>
870
871    <para>These formats are not defined by this specification, they
872are just listed for reference and to avoid naming conflicts. If you
873want to register your own format, send an e-mail to the linux-media mailing
874list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
875file. If you want to share your format with other developers add a
876link to your documentation and send a copy to the linux-media mailing list
877for inclusion in this section. If you think your format should be listed
878in a standard format section please make a proposal on the linux-media mailing
879list.</para>
880
881    <table pgwide="1" frame="none" id="reserved-formats">
882      <title>Reserved Image Formats</title>
883      <tgroup cols="3" align="left">
884	&cs-def;
885	<thead>
886	  <row>
887	    <entry>Identifier</entry>
888	    <entry>Code</entry>
889	    <entry>Details</entry>
890	  </row>
891	</thead>
892	<tbody valign="top">
893	  <row id="V4L2-PIX-FMT-DV">
894	    <entry><constant>V4L2_PIX_FMT_DV</constant></entry>
895	    <entry>'dvsd'</entry>
896	    <entry>unknown</entry>
897	  </row>
898	  <row id="V4L2-PIX-FMT-ET61X251">
899	    <entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
900	    <entry>'E625'</entry>
901	    <entry>Compressed format of the ET61X251 driver.</entry>
902	  </row>
903	  <row id="V4L2-PIX-FMT-HI240">
904	    <entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
905	    <entry>'HI24'</entry>
906	    <entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
907	  </row>
908	  <row id="V4L2-PIX-FMT-HM12">
909	    <entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
910	    <entry>'HM12'</entry>
911	    <entry><para>YUV 4:2:0 format used by the
912IVTV driver, <ulink url="http://www.ivtvdriver.org/">
913http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
914kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
915</para></entry>
916	  </row>
917	  <row id="V4L2-PIX-FMT-CPIA1">
918	    <entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
919	    <entry>'CPIA'</entry>
920	    <entry>YUV format used by the gspca cpia1 driver.</entry>
921	  </row>
922	  <row id="V4L2-PIX-FMT-JPGL">
923	    <entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
924	    <entry>'JPGL'</entry>
925	    <entry>JPEG-Light format (Pegasus Lossless JPEG)
926			used in Divio webcams NW 80x.</entry>
927	  </row>
928	  <row id="V4L2-PIX-FMT-SPCA501">
929	    <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
930	    <entry>'S501'</entry>
931	    <entry>YUYV per line used by the gspca driver.</entry>
932	  </row>
933	  <row id="V4L2-PIX-FMT-SPCA505">
934	    <entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
935	    <entry>'S505'</entry>
936	    <entry>YYUV per line used by the gspca driver.</entry>
937	  </row>
938	  <row id="V4L2-PIX-FMT-SPCA508">
939	    <entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
940	    <entry>'S508'</entry>
941	    <entry>YUVY per line used by the gspca driver.</entry>
942	  </row>
943	  <row id="V4L2-PIX-FMT-SPCA561">
944	    <entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
945	    <entry>'S561'</entry>
946	    <entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
947	  </row>
948	  <row id="V4L2-PIX-FMT-PAC207">
949	    <entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
950	    <entry>'P207'</entry>
951	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
952	  </row>
953	  <row id="V4L2-PIX-FMT-MR97310A">
954	    <entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
955	    <entry>'M310'</entry>
956	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
957	  </row>
958	  <row id="V4L2-PIX-FMT-JL2005BCD">
959	    <entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
960	    <entry>'JL20'</entry>
961	    <entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
962	  </row>
963	  <row id="V4L2-PIX-FMT-OV511">
964	    <entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
965	    <entry>'O511'</entry>
966	    <entry>OV511 JPEG format used by the gspca driver.</entry>
967	  </row>
968	  <row id="V4L2-PIX-FMT-OV518">
969	    <entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
970	    <entry>'O518'</entry>
971	    <entry>OV518 JPEG format used by the gspca driver.</entry>
972	  </row>
973	  <row id="V4L2-PIX-FMT-PJPG">
974	    <entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
975	    <entry>'PJPG'</entry>
976	    <entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
977	  </row>
978	  <row id="V4L2-PIX-FMT-SE401">
979	    <entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
980	    <entry>'S401'</entry>
981	    <entry>Compressed RGB format used by the gspca se401 driver</entry>
982	  </row>
983	  <row id="V4L2-PIX-FMT-SQ905C">
984	    <entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
985	    <entry>'905C'</entry>
986	    <entry>Compressed RGGB bayer format used by the gspca driver.</entry>
987	  </row>
988	  <row id="V4L2-PIX-FMT-MJPEG">
989	    <entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
990	    <entry>'MJPG'</entry>
991	    <entry>Compressed format used by the Zoran driver</entry>
992	  </row>
993	  <row id="V4L2-PIX-FMT-PWC1">
994	    <entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
995	    <entry>'PWC1'</entry>
996	    <entry>Compressed format of the PWC driver.</entry>
997	  </row>
998	  <row id="V4L2-PIX-FMT-PWC2">
999	    <entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
1000	    <entry>'PWC2'</entry>
