• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1		ftrace - Function Tracer
2		========================
3
4Copyright 2008 Red Hat Inc.
5   Author:   Steven Rostedt <srostedt@redhat.com>
6  License:   The GNU Free Documentation License, Version 1.2
7               (dual licensed under the GPL v2)
8Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
9	     John Kacur, and David Teigland.
10Written for: 2.6.28-rc2
11Updated for: 3.10
12
13Introduction
14------------
15
16Ftrace is an internal tracer designed to help out developers and
17designers of systems to find what is going on inside the kernel.
18It can be used for debugging or analyzing latencies and
19performance issues that take place outside of user-space.
20
21Although ftrace is typically considered the function tracer, it
22is really a frame work of several assorted tracing utilities.
23There's latency tracing to examine what occurs between interrupts
24disabled and enabled, as well as for preemption and from a time
25a task is woken to the task is actually scheduled in.
26
27One of the most common uses of ftrace is the event tracing.
28Through out the kernel is hundreds of static event points that
29can be enabled via the debugfs file system to see what is
30going on in certain parts of the kernel.
31
32
33Implementation Details
34----------------------
35
36See ftrace-design.txt for details for arch porters and such.
37
38
39The File System
40---------------
41
42Ftrace uses the debugfs file system to hold the control files as
43well as the files to display output.
44
45When debugfs is configured into the kernel (which selecting any ftrace
46option will do) the directory /sys/kernel/debug will be created. To mount
47this directory, you can add to your /etc/fstab file:
48
49 debugfs       /sys/kernel/debug          debugfs defaults        0       0
50
51Or you can mount it at run time with:
52
53 mount -t debugfs nodev /sys/kernel/debug
54
55For quicker access to that directory you may want to make a soft link to
56it:
57
58 ln -s /sys/kernel/debug /debug
59
60Any selected ftrace option will also create a directory called tracing
61within the debugfs. The rest of the document will assume that you are in
62the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
63on the files within that directory and not distract from the content with
64the extended "/sys/kernel/debug/tracing" path name.
65
66That's it! (assuming that you have ftrace configured into your kernel)
67
68After mounting debugfs, you can see a directory called
69"tracing".  This directory contains the control and output files
70of ftrace. Here is a list of some of the key files:
71
72
73 Note: all time values are in microseconds.
74
75  current_tracer:
76
77	This is used to set or display the current tracer
78	that is configured.
79
80  available_tracers:
81
82	This holds the different types of tracers that
83	have been compiled into the kernel. The
84	tracers listed here can be configured by
85	echoing their name into current_tracer.
86
87  tracing_on:
88
89	This sets or displays whether writing to the trace
90	ring buffer is enabled. Echo 0 into this file to disable
91	the tracer or 1 to enable it. Note, this only disables
92	writing to the ring buffer, the tracing overhead may
93	still be occurring.
94
95  trace:
96
97	This file holds the output of the trace in a human
98	readable format (described below).
99
100  trace_pipe:
101
102	The output is the same as the "trace" file but this
103	file is meant to be streamed with live tracing.
104	Reads from this file will block until new data is
105	retrieved.  Unlike the "trace" file, this file is a
106	consumer. This means reading from this file causes
107	sequential reads to display more current data. Once
108	data is read from this file, it is consumed, and
109	will not be read again with a sequential read. The
110	"trace" file is static, and if the tracer is not
111	adding more data,they will display the same
112	information every time they are read.
113
114  trace_options:
115
116	This file lets the user control the amount of data
117	that is displayed in one of the above output
118	files. Options also exist to modify how a tracer
119	or events work (stack traces, timestamps, etc).
120
121  options:
122
123	This is a directory that has a file for every available
124	trace option (also in trace_options). Options may also be set
125	or cleared by writing a "1" or "0" respectively into the
126	corresponding file with the option name.
127
128  tracing_max_latency:
129
130	Some of the tracers record the max latency.
131	For example, the time interrupts are disabled.
132	This time is saved in this file. The max trace
133	will also be stored, and displayed by "trace".
134	A new max trace will only be recorded if the
135	latency is greater than the value in this
136	file. (in microseconds)
137
138  tracing_thresh:
139
140	Some latency tracers will record a trace whenever the
141	latency is greater than the number in this file.
142	Only active when the file contains a number greater than 0.
143	(in microseconds)
144
145  buffer_size_kb:
146
147	This sets or displays the number of kilobytes each CPU
148	buffer holds. By default, the trace buffers are the same size
149	for each CPU. The displayed number is the size of the
150	CPU buffer and not total size of all buffers. The
151	trace buffers are allocated in pages (blocks of memory
152	that the kernel uses for allocation, usually 4 KB in size).
153	If the last page allocated has room for more bytes
154	than requested, the rest of the page will be used,
155	making the actual allocation bigger than requested.
156	( Note, the size may not be a multiple of the page size
157	  due to buffer management meta-data. )
158
159  buffer_total_size_kb:
160
161	This displays the total combined size of all the trace buffers.
162
163  free_buffer:
164
165	If a process is performing the tracing, and the ring buffer
166	should be shrunk "freed" when the process is finished, even
167	if it were to be killed by a signal, this file can be used
168	for that purpose. On close of this file, the ring buffer will
169	be resized to its minimum size. Having a process that is tracing
170	also open this file, when the process exits its file descriptor
171	for this file will be closed, and in doing so, the ring buffer
172	will be "freed".
173
174	It may also stop tracing if disable_on_free option is set.
175
176  tracing_cpumask:
177
178	This is a mask that lets the user only trace
179	on specified CPUs. The format is a hex string
180	representing the CPUs.
181
182  set_ftrace_filter:
183
184	When dynamic ftrace is configured in (see the
185	section below "dynamic ftrace"), the code is dynamically
186	modified (code text rewrite) to disable calling of the
187	function profiler (mcount). This lets tracing be configured
188	in with practically no overhead in performance.  This also
189	has a side effect of enabling or disabling specific functions
190	to be traced. Echoing names of functions into this file
191	will limit the trace to only those functions.
192
193	This interface also allows for commands to be used. See the
194	"Filter commands" section for more details.
195
196  set_ftrace_notrace:
197
198	This has an effect opposite to that of
199	set_ftrace_filter. Any function that is added here will not
200	be traced. If a function exists in both set_ftrace_filter
201	and set_ftrace_notrace,	the function will _not_ be traced.
202
203  set_ftrace_pid:
204
205	Have the function tracer only trace a single thread.
206
207  set_graph_function:
208
209	Set a "trigger" function where tracing should start
210	with the function graph tracer (See the section
211	"dynamic ftrace" for more details).
212
213  available_filter_functions:
214
215	This lists the functions that ftrace
216	has processed and can trace. These are the function
217	names that you can pass to "set_ftrace_filter" or
218	"set_ftrace_notrace". (See the section "dynamic ftrace"
219	below for more details.)
220
221  enabled_functions:
222
223	This file is more for debugging ftrace, but can also be useful
224	in seeing if any function has a callback attached to it.
225	Not only does the trace infrastructure use ftrace function
226	trace utility, but other subsystems might too. This file
227	displays all functions that have a callback attached to them
228	as well as the number of callbacks that have been attached.
229	Note, a callback may also call multiple functions which will
230	not be listed in this count.
231
232	If the callback registered to be traced by a function with
233	the "save regs" attribute (thus even more overhead), a 'R'
234	will be displayed on the same line as the function that
235	is returning registers.
236
237  function_profile_enabled:
238
239	When set it will enable all functions with either the function
240	tracer, or if enabled, the function graph tracer. It will
241	keep a histogram of the number of functions that were called
242	and if run with the function graph tracer, it will also keep
243	track of the time spent in those functions. The histogram
244	content can be displayed in the files:
245
246	trace_stats/function<cpu> ( function0, function1, etc).
247
248  trace_stats:
249
250	A directory that holds different tracing stats.
251
252  kprobe_events:
253
254	Enable dynamic trace points. See kprobetrace.txt.
255
256  kprobe_profile:
257
258	Dynamic trace points stats. See kprobetrace.txt.
259
260  max_graph_depth:
261
262	Used with the function graph tracer. This is the max depth
263	it will trace into a function. Setting this to a value of
264	one will show only the first kernel function that is called
265	from user space.
266
267  printk_formats:
268
269	This is for tools that read the raw format files. If an event in
270	the ring buffer references a string (currently only trace_printk()
271	does this), only a pointer to the string is recorded into the buffer
272	and not the string itself. This prevents tools from knowing what
273	that string was. This file displays the string and address for
274	the string allowing tools to map the pointers to what the
275	strings were.
276
277  saved_cmdlines:
278
279	Only the pid of the task is recorded in a trace event unless
280	the event specifically saves the task comm as well. Ftrace
281	makes a cache of pid mappings to comms to try to display
282	comms for events. If a pid for a comm is not listed, then
283	"<...>" is displayed in the output.
284
285  snapshot:
286
287	This displays the "snapshot" buffer and also lets the user
288	take a snapshot of the current running trace.
289	See the "Snapshot" section below for more details.
290
291  stack_max_size:
292
293	When the stack tracer is activated, this will display the
294	maximum stack size it has encountered.
295	See the "Stack Trace" section below.
296
297  stack_trace:
298
299	This displays the stack back trace of the largest stack
300	that was encountered when the stack tracer is activated.
301	See the "Stack Trace" section below.
302
303  stack_trace_filter:
304
305	This is similar to "set_ftrace_filter" but it limits what
306	functions the stack tracer will check.
307
308  trace_clock:
309
310	Whenever an event is recorded into the ring buffer, a
311	"timestamp" is added. This stamp comes from a specified
312	clock. By default, ftrace uses the "local" clock. This
313	clock is very fast and strictly per cpu, but on some
314	systems it may not be monotonic with respect to other
315	CPUs. In other words, the local clocks may not be in sync
316	with local clocks on other CPUs.
317
318	Usual clocks for tracing:
319
320	  # cat trace_clock
321	  [local] global counter x86-tsc
322
323	  local: Default clock, but may not be in sync across CPUs
324
325	  global: This clock is in sync with all CPUs but may
326	  	  be a bit slower than the local clock.
327
328	  counter: This is not a clock at all, but literally an atomic
329	  	   counter. It counts up one by one, but is in sync
330		   with all CPUs. This is useful when you need to
331		   know exactly the order events occurred with respect to
332		   each other on different CPUs.
333
334	  uptime: This uses the jiffies counter and the time stamp
335	  	  is relative to the time since boot up.
336
337	  perf: This makes ftrace use the same clock that perf uses.
338	  	Eventually perf will be able to read ftrace buffers
339		and this will help out in interleaving the data.
340
341	  x86-tsc: Architectures may define their own clocks. For
342	  	   example, x86 uses its own TSC cycle clock here.
343
344	To set a clock, simply echo the clock name into this file.
345
346	  echo global > trace_clock
347
348  trace_marker:
349
350	This is a very useful file for synchronizing user space
351	with events happening in the kernel. Writing strings into
352	this file will be written into the ftrace buffer.
353
354	It is useful in applications to open this file at the start
355	of the application and just reference the file descriptor
356	for the file.
357
358	void trace_write(const char *fmt, ...)
359	{
360		va_list ap;
361		char buf[256];
362		int n;
363
364		if (trace_fd < 0)
365			return;
366
367		va_start(ap, fmt);
368		n = vsnprintf(buf, 256, fmt, ap);
369		va_end(ap);
370
371		write(trace_fd, buf, n);
372	}
373
374	start:
375
376		trace_fd = open("trace_marker", WR_ONLY);
377
378  uprobe_events:
379
380	Add dynamic tracepoints in programs.
381	See uprobetracer.txt
382
383  uprobe_profile:
384
385	Uprobe statistics. See uprobetrace.txt
386
387  instances:
388
389	This is a way to make multiple trace buffers where different
390	events can be recorded in different buffers.
391	See "Instances" section below.
392
393  events:
394
395	This is the trace event directory. It holds event tracepoints
396	(also known as static tracepoints) that have been compiled
397	into the kernel. It shows what event tracepoints exist
398	and how they are grouped by system. There are "enable"
399	files at various levels that can enable the tracepoints
400	when a "1" is written to them.
401
402	See events.txt for more information.
403
404  per_cpu:
405
406	This is a directory that contains the trace per_cpu information.
407
408  per_cpu/cpu0/buffer_size_kb:
409
410	The ftrace buffer is defined per_cpu. That is, there's a separate
411	buffer for each CPU to allow writes to be done atomically,
412	and free from cache bouncing. These buffers may have different
413	size buffers. This file is similar to the buffer_size_kb
414	file, but it only displays or sets the buffer size for the
415	specific CPU. (here cpu0).
416
417  per_cpu/cpu0/trace:
418
419	This is similar to the "trace" file, but it will only display
420	the data specific for the CPU. If written to, it only clears
421	the specific CPU buffer.
422
423  per_cpu/cpu0/trace_pipe
424
425	This is similar to the "trace_pipe" file, and is a consuming
426	read, but it will only display (and consume) the data specific
427	for the CPU.
428
429  per_cpu/cpu0/trace_pipe_raw
430
431	For tools that can parse the ftrace ring buffer binary format,
432	the trace_pipe_raw file can be used to extract the data
433	from the ring buffer directly. With the use of the splice()
434	system call, the buffer data can be quickly transferred to
435	a file or to the network where a server is collecting the
436	data.
437
438	Like trace_pipe, this is a consuming reader, where multiple
439	reads will always produce different data.
440
441  per_cpu/cpu0/snapshot:
442
443	This is similar to the main "snapshot" file, but will only
444	snapshot the current CPU (if supported). It only displays
445	the content of the snapshot for a given CPU, and if
446	written to, only clears this CPU buffer.
447
448  per_cpu/cpu0/snapshot_raw:
449
450	Similar to the trace_pipe_raw, but will read the binary format
451	from the snapshot buffer for the given CPU.
452
453  per_cpu/cpu0/stats:
454
455	This displays certain stats about the ring buffer:
456
457	 entries: The number of events that are still in the buffer.
458
459	 overrun: The number of lost events due to overwriting when
460	 	  the buffer was full.
461
462	 commit overrun: Should always be zero.
463	 	This gets set if so many events happened within a nested
464		event (ring buffer is re-entrant), that it fills the
465		buffer and starts dropping events.
466
467	 bytes: Bytes actually read (not overwritten).
468
469	 oldest event ts: The oldest timestamp in the buffer
470
471	 now ts: The current timestamp
472
473	 dropped events: Events lost due to overwrite option being off.
474
475	 read events: The number of events read.
476
477The Tracers
478-----------
479
480Here is the list of current tracers that may be configured.
481
482  "function"
483
484	Function call tracer to trace all kernel functions.
485
486  "function_graph"
487
488	Similar to the function tracer except that the
489	function tracer probes the functions on their entry
490	whereas the function graph tracer traces on both entry
491	and exit of the functions. It then provides the ability
492	to draw a graph of function calls similar to C code
493	source.
494
495  "irqsoff"
496
497	Traces the areas that disable interrupts and saves
498	the trace with the longest max latency.
499	See tracing_max_latency. When a new max is recorded,
500	it replaces the old trace. It is best to view this
501	trace with the latency-format option enabled.
502
503  "preemptoff"
504
505	Similar to irqsoff but traces and records the amount of
506	time for which preemption is disabled.
507
508  "preemptirqsoff"
509
510	Similar to irqsoff and preemptoff, but traces and
511	records the largest time for which irqs and/or preemption
512	is disabled.
513
514  "wakeup"
515
516	Traces and records the max latency that it takes for
517	the highest priority task to get scheduled after
518	it has been woken up.
519        Traces all tasks as an average developer would expect.
520
521  "wakeup_rt"
522
523        Traces and records the max latency that it takes for just
524        RT tasks (as the current "wakeup" does). This is useful
525        for those interested in wake up timings of RT tasks.
526
527  "nop"
528
529	This is the "trace nothing" tracer. To remove all
530	tracers from tracing simply echo "nop" into
531	current_tracer.
532
533
534Examples of using the tracer
535----------------------------
536
537Here are typical examples of using the tracers when controlling
538them only with the debugfs interface (without using any
539user-land utilities).
540
541Output format:
542--------------
543
544Here is an example of the output format of the file "trace"
545
546                             --------
547# tracer: function
548#
549# entries-in-buffer/entries-written: 140080/250280   #P:4
550#
551#                              _-----=> irqs-off
552#                             / _----=> need-resched
553#                            | / _---=> hardirq/softirq
554#                            || / _--=> preempt-depth
555#                            ||| /     delay
556#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
557#              | |       |   ||||       |         |
558            bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
559            bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
560            bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
561            sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
562            bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
563            bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
564            bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
565            bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
566            bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
567            sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
568                             --------
569
570A header is printed with the tracer name that is represented by
571the trace. In this case the tracer is "function". Then it shows the
572number of events in the buffer as well as the total number of entries
573that were written. The difference is the number of entries that were
574lost due to the buffer filling up (250280 - 140080 = 110200 events
575lost).
576
577The header explains the content of the events. Task name "bash", the task
578PID "1977", the CPU that it was running on "000", the latency format
579(explained below), the timestamp in <secs>.<usecs> format, the
580function name that was traced "sys_close" and the parent function that
581called this function "system_call_fastpath". The timestamp is the time
582at which the function was entered.
583
584Latency trace format
585--------------------
586
587When the latency-format option is enabled or when one of the latency
588tracers is set, the trace file gives somewhat more information to see
589why a latency happened. Here is a typical trace.
590
591# tracer: irqsoff
592#
593# irqsoff latency trace v1.1.5 on 3.8.0-test+
594# --------------------------------------------------------------------
595# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
596#    -----------------
597#    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
598#    -----------------
599#  => started at: __lock_task_sighand
600#  => ended at:   _raw_spin_unlock_irqrestore
601#
602#
603#                  _------=> CPU#
604#                 / _-----=> irqs-off
605#                | / _----=> need-resched
606#                || / _---=> hardirq/softirq
607#                ||| / _--=> preempt-depth
608#                |||| /     delay
609#  cmd     pid   ||||| time  |   caller
610#     \   /      |||||  \    |   /
611      ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
612      ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
613      ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
614      ps-6143    2d..1  306us : <stack trace>
615 => trace_hardirqs_on_caller
616 => trace_hardirqs_on
617 => _raw_spin_unlock_irqrestore
618 => do_task_stat
619 => proc_tgid_stat
620 => proc_single_show
621 => seq_read
622 => vfs_read
623 => sys_read
624 => system_call_fastpath
625
626
627This shows that the current tracer is "irqsoff" tracing the time
628for which interrupts were disabled. It gives the trace version (which
629never changes) and the version of the kernel upon which this was executed on
630(3.10). Then it displays the max latency in microseconds (259 us). The number
631of trace entries displayed and the total number (both are four: #4/4).
632VP, KP, SP, and HP are always zero and are reserved for later use.
633#P is the number of online CPUs (#P:4).
634
635The task is the process that was running when the latency
636occurred. (ps pid: 6143).
637
638The start and stop (the functions in which the interrupts were
639disabled and enabled respectively) that caused the latencies:
640
641 __lock_task_sighand is where the interrupts were disabled.
642 _raw_spin_unlock_irqrestore is where they were enabled again.
643
644The next lines after the header are the trace itself. The header
645explains which is which.
646
647  cmd: The name of the process in the trace.
648
649  pid: The PID of that process.
650
651  CPU#: The CPU which the process was running on.
652
653  irqs-off: 'd' interrupts are disabled. '.' otherwise.
654	    Note: If the architecture does not support a way to
655		  read the irq flags variable, an 'X' will always
656		  be printed here.
657
658  need-resched:
659	'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
660	'n' only TIF_NEED_RESCHED is set,
661	'p' only PREEMPT_NEED_RESCHED is set,
662	'.' otherwise.
663
664  hardirq/softirq:
665	'H' - hard irq occurred inside a softirq.
666	'h' - hard irq is running
667	's' - soft irq is running
668	'.' - normal context.
669
670  preempt-depth: The level of preempt_disabled
671
672The above is mostly meaningful for kernel developers.
673
674  time: When the latency-format option is enabled, the trace file
675	output includes a timestamp relative to the start of the
676	trace. This differs from the output when latency-format
677	is disabled, which includes an absolute timestamp.
678
679  delay: This is just to help catch your eye a bit better. And
680	 needs to be fixed to be only relative to the same CPU.
681	 The marks are determined by the difference between this
682	 current trace and the next trace.
683	  '!' - greater than preempt_mark_thresh (default 100)
684	  '+' - greater than 1 microsecond
685	  ' ' - less than or equal to 1 microsecond.
686
687  The rest is the same as the 'trace' file.
688
689  Note, the latency tracers will usually end with a back trace
690  to easily find where the latency occurred.