1001	    <entry>Compressed format of the PWC driver.</entry>
1002	  </row>
1003	  <row id="V4L2-PIX-FMT-SN9C10X">
1004	    <entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
1005	    <entry>'S910'</entry>
1006	    <entry>Compressed format of the SN9C102 driver.</entry>
1007	  </row>
1008	  <row id="V4L2-PIX-FMT-SN9C20X-I420">
1009	    <entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
1010	    <entry>'S920'</entry>
1011	    <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
1012	  </row>
1013	  <row id="V4L2-PIX-FMT-SN9C2028">
1014	    <entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
1015	    <entry>'SONX'</entry>
1016	    <entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
1017	  </row>
1018	  <row id="V4L2-PIX-FMT-STV0680">
1019	    <entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
1020	    <entry>'S680'</entry>
1021	    <entry>Bayer format of the gspca stv0680 driver.</entry>
1022	  </row>
1023	  <row id="V4L2-PIX-FMT-WNVA">
1024	    <entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
1025	    <entry>'WNVA'</entry>
1026	    <entry><para>Used by the Winnov Videum driver, <ulink
1027url="http://www.thedirks.org/winnov/">
1028http://www.thedirks.org/winnov/</ulink></para></entry>
1029	  </row>
1030	  <row id="V4L2-PIX-FMT-TM6000">
1031	    <entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
1032	    <entry>'TM60'</entry>
1033	    <entry><para>Used by Trident tm6000</para></entry>
1034	  </row>
1035	  <row id="V4L2-PIX-FMT-CIT-YYVYUY">
1036	    <entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
1037	    <entry>'CITV'</entry>
1038	    <entry><para>Used by xirlink CIT, found at IBM webcams.</para>
1039	           <para>Uses one line of Y then 1 line of VYUY</para>
1040	    </entry>
1041	  </row>
1042	  <row id="V4L2-PIX-FMT-KONICA420">
1043	    <entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
1044	    <entry>'KONI'</entry>
1045	    <entry><para>Used by Konica webcams.</para>
1046	           <para>YUV420 planar in blocks of 256 pixels.</para>
1047	    </entry>
1048	  </row>
1049	  <row id="V4L2-PIX-FMT-YYUV">
1050	    <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
1051	    <entry>'YYUV'</entry>
1052	    <entry>unknown</entry>
1053	  </row>
1054	  <row id="V4L2-PIX-FMT-Y4">
1055	    <entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
1056	    <entry>'Y04 '</entry>
1057	    <entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
1058the other bits are set to 0.</entry>
1059	  </row>
1060	  <row id="V4L2-PIX-FMT-Y6">
1061	    <entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
1062	    <entry>'Y06 '</entry>
1063	    <entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
1064the other bits are set to 0.</entry>
1065	  </row>
1066	  <row id="V4L2-PIX-FMT-S5C-UYVY-JPG">
1067	    <entry><constant>V4L2_PIX_FMT_S5C_UYVY_JPG</constant></entry>
1068	    <entry>'S5CI'</entry>
1069	    <entry>Two-planar format used by Samsung S5C73MX cameras. The
1070first plane contains interleaved JPEG and UYVY image data, followed by meta data
1071in form of an array of offsets to the UYVY data blocks. The actual pointer array
1072follows immediately the interleaved JPEG/UYVY data, the number of entries in
1073this array equals the height of the UYVY image. Each entry is a 4-byte unsigned
1074integer in big endian order and it's an offset to a single pixel line of the
1075UYVY image. The first plane can start either with JPEG or UYVY data chunk. The
1076size of a single UYVY block equals the UYVY image's width multiplied by 2. The
1077size of a JPEG chunk depends on the image and can vary with each line.
1078<para>The second plane, at an offset of 4084 bytes, contains a 4-byte offset to
1079the pointer array in the first plane. This offset is followed by a 4-byte value
1080indicating size of the pointer array. All numbers in the second plane are also
1081in big endian order. Remaining data in the second plane is undefined. The
1082information in the second plane allows to easily find location of the pointer
1083array, which can be different for each frame. The size of the pointer array is
1084constant for given UYVY image height.</para>
1085<para>In order to extract UYVY and JPEG frames an application can initially set
1086a data pointer to the start of first plane and then add an offset from the first
1087entry of the pointers table. Such a pointer indicates start of an UYVY image
1088pixel line. Whole UYVY line can be copied to a separate buffer. These steps
1089should be repeated for each line, i.e. the number of entries in the pointer
1090array. Anything what's in between the UYVY lines is JPEG data and should be
1091concatenated to form the JPEG stream. </para>
1092</entry>
1093	  </row>
1094	</tbody>
1095      </tgroup>
1096    </table>
1097
1098    <table frame="none" pgwide="1" id="format-flags">
1099      <title>Format Flags</title>
1100      <tgroup cols="3">
1101	&cs-def;
1102	<tbody valign="top">
1103	  <row>
1104	    <entry><constant>V4L2_PIX_FMT_FLAG_PREMUL_ALPHA</constant></entry>
1105	    <entry>0x00000001</entry>
1106	    <entry>The color values are premultiplied by the alpha channel
1107value. For example, if a light blue pixel with 50% transparency was described by
1108RGBA values (128, 192, 255, 128), the same pixel described with premultiplied
1109colors would be described by RGBA values (64, 96, 128, 128) </entry>
1110	  </row>
1111	</tbody>
1112      </tgroup>
1113    </table>
1114  </section>
1115