691
692trace_options
693-------------
694
695The trace_options file (or the options directory) is used to control
696what gets printed in the trace output, or manipulate the tracers.
697To see what is available, simply cat the file:
698
699  cat trace_options
700print-parent
701nosym-offset
702nosym-addr
703noverbose
704noraw
705nohex
706nobin
707noblock
708nostacktrace
709trace_printk
710noftrace_preempt
711nobranch
712annotate
713nouserstacktrace
714nosym-userobj
715noprintk-msg-only
716context-info
717latency-format
718sleep-time
719graph-time
720record-cmd
721overwrite
722nodisable_on_free
723irq-info
724markers
725function-trace
726
727To disable one of the options, echo in the option prepended with
728"no".
729
730  echo noprint-parent > trace_options
731
732To enable an option, leave off the "no".
733
734  echo sym-offset > trace_options
735
736Here are the available options:
737
738  print-parent - On function traces, display the calling (parent)
739		 function as well as the function being traced.
740
741  print-parent:
742   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
743
744  noprint-parent:
745   bash-4000  [01]  1477.606694: simple_strtoul
746
747
748  sym-offset - Display not only the function name, but also the
749	       offset in the function. For example, instead of
750	       seeing just "ktime_get", you will see
751	       "ktime_get+0xb/0x20".
752
753  sym-offset:
754   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
755
756  sym-addr - this will also display the function address as well
757	     as the function name.
758
759  sym-addr:
760   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
761
762  verbose - This deals with the trace file when the
763            latency-format option is enabled.
764
765    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
766    (+0.000ms): simple_strtoul (kstrtoul)
767
768  raw - This will display raw numbers. This option is best for
769	use with user applications that can translate the raw
770	numbers better than having it done in the kernel.
771
772  hex - Similar to raw, but the numbers will be in a hexadecimal
773	format.
774
775  bin - This will print out the formats in raw binary.
776
777  block - When set, reading trace_pipe will not block when polled.
778
779  stacktrace - This is one of the options that changes the trace
780	       itself. When a trace is recorded, so is the stack
781	       of functions. This allows for back traces of
782	       trace sites.
783
784  trace_printk - Can disable trace_printk() from writing into the buffer.
785
786  branch - Enable branch tracing with the tracer.
787
788  annotate - It is sometimes confusing when the CPU buffers are full
789  	     and one CPU buffer had a lot of events recently, thus
790	     a shorter time frame, were another CPU may have only had
791	     a few events, which lets it have older events. When
792	     the trace is reported, it shows the oldest events first,
793	     and it may look like only one CPU ran (the one with the
794	     oldest events). When the annotate option is set, it will
795	     display when a new CPU buffer started:
796
797          <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
798          <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
799          <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
800##### CPU 2 buffer started ####
801          <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
802          <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
803          <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
804
805  userstacktrace - This option changes the trace. It records a
806		   stacktrace of the current userspace thread.
807
808  sym-userobj - when user stacktrace are enabled, look up which
809		object the address belongs to, and print a
810		relative address. This is especially useful when
811		ASLR is on, otherwise you don't get a chance to
812		resolve the address to object/file/line after
813		the app is no longer running
814
815		The lookup is performed when you read
816		trace,trace_pipe. Example:
817
818		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
819x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
820
821
822  printk-msg-only - When set, trace_printk()s will only show the format
823  		    and not their parameters (if trace_bprintk() or
824		    trace_bputs() was used to save the trace_printk()).
825
826  context-info - Show only the event data. Hides the comm, PID,
827  	         timestamp, CPU, and other useful data.
828
829  latency-format - This option changes the trace. When
830                   it is enabled, the trace displays
831                   additional information about the
832                   latencies, as described in "Latency
833                   trace format".
834
835  sleep-time - When running function graph tracer, to include
836  	       the time a task schedules out in its function.
837	       When enabled, it will account time the task has been
838	       scheduled out as part of the function call.
839
840  graph-time - When running function graph tracer, to include the
841  	       time to call nested functions. When this is not set,
842	       the time reported for the function will only include
843	       the time the function itself executed for, not the time
844	       for functions that it called.
845
846  record-cmd - When any event or tracer is enabled, a hook is enabled
847  	       in the sched_switch trace point to fill comm cache
848	       with mapped pids and comms. But this may cause some
849	       overhead, and if you only care about pids, and not the
850	       name of the task, disabling this option can lower the
851	       impact of tracing.
852
853  overwrite - This controls what happens when the trace buffer is
854              full. If "1" (default), the oldest events are
855              discarded and overwritten. If "0", then the newest
856              events are discarded.
857	        (see per_cpu/cpu0/stats for overrun and dropped)
858
859  disable_on_free - When the free_buffer is closed, tracing will
860  		    stop (tracing_on set to 0).
861
862  irq-info - Shows the interrupt, preempt count, need resched data.
863  	     When disabled, the trace looks like:
864
865# tracer: function
866#
867# entries-in-buffer/entries-written: 144405/9452052   #P:4
868#
869#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
870#              | |       |          |         |
871          <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
872          <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
873          <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
874
875
876  markers - When set, the trace_marker is writable (only by root).
877  	    When disabled, the trace_marker will error with EINVAL
878	    on write.
879
880
881  function-trace - The latency tracers will enable function tracing
882  	    if this option is enabled (default it is). When
883	    it is disabled, the latency tracers do not trace
884	    functions. This keeps the overhead of the tracer down
885	    when performing latency tests.
886
887 Note: Some tracers have their own options. They only appear
888       when the tracer is active.
889
890
891
892irqsoff
893-------
894
895When interrupts are disabled, the CPU can not react to any other
896external event (besides NMIs and SMIs). This prevents the timer
897interrupt from triggering or the mouse interrupt from letting
898the kernel know of a new mouse event. The result is a latency
899with the reaction time.
900
901The irqsoff tracer tracks the time for which interrupts are
902disabled. When a new maximum latency is hit, the tracer saves
903the trace leading up to that latency point so that every time a
904new maximum is reached, the old saved trace is discarded and the
905new trace is saved.
906
907To reset the maximum, echo 0 into tracing_max_latency. Here is
908an example:
909
910 # echo 0 > options/function-trace
911 # echo irqsoff > current_tracer
912 # echo 1 > tracing_on
913 # echo 0 > tracing_max_latency
914 # ls -ltr
915 [...]
916 # echo 0 > tracing_on
917 # cat trace
918# tracer: irqsoff
919#
920# irqsoff latency trace v1.1.5 on 3.8.0-test+
921# --------------------------------------------------------------------
922# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
923#    -----------------
924#    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
925#    -----------------
926#  => started at: run_timer_softirq
927#  => ended at:   run_timer_softirq
928#
929#
930#                  _------=> CPU#
931#                 / _-----=> irqs-off
932#                | / _----=> need-resched
933#                || / _---=> hardirq/softirq
934#                ||| / _--=> preempt-depth
935#                |||| /     delay
936#  cmd     pid   ||||| time  |   caller
937#     \   /      |||||  \    |   /
938  <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
939  <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
940  <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
941  <idle>-0       0dNs3   25us : <stack trace>
942 => _raw_spin_unlock_irq
943 => run_timer_softirq
944 => __do_softirq
945 => call_softirq
946 => do_softirq
947 => irq_exit
948 => smp_apic_timer_interrupt
949 => apic_timer_interrupt
950 => rcu_idle_exit
951 => cpu_idle
952 => rest_init
953 => start_kernel
954 => x86_64_start_reservations
955 => x86_64_start_kernel
956
957Here we see that that we had a latency of 16 microseconds (which is
958very good). The _raw_spin_lock_irq in run_timer_softirq disabled
959interrupts. The difference between the 16 and the displayed
960timestamp 25us occurred because the clock was incremented
961between the time of recording the max latency and the time of
962recording the function that had that latency.
963
964Note the above example had function-trace not set. If we set
965function-trace, we get a much larger output:
966
967 with echo 1 > options/function-trace
968
969# tracer: irqsoff
970#
971# irqsoff latency trace v1.1.5 on 3.8.0-test+
972# --------------------------------------------------------------------
973# latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
974#    -----------------
975#    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
976#    -----------------
977#  => started at: ata_scsi_queuecmd
978#  => ended at:   ata_scsi_queuecmd
979#
980#
981#                  _------=> CPU#
982#                 / _-----=> irqs-off
983#                | / _----=> need-resched
984#                || / _---=> hardirq/softirq
985#                ||| / _--=> preempt-depth
986#                |||| /     delay
987#  cmd     pid   ||||| time  |   caller
988#     \   /      |||||  \    |   /
989    bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
990    bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
991    bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
992    bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
993    bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
994    bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
995    bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
996    bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
997    bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
998[...]
999    bash-2042    3d..1   67us : delay_tsc <-__delay
1000    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1001    bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1002    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1003    bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1004    bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1005    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1006    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1007    bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1008    bash-2042    3d..1  120us : <stack trace>
1009 => _raw_spin_unlock_irqrestore
1010 => ata_scsi_queuecmd
1011 => scsi_dispatch_cmd
1012 => scsi_request_fn
1013 => __blk_run_queue_uncond
1014 => __blk_run_queue
1015 => blk_queue_bio
1016 => generic_make_request
1017 => submit_bio
1018 => submit_bh
1019 => __ext3_get_inode_loc
1020 => ext3_iget
1021 => ext3_lookup
1022 => lookup_real
1023 => __lookup_hash
1024 => walk_component
1025 => lookup_last
1026 => path_lookupat
1027 => filename_lookup
1028 => user_path_at_empty
1029 => user_path_at
1030 => vfs_fstatat
1031 => vfs_stat
1032 => sys_newstat
1033 => system_call_fastpath
1034
1035
1036Here we traced a 71 microsecond latency. But we also see all the
1037functions that were called during that time. Note that by
1038enabling function tracing, we incur an added overhead. This
1039overhead may extend the latency times. But nevertheless, this
1040trace has provided some very helpful debugging information.
1041
1042
1043preemptoff
1044----------
1045
1046When preemption is disabled, we may be able to receive
1047interrupts but the task cannot be preempted and a higher
1048priority task must wait for preemption to be enabled again
1049before it can preempt a lower priority task.
1050
1051The preemptoff tracer traces the places that disable preemption.
1052Like the irqsoff tracer, it records the maximum latency for
1053which preemption was disabled. The control of preemptoff tracer
1054is much like the irqsoff tracer.
1055
1056 # echo 0 > options/function-trace
1057 # echo preemptoff > current_tracer
1058 # echo 1 > tracing_on
1059 # echo 0 > tracing_max_latency
1060 # ls -ltr
1061 [...]
1062 # echo 0 > tracing_on
1063 # cat trace
1064# tracer: preemptoff
1065#
1066# preemptoff latency trace v1.1.5 on 3.8.0-test+
1067# --------------------------------------------------------------------
1068# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1069#    -----------------
1070#    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1071#    -----------------
1072#  => started at: do_IRQ
1073#  => ended at:   do_IRQ
1074#
1075#
1076#                  _------=> CPU#
1077#                 / _-----=> irqs-off
1078#                | / _----=> need-resched
1079#                || / _---=> hardirq/softirq
1080#                ||| / _--=> preempt-depth
1081#                |||| /     delay
1082#  cmd     pid   ||||| time  |   caller
1083#     \   /      |||||  \    |   /
1084    sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1085    sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1086    sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1087    sshd-1991    1d..1   52us : <stack trace>
1088 => sub_preempt_count
1089 => irq_exit
1090 => do_IRQ
1091 => ret_from_intr
1092
1093
1094This has some more changes. Preemption was disabled when an
1095interrupt came in (notice the 'h'), and was enabled on exit.
1096But we also see that interrupts have been disabled when entering
1097the preempt off section and leaving it (the 'd'). We do not know if
1098interrupts were enabled in the mean time or shortly after this
1099was over.
1100
1101# tracer: preemptoff
1102#
1103# preemptoff latency trace v1.1.5 on 3.8.0-test+
1104# --------------------------------------------------------------------
1105# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1106#    -----------------
1107#    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1108#    -----------------
1109#  => started at: wake_up_new_task
1110#  => ended at:   task_rq_unlock
1111#
1112#
1113#                  _------=> CPU#
1114#                 / _-----=> irqs-off
1115#                | / _----=> need-resched
1116#                || / _---=> hardirq/softirq
1117#                ||| / _--=> preempt-depth
1118#                |||| /     delay
1119#  cmd     pid   ||||| time  |   caller
1120#     \   /      |||||  \    |   /
1121    bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1122    bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1123    bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1124    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1125    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1126[...]
1127    bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1128    bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1129    bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1130    bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1131    bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1132    bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1133    bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1134    bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
1135[...]
1136    bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1137    bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1138    bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1139    bash-1994    1d..2   36us : do_softirq <-irq_exit
1140    bash-1994    1d..2   36us : __do_softirq <-call_softirq
1141    bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1142    bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1143    bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1144    bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1145    bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1146[...]
1147    bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1148    bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1149    bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1150    bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1151    bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1152    bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1153    bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1154    bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1155    bash-1994    1.N.1  104us : <stack trace>
1156 => sub_preempt_count
1157 => _raw_spin_unlock_irqrestore
1158 => task_rq_unlock
1159 => wake_up_new_task
1160 => do_fork
1161 => sys_clone
1162 => stub_clone
1163
1164
1165The above is an example of the preemptoff trace with
1166function-trace set. Here we see that interrupts were not disabled
1167the entire time. The irq_enter code lets us know that we entered
1168an interrupt 'h'. Before that, the functions being traced still
1169show that it is not in an interrupt, but we can see from the
1170functions themselves that this is not the case.
1171
1172preemptirqsoff
1173--------------
1174
1175Knowing the locations that have interrupts disabled or
1176preemption disabled for the longest times is helpful. But
1177sometimes we would like to know when either preemption and/or
1178interrupts are disabled.
1179
1180Consider the following code:
1181
1182    local_irq_disable();
1183    call_function_with_irqs_off();
1184    preempt_disable();
1185    call_function_with_irqs_and_preemption_off();
1186    local_irq_enable();
1187    call_function_with_preemption_off();
1188    preempt_enable();
1189
1190The irqsoff tracer will record the total length of
1191call_function_with_irqs_off() and
1192call_function_with_irqs_and_preemption_off().
1193
1194The preemptoff tracer will record the total length of
1195call_function_with_irqs_and_preemption_off() and
1196call_function_with_preemption_off().
1197
1198But neither will trace the time that interrupts and/or
1199preemption is disabled. This total time is the time that we can
1200not schedule. To record this time, use the preemptirqsoff
1201tracer.
1202
1203Again, using this trace is much like the irqsoff and preemptoff
1204tracers.
1205
1206 # echo 0 > options/function-trace
1207 # echo preemptirqsoff > current_tracer
1208 # echo 1 > tracing_on
1209 # echo 0 > tracing_max_latency
1210 # ls -ltr
1211 [...]
1212 # echo 0 > tracing_on
1213 # cat trace
1214# tracer: preemptirqsoff
1215#
1216# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1217# --------------------------------------------------------------------
1218# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1219#    -----------------
1220#    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1221#    -----------------
1222#  => started at: ata_scsi_queuecmd
1223#  => ended at:   ata_scsi_queuecmd
1224#
1225#
1226#                  _------=> CPU#
1227#                 / _-----=> irqs-off
1228#                | / _----=> need-resched
1229#                || / _---=> hardirq/softirq
1230#                ||| / _--=> preempt-depth
1231#                |||| /     delay
1232#  cmd     pid   ||||| time  |   caller
1233#     \   /      |||||  \    |   /
1234      ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1235      ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1236      ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1237      ls-2230    3...1  111us : <stack trace>
1238 => sub_preempt_count
1239 => _raw_spin_unlock_irqrestore
1240 => ata_scsi_queuecmd
1241 => scsi_dispatch_cmd
1242 => scsi_request_fn
1243 => __blk_run_queue_uncond
1244 => __blk_run_queue
1245 => blk_queue_bio
1246 => generic_make_request
1247 => submit_bio
1248 => submit_bh
1249 => ext3_bread
1250 => ext3_dir_bread
1251 => htree_dirblock_to_tree
1252 => ext3_htree_fill_tree
1253 => ext3_readdir
1254 => vfs_readdir
1255 => sys_getdents
1256 => system_call_fastpath
1257
1258
1259The trace_hardirqs_off_thunk is called from assembly on x86 when
1260interrupts are disabled in the assembly code. Without the
1261function tracing, we do not know if interrupts were enabled
1262within the preemption points. We do see that it started with
1263preemption enabled.
1264
1265Here is a trace with function-trace set:
1266
1267# tracer: preemptirqsoff
1268#
1269# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1270# --------------------------------------------------------------------
1271# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1272#    -----------------
1273#    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1274#    -----------------
1275#  => started at: schedule
1276#  => ended at:   mutex_unlock
1277#
1278#
1279#                  _------=> CPU#
1280#                 / _-----=> irqs-off
1281#                | / _----=> need-resched
1282#                || / _---=> hardirq/softirq
1283#                ||| / _--=> preempt-depth
1284#                |||| /     delay
1285#  cmd     pid   ||||| time  |   caller
1286#     \   /      |||||  \    |   /
1287kworker/-59      3...1    0us : __schedule <-schedule
1288kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1289kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1290kworker/-59      3d..2    1us : deactivate_task <-__schedule
1291kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1292kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1293kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1294kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1295kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1296kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1297kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1298kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1299kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1300kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1301kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1302kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1303kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1304kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1305kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1306kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1307kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1308kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1309kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1310kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1311kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1312      ls-2269    3d..2    7us : finish_task_switch <-__schedule
1313      ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1314      ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1315      ls-2269    3d..2    8us : irq_enter <-do_IRQ
1316      ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1317      ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1318      ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1319[...]
1320      ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1321      ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1322      ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1323      ls-2269    3d..3   21us : do_softirq <-irq_exit
1324      ls-2269    3d..3   21us : __do_softirq <-call_softirq
1325      ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1326      ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1327      ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1328      ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1329      ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1330      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1331[...]
1332      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1333      ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1334      ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1335      ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1336      ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1337      ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
1338[...]
1339      ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1340      ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1341      ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1342      ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1343      ls-2269    3d..3  159us : idle_cpu <-irq_exit
1344      ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1345      ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1346      ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1347      ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1348      ls-2269    3d...  186us : <stack trace>
1349 => __mutex_unlock_slowpath
1350 => mutex_unlock
1351 => process_output
1352 => n_tty_write
1353 => tty_write
1354 => vfs_write
1355 => sys_write
1356 => system_call_fastpath
1357
1358This is an interesting trace. It started with kworker running and
1359scheduling out and ls taking over. But as soon as ls released the
1360rq lock and enabled interrupts (but not preemption) an interrupt
1361triggered. When the interrupt finished, it started running softirqs.
1362But while the softirq was running, another interrupt triggered.
1363When an interrupt is running inside a softirq, the annotation is 'H'.
1364
1365
1366wakeup
1367------
1368
1369One common case that people are interested in tracing is the
1370time it takes for a task that is woken to actually wake up.
1371Now for non Real-Time tasks, this can be arbitrary. But tracing
1372it none the less can be interesting.
1373
1374Without function tracing:
1375
1376 # echo 0 > options/function-trace
1377 # echo wakeup > current_tracer
1378 # echo 1 > tracing_on
1379 # echo 0 > tracing_max_latency
1380 # chrt -f 5 sleep 1
1381 # echo 0 > tracing_on
1382 # cat trace
1383# tracer: wakeup
1384#
1385# wakeup latency trace v1.1.5 on 3.8.0-test+
1386# --------------------------------------------------------------------
1387# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1388#    -----------------
1389#    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1390#    -----------------
1391#
1392#                  _------=> CPU#
1393#                 / _-----=> irqs-off
1394#                | / _----=> need-resched
1395#                || / _---=> hardirq/softirq
1396#                ||| / _--=> preempt-depth
1397#                |||| /     delay
1398#  cmd     pid   ||||| time  |   caller
1399#     \   /      |||||  \    |   /
1400  <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1401  <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1402  <idle>-0       3d..3   15us : __schedule <-schedule
1403  <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1404
1405The tracer only traces the highest priority task in the system
1406to avoid tracing the normal circumstances. Here we see that
1407the kworker with a nice priority of -20 (not very nice), took
1408just 15 microseconds from the time it woke up, to the time it
1409ran.
1410
1411Non Real-Time tasks are not that interesting. A more interesting
1412trace is to concentrate only on Real-Time tasks.
1413
1414wakeup_rt
1415---------
1416
1417In a Real-Time environment it is very important to know the
1418wakeup time it takes for the highest priority task that is woken
1419up to the time that it executes. This is also known as "schedule
1420latency". I stress the point that this is about RT tasks. It is
1421also important to know the scheduling latency of non-RT tasks,
1422but the average schedule latency is better for non-RT tasks.
1423Tools like LatencyTop are more appropriate for such
1424measurements.
1425
1426Real-Time environments are interested in the worst case latency.
1427That is the longest latency it takes for something to happen,
1428and not the average. We can have a very fast scheduler that may
1429only have a large latency once in a while, but that would not
1430work well with Real-Time tasks.  The wakeup_rt tracer was designed
1431to record the worst case wakeups of RT tasks. Non-RT tasks are
1432not recorded because the tracer only records one worst case and
1433tracing non-RT tasks that are unpredictable will overwrite the
1434worst case latency of RT tasks (just run the normal wakeup
1435tracer for a while to see that effect).
1436
1437Since this tracer only deals with RT tasks, we will run this
1438slightly differently than we did with the previous tracers.
1439Instead of performing an 'ls', we will run 'sleep 1' under
1440'chrt' which changes the priority of the task.
1441
1442 # echo 0 > options/function-trace
1443 # echo wakeup_rt > current_tracer
1444 # echo 1 > tracing_on
1445 # echo 0 > tracing_max_latency
1446 # chrt -f 5 sleep 1
1447 # echo 0 > tracing_on
1448 # cat trace
1449# tracer: wakeup
1450#
1451# tracer: wakeup_rt
1452#
1453# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1454# --------------------------------------------------------------------
1455# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1456#    -----------------
1457#    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1458#    -----------------
1459#
1460#                  _------=> CPU#
1461#                 / _-----=> irqs-off
1462#                | / _----=> need-resched
1463#                || / _---=> hardirq/softirq
1464#                ||| / _--=> preempt-depth
1465#                |||| /     delay
1466#  cmd     pid   ||||| time  |   caller
1467#     \   /      |||||  \    |   /
1468  <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1469  <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1470  <idle>-0       3d..3    5us : __schedule <-schedule
1471  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1472
1473
1474Running this on an idle system, we see that it only took 5 microseconds
1475to perform the task switch.  Note, since the trace point in the schedule
1476is before the actual "switch", we stop the tracing when the recorded task
1477is about to schedule in. This may change if we add a new marker at the
1478end of the scheduler.
1479
1480Notice that the recorded task is 'sleep' with the PID of 2389
1481and it has an rt_prio of 5. This priority is user-space priority
1482and not the internal kernel priority. The policy is 1 for
1483SCHED_FIFO and 2 for SCHED_RR.
1484
1485Note, that the trace data shows the internal priority (99 - rtprio).
1486
1487  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1488
1489The 0:120:R means idle was running with a nice priority of 0 (120 - 20)
1490and in the running state 'R'. The sleep task was scheduled in with
14912389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1492and it too is in the running state.
1493
1494Doing the same with chrt -r 5 and function-trace set.
1495
1496  echo 1 > options/function-trace
1497
1498# tracer: wakeup_rt
1499#
1500# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1501# --------------------------------------------------------------------
1502# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1503#    -----------------
1504#    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1505#    -----------------
1506#
1507#                  _------=> CPU#
1508#                 / _-----=> irqs-off
1509#                | / _----=> need-resched
1510#                || / _---=> hardirq/softirq
1511#                ||| / _--=> preempt-depth
1512#                |||| /     delay
1513#  cmd     pid   ||||| time  |   caller
1514#     \   /      |||||  \    |   /
1515  <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1516  <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1517  <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1518  <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1519  <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1520  <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1521  <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1522  <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1523  <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1524  <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1525  <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1526  <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1527  <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1528  <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1529  <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1530  <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1531  <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1532  <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1533  <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1534  <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1535  <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1536  <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1537  <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1538  <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1539  <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1540  <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1541  <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1542  <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1543  <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1544  <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1545  <idle>-0       3dN.1   13us : update_cpu_load_nohz <-tick_nohz_idle_exit
1546  <idle>-0       3dN.1   13us : _raw_spin_lock <-update_cpu_load_nohz
1547  <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1548  <idle>-0       3dN.2   13us : __update_cpu_load <-update_cpu_load_nohz
1549  <idle>-0       3dN.2   14us : sched_avg_update <-__update_cpu_load
1550  <idle>-0       3dN.2   14us : _raw_spin_unlock <-update_cpu_load_nohz
1551  <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1552  <idle>-0       3dN.1   15us : calc_load_exit_idle <-tick_nohz_idle_exit
1553  <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1554  <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1555  <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1556  <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1557  <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1558  <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1559  <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1560  <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1561  <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1562  <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1563  <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1564  <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1565  <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1566  <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1567  <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1568  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1569  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1570  <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1571  <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1572  <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1573  <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1574  <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1575  <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1576  <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1577  <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1578  <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1579  <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1580  <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1581  <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1582  <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1583  <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1584  <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1585  <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1586  <idle>-0       3.N..   25us : schedule <-cpu_idle
1587  <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1588  <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1589  <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1590  <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1591  <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1592  <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1593  <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1594  <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1595  <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1596  <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1597  <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1598  <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1599  <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1600
1601This isn't that big of a trace, even with function tracing enabled,
1602so I included the entire trace.
1603
1604The interrupt went off while when the system was idle. Somewhere
1605before task_woken_rt() was called, the NEED_RESCHED flag was set,
1606this is indicated by the first occurrence of the 'N' flag.
1607
1608Latency tracing and events
1609--------------------------
1610As function tracing can induce a much larger latency, but without
1611seeing what happens within the latency it is hard to know what
1612caused it. There is a middle ground, and that is with enabling
1613events.
1614
1615 # echo 0 > options/function-trace
1616 # echo wakeup_rt > current_tracer
1617 # echo 1 > events/enable
1618 # echo 1 > tracing_on
1619 # echo 0 > tracing_max_latency
1620 # chrt -f 5 sleep 1
1621 # echo 0 > tracing_on
1622 # cat trace
1623# tracer: wakeup_rt
1624#
1625# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1626# --------------------------------------------------------------------
1627# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1628#    -----------------
1629#    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1630#    -----------------
1631#
1632#                  _------=> CPU#
1633#                 / _-----=> irqs-off
1634#                | / _----=> need-resched
1635#                || / _---=> hardirq/softirq
1636#                ||| / _--=> preempt-depth
1637#                |||| /     delay
1638#  cmd     pid   ||||| time  |   caller
1639#     \   /      |||||  \    |   /
1640  <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1641  <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1642  <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1643  <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1644  <idle>-0       2.N.2    2us : power_end: cpu_id=2
1645  <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
1646  <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1647  <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1648  <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
1649  <idle>-0       2.N.2    5us : rcu_utilization: End context switch
1650  <idle>-0       2d..3    6us : __schedule <-schedule
1651  <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
1652
1653
1654function
1655--------
1656
1657This tracer is the function tracer. Enabling the function tracer
1658can be done from the debug file system. Make sure the
1659ftrace_enabled is set; otherwise this tracer is a nop.
1660See the "ftrace_enabled" section below.
1661
1662 # sysctl kernel.ftrace_enabled=1
1663 # echo function > current_tracer
1664 # echo 1 > tracing_on
1665 # usleep 1
1666 # echo 0 > tracing_on
1667 # cat trace
1668# tracer: function
1669#
1670# entries-in-buffer/entries-written: 24799/24799   #P:4
1671#
1672#                              _-----=> irqs-off
1673#                             / _----=> need-resched
1674#                            | / _---=> hardirq/softirq
1675#                            || / _--=> preempt-depth
1676#                            ||| /     delay
1677#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
1678#              | |       |   ||||       |         |
1679            bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
1680            bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
1681            bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
1682            bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
1683            bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
1684            bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
1685            bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
1686            bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
1687[...]
1688
1689
1690Note: function tracer uses ring buffers to store the above
1691entries. The newest data may overwrite the oldest data.
1692Sometimes using echo to stop the trace is not sufficient because
1693the tracing could have overwritten the data that you wanted to
1694record. For this reason, it is sometimes better to disable
1695tracing directly from a program. This allows you to stop the
1696tracing at the point that you hit the part that you are
1697interested in. To disable the tracing directly from a C program,
1698something like following code snippet can be used:
1699
1700int trace_fd;
1701[...]
1702int main(int argc, char *argv[]) {
1703	[...]
1704	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1705	[...]
1706	if (condition_hit()) {
1707		write(trace_fd, "0", 1);
1708	}
1709	[...]
1710}
1711
1712
1713Single thread tracing
1714---------------------
1715
1716By writing into set_ftrace_pid you can trace a
1717single thread. For example:
1718
1719# cat set_ftrace_pid
1720no pid
1721# echo 3111 > set_ftrace_pid
1722# cat set_ftrace_pid
17233111
1724# echo function > current_tracer
1725# cat trace | head
1726 # tracer: function
1727 #
1728 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1729 #              | |       |          |         |
1730     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1731     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1732     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1733     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1734     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1735     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1736# echo -1 > set_ftrace_pid
1737# cat trace |head
1738 # tracer: function
1739 #
1740 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1741 #              | |       |          |         |
1742 ##### CPU 3 buffer started ####
1743     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1744     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1745     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1746     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1747     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1748
1749If you want to trace a function when executing, you could use
1750something like this simple program:
1751
1752#include <stdio.h>
1753#include <stdlib.h>
1754#include <sys/types.h>
1755#include <sys/stat.h>
1756#include <fcntl.h>
1757#include <unistd.h>
1758#include <string.h>
1759
1760#define _STR(x) #x
1761#define STR(x) _STR(x)
1762#define MAX_PATH 256
1763
1764const char *find_debugfs(void)
1765{
1766       static char debugfs[MAX_PATH+1];
1767       static int debugfs_found;
1768       char type[100];
1769       FILE *fp;
1770
1771       if (debugfs_found)
1772               return debugfs;
1773
1774       if ((fp = fopen("/proc/mounts","r")) == NULL) {
1775               perror("/proc/mounts");
1776               return NULL;
1777       }
1778
1779       while (fscanf(fp, "%*s %"
1780                     STR(MAX_PATH)
1781                     "s %99s %*s %*d %*d\n",
1782                     debugfs, type) == 2) {
1783               if (strcmp(type, "debugfs") == 0)
1784                       break;
1785       }
1786       fclose(fp);
1787
1788       if (strcmp(type, "debugfs") != 0) {
1789               fprintf(stderr, "debugfs not mounted");
1790               return NULL;
1791       }
1792
1793       strcat(debugfs, "/tracing/");
1794       debugfs_found = 1;
1795
1796       return debugfs;
1797}
1798
1799const char *tracing_file(const char *file_name)
1800{
1801       static char trace_file[MAX_PATH+1];
1802       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1803       return trace_file;
1804}
1805
1806int main (int argc, char **argv)
1807{
1808        if (argc < 1)
1809                exit(-1);
1810
1811        if (fork() > 0) {
1812                int fd, ffd;
1813                char line[64];
1814                int s;
1815
1816                ffd = open(tracing_file("current_tracer"), O_WRONLY);
1817                if (ffd < 0)
1818                        exit(-1);
1819                write(ffd, "nop", 3);
1820
1821                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1822                s = sprintf(line, "%d\n", getpid());
1823                write(fd, line, s);
1824
1825                write(ffd, "function", 8);
1826
1827                close(fd);
1828                close(ffd);
1829
1830                execvp(argv[1], argv+1);
1831        }
1832
1833        return 0;
1834}
1835
1836Or this simple script!
1837
1838------
1839#!/bin/bash
1840
1841debugfs=`sed -ne 's/^debugfs \(.*\) debugfs.*/\1/p' /proc/mounts`
1842echo nop > $debugfs/tracing/current_tracer
1843echo 0 > $debugfs/tracing/tracing_on
1844echo $$ > $debugfs/tracing/set_ftrace_pid
1845echo function > $debugfs/tracing/current_tracer
1846echo 1 > $debugfs/tracing/tracing_on
1847exec "$@"
1848------
1849
1850
1851function graph tracer
1852---------------------------
1853
1854This tracer is similar to the function tracer except that it
1855probes a function on its entry and its exit. This is done by
1856using a dynamically allocated stack of return addresses in each
1857task_struct. On function entry the tracer overwrites the return
1858address of each function traced to set a custom probe. Thus the
1859original return address is stored on the stack of return address
1860in the task_struct.
1861
1862Probing on both ends of a function leads to special features
1863such as:
1864
1865- measure of a function's time execution
1866- having a reliable call stack to draw function calls graph
1867
1868This tracer is useful in several situations:
1869
1870- you want to find the reason of a strange kernel behavior and
1871  need to see what happens in detail on any areas (or specific
1872  ones).
1873
1874- you are experiencing weird latencies but it's difficult to
1875  find its origin.
1876
1877- you want to find quickly which path is taken by a specific
1878  function
1879
1880- you just want to peek inside a working kernel and want to see
1881  what happens there.
1882
1883# tracer: function_graph
1884#
1885# CPU  DURATION                  FUNCTION CALLS
1886# |     |   |                     |   |   |   |
1887
1888 0)               |  sys_open() {
1889 0)               |    do_sys_open() {
1890 0)               |      getname() {
1891 0)               |        kmem_cache_alloc() {
1892 0)   1.382 us    |          __might_sleep();
1893 0)   2.478 us    |        }
1894 0)               |        strncpy_from_user() {
1895 0)               |          might_fault() {
1896 0)   1.389 us    |            __might_sleep();
1897 0)   2.553 us    |          }
1898 0)   3.807 us    |        }
1899 0)   7.876 us    |      }
1900 0)               |      alloc_fd() {
1901 0)   0.668 us    |        _spin_lock();
1902 0)   0.570 us    |        expand_files();
1903 0)   0.586 us    |        _spin_unlock();
1904
1905
1906There are several columns that can be dynamically
1907enabled/disabled. You can use every combination of options you
1908want, depending on your needs.
1909
1910- The cpu number on which the function executed is default
1911  enabled.  It is sometimes better to only trace one cpu (see
1912  tracing_cpu_mask file) or you might sometimes see unordered
1913  function calls while cpu tracing switch.
1914
1915	hide: echo nofuncgraph-cpu > trace_options
1916	show: echo funcgraph-cpu > trace_options
1917
1918- The duration (function's time of execution) is displayed on
1919  the closing bracket line of a function or on the same line
1920  than the current function in case of a leaf one. It is default
1921  enabled.
1922
1923	hide: echo nofuncgraph-duration > trace_options
1924	show: echo funcgraph-duration > trace_options
1925
1926- The overhead field precedes the duration field in case of
1927  reached duration thresholds.
1928
1929	hide: echo nofuncgraph-overhead > trace_options
1930	show: echo funcgraph-overhead > trace_options
1931	depends on: funcgraph-duration
1932
1933  ie:
1934
1935  0)               |    up_write() {
1936  0)   0.646 us    |      _spin_lock_irqsave();
1937  0)   0.684 us    |      _spin_unlock_irqrestore();
1938  0)   3.123 us    |    }
1939  0)   0.548 us    |    fput();
1940  0) + 58.628 us   |  }
1941
1942  [...]
1943
1944  0)               |      putname() {
1945  0)               |        kmem_cache_free() {
1946  0)   0.518 us    |          __phys_addr();
1947  0)   1.757 us    |        }
1948  0)   2.861 us    |      }
1949  0) ! 115.305 us  |    }
1950  0) ! 116.402 us  |  }
1951
1952  + means that the function exceeded 10 usecs.
1953  ! means that the function exceeded 100 usecs.
1954
1955
1956- The task/pid field displays the thread cmdline and pid which
1957  executed the function. It is default disabled.
1958
1959	hide: echo nofuncgraph-proc > trace_options
1960	show: echo funcgraph-proc > trace_options
1961
1962  ie:
1963
1964  # tracer: function_graph
1965  #
1966  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
1967  # |    |    |           |   |                     |   |   |   |
1968  0)    sh-4802     |               |                  d_free() {
1969  0)    sh-4802     |               |                    call_rcu() {
1970  0)    sh-4802     |               |                      __call_rcu() {
1971  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
1972  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
1973  0)    sh-4802     |   2.899 us    |                      }
1974  0)    sh-4802     |   4.040 us    |                    }
1975  0)    sh-4802     |   5.151 us    |                  }
1976  0)    sh-4802     | + 49.370 us   |                }
1977
1978
1979- The absolute time field is an absolute timestamp given by the
1980  system clock since it started. A snapshot of this time is
1981  given on each entry/exit of functions
1982
1983	hide: echo nofuncgraph-abstime > trace_options
1984	show: echo funcgraph-abstime > trace_options
1985
1986  ie:
1987
1988  #
1989  #      TIME       CPU  DURATION                  FUNCTION CALLS
1990  #       |         |     |   |                     |   |   |   |
1991  360.774522 |   1)   0.541 us    |                                          }
1992  360.774522 |   1)   4.663 us    |                                        }
1993  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
1994  360.774524 |   1)   6.796 us    |                                      }
1995  360.774524 |   1)   7.952 us    |                                    }
1996  360.774525 |   1)   9.063 us    |                                  }
1997  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
1998  360.774527 |   1)   0.578 us    |                                  __brelse();
1999  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2000  360.774528 |   1)               |                                    unlock_buffer() {
2001  360.774529 |   1)               |                                      wake_up_bit() {
2002  360.774529 |   1)               |                                        bit_waitqueue() {
2003  360.774530 |   1)   0.594 us    |                                          __phys_addr();
2004
2005
2006The function name is always displayed after the closing bracket
2007for a function if the start of that function is not in the
2008trace buffer.
2009
2010Display of the function name after the closing bracket may be
2011enabled for functions whose start is in the trace buffer,
2012allowing easier searching with grep for function durations.
2013It is default disabled.
2014
2015	hide: echo nofuncgraph-tail > trace_options
2016	show: echo funcgraph-tail > trace_options
2017
2018  Example with nofuncgraph-tail (default):
2019  0)               |      putname() {
2020  0)               |        kmem_cache_free() {
2021  0)   0.518 us    |          __phys_addr();
2022  0)   1.757 us    |        }
2023  0)   2.861 us    |      }
2024
2025  Example with funcgraph-tail:
2026  0)               |      putname() {
2027  0)               |        kmem_cache_free() {
2028  0)   0.518 us    |          __phys_addr();
2029  0)   1.757 us    |        } /* kmem_cache_free() */
2030  0)   2.861 us    |      } /* putname() */
2031
2032You can put some comments on specific functions by using
2033trace_printk() For example, if you want to put a comment inside
2034the __might_sleep() function, you just have to include
2035<linux/ftrace.h> and call trace_printk() inside __might_sleep()
2036
2037trace_printk("I'm a comment!\n")
2038
2039will produce:
2040
2041 1)               |             __might_sleep() {
2042 1)               |                /* I'm a comment! */
2043 1)   1.449 us    |             }
2044
2045
2046You can disable the hierarchical function call formatting and instead print a
2047flat list of function entry and return events.  This uses the format described
2048in the Output Formatting section and respects all the trace options that
2049control that formatting.  Hierarchical formatting is the default.
2050
2051	hierachical: echo nofuncgraph-flat > trace_options
2052	flat: echo funcgraph-flat > trace_options
2053
2054  ie:
2055
2056  # tracer: function_graph
2057  #
2058  # entries-in-buffer/entries-written: 68355/68355   #P:2
2059  #
2060  #                              _-----=> irqs-off
2061  #                             / _----=> need-resched
2062  #                            | / _---=> hardirq/softirq
2063  #                            || / _--=> preempt-depth
2064  #                            ||| /     delay
2065  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2066  #              | |       |   ||||       |         |
2067                sh-1806  [001] d...   198.843443: graph_ent: func=_raw_spin_lock
2068                sh-1806  [001] d...   198.843445: graph_ent: func=__raw_spin_lock
2069                sh-1806  [001] d..1   198.843447: graph_ret: func=__raw_spin_lock
2070                sh-1806  [001] d..1   198.843449: graph_ret: func=_raw_spin_lock
2071                sh-1806  [001] d..1   198.843451: graph_ent: func=_raw_spin_unlock_irqrestore
2072                sh-1806  [001] d...   198.843453: graph_ret: func=_raw_spin_unlock_irqrestore
2073
2074
2075You might find other useful features for this tracer in the
2076following "dynamic ftrace" section such as tracing only specific
2077functions or tasks.
2078
2079dynamic ftrace
2080--------------
2081
2082If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2083virtually no overhead when function tracing is disabled. The way
2084this works is the mcount function call (placed at the start of
2085every kernel function, produced by the -pg switch in gcc),
2086starts of pointing to a simple return. (Enabling FTRACE will
2087include the -pg switch in the compiling of the kernel.)
2088
2089At compile time every C file object is run through the
2090recordmcount program (located in the scripts directory). This
2091program will parse the ELF headers in the C object to find all
2092the locations in the .text section that call mcount. (Note, only
2093white listed .text sections are processed, since processing other
2094sections like .init.text may cause races due to those sections
2095being freed unexpectedly).
2096
2097A new section called "__mcount_loc" is created that holds
2098references to all the mcount call sites in the .text section.
2099The recordmcount program re-links this section back into the
2100original object. The final linking stage of the kernel will add all these
2101references into a single table.
2102
2103On boot up, before SMP is initialized, the dynamic ftrace code
2104scans this table and updates all the locations into nops. It
2105also records the locations, which are added to the
2106available_filter_functions list.  Modules are processed as they
2107are loaded and before they are executed.  When a module is
2108unloaded, it also removes its functions from the ftrace function
2109list. This is automatic in the module unload code, and the
2110module author does not need to worry about it.
2111
2112When tracing is enabled, the process of modifying the function
2113tracepoints is dependent on architecture. The old method is to use
2114kstop_machine to prevent races with the CPUs executing code being
2115modified (which can cause the CPU to do undesirable things, especially
2116if the modified code crosses cache (or page) boundaries), and the nops are
2117patched back to calls. But this time, they do not call mcount
2118(which is just a function stub). They now call into the ftrace
2119infrastructure.
2120
2121The new method of modifying the function tracepoints is to place
2122a breakpoint at the location to be modified, sync all CPUs, modify
2123the rest of the instruction not covered by the breakpoint. Sync
2124all CPUs again, and then remove the breakpoint with the finished
2125version to the ftrace call site.
2126
2127Some archs do not even need to monkey around with the synchronization,
2128and can just slap the new code on top of the old without any
2129problems with other CPUs executing it at the same time.
2130
2131One special side-effect to the recording of the functions being
2132traced is that we can now selectively choose which functions we
2133wish to trace and which ones we want the mcount calls to remain
2134as nops.
2135
2136Two files are used, one for enabling and one for disabling the
2137tracing of specified functions. They are:
2138
2139  set_ftrace_filter
2140
2141and
2142
2143  set_ftrace_notrace
2144
2145A list of available functions that you can add to these files is
2146listed in:
2147
2148   available_filter_functions
2149
2150 # cat available_filter_functions
2151put_prev_task_idle
2152kmem_cache_create
2153pick_next_task_rt
2154get_online_cpus
2155pick_next_task_fair
2156mutex_lock
2157[...]
2158
2159If I am only interested in sys_nanosleep and hrtimer_interrupt:
2160
2161 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2162 # echo function > current_tracer
2163 # echo 1 > tracing_on
2164 # usleep 1
2165 # echo 0 > tracing_on
2166 # cat trace
2167# tracer: function
2168#
2169# entries-in-buffer/entries-written: 5/5   #P:4
2170#
2171#                              _-----=> irqs-off
2172#                             / _----=> need-resched
2173#                            | / _---=> hardirq/softirq
2174#                            || / _--=> preempt-depth
2175#                            ||| /     delay
2176#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2177#              | |       |   ||||       |         |
2178          usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2179          <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2180          usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2181          <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2182          <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2183
2184To see which functions are being traced, you can cat the file:
2185
2186 # cat set_ftrace_filter
2187hrtimer_interrupt
2188sys_nanosleep
2189
2190
2191Perhaps this is not enough. The filters also allow simple wild
2192cards. Only the following are currently available
2193
2194  <match>*  - will match functions that begin with <match>
2195  *<match>  - will match functions that end with <match>
2196  *<match>* - will match functions that have <match> in it
2197
2198These are the only wild cards which are supported.
2199
2200  <match>*<match> will not work.
2201
2202Note: It is better to use quotes to enclose the wild cards,
2203      otherwise the shell may expand the parameters into names
2204      of files in the local directory.
2205
2206 # echo 'hrtimer_*' > set_ftrace_filter
2207
2208Produces:
2209
2210# tracer: function
2211#
2212# entries-in-buffer/entries-written: 897/897   #P:4
2213#
2214#                              _-----=> irqs-off
2215#                             / _----=> need-resched
2216#                            | / _---=> hardirq/softirq
2217#                            || / _--=> preempt-depth
2218#                            ||| /     delay
2219#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2220#              | |       |   ||||       |         |
2221          <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2222          <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2223          <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2224          <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2225          <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2226          <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2227          <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2228          <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2229
2230Notice that we lost the sys_nanosleep.
2231
2232 # cat set_ftrace_filter
2233hrtimer_run_queues
2234hrtimer_run_pending
2235hrtimer_init
2236hrtimer_cancel
2237hrtimer_try_to_cancel
2238hrtimer_forward
2239hrtimer_start
2240hrtimer_reprogram
2241hrtimer_force_reprogram
2242hrtimer_get_next_event
2243hrtimer_interrupt
2244hrtimer_nanosleep
2245hrtimer_wakeup
2246hrtimer_get_remaining
2247hrtimer_get_res
2248hrtimer_init_sleeper
2249
2250
2251This is because the '>' and '>>' act just like they do in bash.
2252To rewrite the filters, use '>'
2253To append to the filters, use '>>'
2254
2255To clear out a filter so that all functions will be recorded
2256again:
2257
2258 # echo > set_ftrace_filter
2259 # cat set_ftrace_filter
2260 #
2261
2262Again, now we want to append.
2263
2264 # echo sys_nanosleep > set_ftrace_filter
2265 # cat set_ftrace_filter
2266sys_nanosleep
2267 # echo 'hrtimer_*' >> set_ftrace_filter
2268 # cat set_ftrace_filter
2269hrtimer_run_queues
2270hrtimer_run_pending
2271hrtimer_init
2272hrtimer_cancel
2273hrtimer_try_to_cancel
2274hrtimer_forward
2275hrtimer_start
2276hrtimer_reprogram
2277hrtimer_force_reprogram
2278hrtimer_get_next_event
2279hrtimer_interrupt
2280sys_nanosleep
2281hrtimer_nanosleep
2282hrtimer_wakeup
2283hrtimer_get_remaining
2284hrtimer_get_res
2285hrtimer_init_sleeper
2286
2287
2288The set_ftrace_notrace prevents those functions from being
2289traced.
2290
2291 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2292
2293Produces:
2294
2295# tracer: function
2296#
2297# entries-in-buffer/entries-written: 39608/39608   #P:4
2298#
2299#                              _-----=> irqs-off
2300#                             / _----=> need-resched
2301#                            | / _---=> hardirq/softirq
2302#                            || / _--=> preempt-depth
2303#                            ||| /     delay
2304#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2305#              | |       |   ||||       |         |
2306            bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2307            bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2308            bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2309            bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2310            bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2311            bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2312            bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2313            bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2314            bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2315            bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2316            bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2317            bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2318
2319We can see that there's no more lock or preempt tracing.
2320
2321
2322Dynamic ftrace with the function graph tracer
2323---------------------------------------------
2324
2325Although what has been explained above concerns both the
2326function tracer and the function-graph-tracer, there are some
2327special features only available in the function-graph tracer.
2328
2329If you want to trace only one function and all of its children,
2330you just have to echo its name into set_graph_function:
2331
2332 echo __do_fault > set_graph_function
2333
2334will produce the following "expanded" trace of the __do_fault()
2335function:
2336
2337 0)               |  __do_fault() {
2338 0)               |    filemap_fault() {
2339 0)               |      find_lock_page() {
2340 0)   0.804 us    |        find_get_page();
2341 0)               |        __might_sleep() {
2342 0)   1.329 us    |        }
2343 0)   3.904 us    |      }
2344 0)   4.979 us    |    }
2345 0)   0.653 us    |    _spin_lock();
2346 0)   0.578 us    |    page_add_file_rmap();
2347 0)   0.525 us    |    native_set_pte_at();
2348 0)   0.585 us    |    _spin_unlock();
2349 0)               |    unlock_page() {
2350 0)   0.541 us    |      page_waitqueue();
2351 0)   0.639 us    |      __wake_up_bit();
2352 0)   2.786 us    |    }
2353 0) + 14.237 us   |  }
2354 0)               |  __do_fault() {
2355 0)               |    filemap_fault() {
2356 0)               |      find_lock_page() {
2357 0)   0.698 us    |        find_get_page();
2358 0)               |        __might_sleep() {
2359 0)   1.412 us    |        }
2360 0)   3.950 us    |      }
2361 0)   5.098 us    |    }
2362 0)   0.631 us    |    _spin_lock();
2363 0)   0.571 us    |    page_add_file_rmap();
2364 0)   0.526 us    |    native_set_pte_at();
2365 0)   0.586 us    |    _spin_unlock();
2366 0)               |    unlock_page() {
2367 0)   0.533 us    |      page_waitqueue();
2368 0)   0.638 us    |      __wake_up_bit();
2369 0)   2.793 us    |    }
2370 0) + 14.012 us   |  }
2371
2372You can also expand several functions at once:
2373
2374 echo sys_open > set_graph_function
2375 echo sys_close >> set_graph_function
2376
2377Now if you want to go back to trace all functions you can clear
2378this special filter via:
2379
2380 echo > set_graph_function
2381
2382
2383ftrace_enabled
2384--------------
2385
2386Note, the proc sysctl ftrace_enable is a big on/off switch for the
2387function tracer. By default it is enabled (when function tracing is
2388enabled in the kernel). If it is disabled, all function tracing is
2389disabled. This includes not only the function tracers for ftrace, but
2390also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2391
2392Please disable this with care.
2393
2394This can be disable (and enabled) with:
2395
2396  sysctl kernel.ftrace_enabled=0
2397  sysctl kernel.ftrace_enabled=1
2398
2399 or
2400
2401  echo 0 > /proc/sys/kernel/ftrace_enabled
2402  echo 1 > /proc/sys/kernel/ftrace_enabled
2403
2404
2405Filter commands
2406---------------
2407
2408A few commands are supported by the set_ftrace_filter interface.
2409Trace commands have the following format:
2410
2411<function>:<command>:<parameter>
2412
2413The following commands are supported:
2414
2415- mod
2416  This command enables function filtering per module. The
2417  parameter defines the module. For example, if only the write*
2418  functions in the ext3 module are desired, run:
2419
2420   echo 'write*:mod:ext3' > set_ftrace_filter
2421
2422  This command interacts with the filter in the same way as
2423  filtering based on function names. Thus, adding more functions
2424  in a different module is accomplished by appending (>>) to the
2425  filter file. Remove specific module functions by prepending
2426  '!':
2427
2428   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2429
2430- traceon/traceoff
2431  These commands turn tracing on and off when the specified
2432  functions are hit. The parameter determines how many times the
2433  tracing system is turned on and off. If unspecified, there is
2434  no limit. For example, to disable tracing when a schedule bug
2435  is hit the first 5 times, run:
2436
2437   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2438
2439  To always disable tracing when __schedule_bug is hit:
2440
2441   echo '__schedule_bug:traceoff' > set_ftrace_filter
2442
2443  These commands are cumulative whether or not they are appended
2444  to set_ftrace_filter. To remove a command, prepend it by '!'
2445  and drop the parameter:
2446
2447   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2448
2449    The above removes the traceoff command for __schedule_bug
2450    that have a counter. To remove commands without counters:
2451
2452   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2453
2454- snapshot
2455  Will cause a snapshot to be triggered when the function is hit.
2456
2457   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2458
2459  To only snapshot once:
2460
2461   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2462
2463  To remove the above commands:
2464
2465   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2466   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2467
2468- enable_event/disable_event
2469  These commands can enable or disable a trace event. Note, because
2470  function tracing callbacks are very sensitive, when these commands
2471  are registered, the trace point is activated, but disabled in
2472  a "soft" mode. That is, the tracepoint will be called, but
2473  just will not be traced. The event tracepoint stays in this mode
2474  as long as there's a command that triggers it.
2475
2476   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2477   	 set_ftrace_filter
2478
2479  The format is:
2480
2481    <function>:enable_event:<system>:<event>[:count]
2482    <function>:disable_event:<system>:<event>[:count]
2483
2484  To remove the events commands:
2485
2486
2487   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2488   	 set_ftrace_filter
2489   echo '!schedule:disable_event:sched:sched_switch' > \
2490   	 set_ftrace_filter
2491
2492- dump
2493  When the function is hit, it will dump the contents of the ftrace
2494  ring buffer to the console. This is useful if you need to debug
2495  something, and want to dump the trace when a certain function
2496  is hit. Perhaps its a function that is called before a tripple
2497  fault happens and does not allow you to get a regular dump.
2498
2499- cpudump
2500  When the function is hit, it will dump the contents of the ftrace
2501  ring buffer for the current CPU to the console. Unlike the "dump"
2502  command, it only prints out the contents of the ring buffer for the
2503  CPU that executed the function that triggered the dump.
2504
2505trace_pipe
2506----------
2507
2508The trace_pipe outputs the same content as the trace file, but
2509the effect on the tracing is different. Every read from
2510trace_pipe is consumed. This means that subsequent reads will be
2511different. The trace is live.
2512
2513 # echo function > current_tracer
2514 # cat trace_pipe > /tmp/trace.out &
2515[1] 4153
2516 # echo 1 > tracing_on
2517 # usleep 1
2518 # echo 0 > tracing_on
2519 # cat trace
2520# tracer: function
2521#
2522# entries-in-buffer/entries-written: 0/0   #P:4
2523#
2524#                              _-----=> irqs-off
2525#                             / _----=> need-resched
2526#                            | / _---=> hardirq/softirq
2527#                            || / _--=> preempt-depth
2528#                            ||| /     delay
2529#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2530#              | |       |   ||||       |         |
2531
2532 #
2533 # cat /tmp/trace.out
2534            bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
2535            bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2536            bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
2537            bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
2538            bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
2539            bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
2540            bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
2541            bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
2542            bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
2543
2544
2545Note, reading the trace_pipe file will block until more input is
2546added.
2547
2548trace entries
2549-------------
2550
2551Having too much or not enough data can be troublesome in
2552diagnosing an issue in the kernel. The file buffer_size_kb is
2553used to modify the size of the internal trace buffers. The
2554number listed is the number of entries that can be recorded per
2555CPU. To know the full size, multiply the number of possible CPUs
2556with the number of entries.
2557
2558 # cat buffer_size_kb
25591408 (units kilobytes)
2560
2561Or simply read buffer_total_size_kb
2562
2563 # cat buffer_total_size_kb
25645632
2565
2566To modify the buffer, simple echo in a number (in 1024 byte segments).
2567
2568 # echo 10000 > buffer_size_kb
2569 # cat buffer_size_kb
257010000 (units kilobytes)
2571
2572It will try to allocate as much as possible. If you allocate too
2573much, it can cause Out-Of-Memory to trigger.
2574
2575 # echo 1000000000000 > buffer_size_kb
2576-bash: echo: write error: Cannot allocate memory
2577 # cat buffer_size_kb
257885
2579
2580The per_cpu buffers can be changed individually as well:
2581
2582 # echo 10000 > per_cpu/cpu0/buffer_size_kb
2583 # echo 100 > per_cpu/cpu1/buffer_size_kb
2584
2585When the per_cpu buffers are not the same, the buffer_size_kb
2586at the top level will just show an X
2587
2588 # cat buffer_size_kb
2589X
2590
2591This is where the buffer_total_size_kb is useful:
2592
2593 # cat buffer_total_size_kb
259412916
2595
2596Writing to the top level buffer_size_kb will reset all the buffers
2597to be the same again.
2598
2599Snapshot
2600--------
2601CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
2602available to all non latency tracers. (Latency tracers which
2603record max latency, such as "irqsoff" or "wakeup", can't use
2604this feature, since those are already using the snapshot
2605mechanism internally.)
2606
2607Snapshot preserves a current trace buffer at a particular point
2608in time without stopping tracing. Ftrace swaps the current
2609buffer with a spare buffer, and tracing continues in the new
2610current (=previous spare) buffer.
2611
2612The following debugfs files in "tracing" are related to this
2613feature:
2614
2615  snapshot:
2616
2617	This is used to take a snapshot and to read the output
2618	of the snapshot. Echo 1 into this file to allocate a
2619	spare buffer and to take a snapshot (swap), then read
2620	the snapshot from this file in the same format as
2621	"trace" (described above in the section "The File
2622	System"). Both reads snapshot and tracing are executable
2623	in parallel. When the spare buffer is allocated, echoing
2624	0 frees it, and echoing else (positive) values clear the
2625	snapshot contents.
2626	More details are shown in the table below.
2627
2628	status\input  |     0      |     1      |    else    |
2629	--------------+------------+------------+------------+
2630	not allocated |(do nothing)| alloc+swap |(do nothing)|
2631	--------------+------------+------------+------------+
2632	allocated     |    free    |    swap    |   clear    |
2633	--------------+------------+------------+------------+
2634
2635Here is an example of using the snapshot feature.
2636
2637 # echo 1 > events/sched/enable
2638 # echo 1 > snapshot
2639 # cat snapshot
2640# tracer: nop
2641#
2642# entries-in-buffer/entries-written: 71/71   #P:8
2643#
2644#                              _-----=> irqs-off
2645#                             / _----=> need-resched
2646#                            | / _---=> hardirq/softirq
2647#                            || / _--=> preempt-depth
2648#                            ||| /     delay
2649#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2650#              | |       |   ||||       |         |
2651          <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
2652           sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
2653[...]
2654          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
2655
2656 # cat trace
2657# tracer: nop
2658#
2659# entries-in-buffer/entries-written: 77/77   #P:8
2660#
2661#                              _-----=> irqs-off
2662#                             / _----=> need-resched
2663#                            | / _---=> hardirq/softirq
2664#                            || / _--=> preempt-depth
2665#                            ||| /     delay
2666#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2667#              | |       |   ||||       |         |
2668          <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
2669 snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
2670[...]
2671
2672
2673If you try to use this snapshot feature when current tracer is
2674one of the latency tracers, you will get the following results.
2675
2676 # echo wakeup > current_tracer
2677 # echo 1 > snapshot
2678bash: echo: write error: Device or resource busy
2679 # cat snapshot
2680cat: snapshot: Device or resource busy
2681
2682
2683Instances
2684---------
2685In the debugfs tracing directory is a directory called "instances".
2686This directory can have new directories created inside of it using
2687mkdir, and removing directories with rmdir. The directory created
2688with mkdir in this directory will already contain files and other
2689directories after it is created.
2690
2691 # mkdir instances/foo
2692 # ls instances/foo
2693buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
2694set_event  snapshot  trace  trace_clock  trace_marker  trace_options
2695trace_pipe  tracing_on
2696
2697As you can see, the new directory looks similar to the tracing directory
2698itself. In fact, it is very similar, except that the buffer and
2699events are agnostic from the main director, or from any other
2700instances that are created.
2701
2702The files in the new directory work just like the files with the
2703same name in the tracing directory except the buffer that is used
2704is a separate and new buffer. The files affect that buffer but do not
2705affect the main buffer with the exception of trace_options. Currently,
2706the trace_options affect all instances and the top level buffer
2707the same, but this may change in future releases. That is, options
2708may become specific to the instance they reside in.
2709
2710Notice that none of the function tracer files are there, nor is
2711current_tracer and available_tracers. This is because the buffers
2712can currently only have events enabled for them.
2713
2714 # mkdir instances/foo
2715 # mkdir instances/bar
2716 # mkdir instances/zoot
2717 # echo 100000 > buffer_size_kb
2718 # echo 1000 > instances/foo/buffer_size_kb
2719 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
2720 # echo function > current_trace
2721 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
2722 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
2723 # echo 1 > instances/foo/events/sched/sched_switch/enable
2724 # echo 1 > instances/bar/events/irq/enable
2725 # echo 1 > instances/zoot/events/syscalls/enable
2726 # cat trace_pipe
2727CPU:2 [LOST 11745 EVENTS]
2728            bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
2729            bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
2730            bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
2731            bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
2732            bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
2733            bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
2734            bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
2735            bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
2736            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2737            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2738            bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
2739[...]
2740
2741 # cat instances/foo/trace_pipe
2742            bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2743            bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2744          <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
2745          <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
2746     rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
2747            bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2748            bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2749            bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
2750     kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
2751     kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
2752[...]
2753
2754 # cat instances/bar/trace_pipe
2755     migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
2756          <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
2757            bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
2758            bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
2759            bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
2760            bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
2761            bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
2762            bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
2763            sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
2764            sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
2765            sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
2766            sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
2767[...]
2768
2769 # cat instances/zoot/trace
2770# tracer: nop
2771#
2772# entries-in-buffer/entries-written: 18996/18996   #P:4
2773#
2774#                              _-----=> irqs-off
2775#                             / _----=> need-resched
2776#                            | / _---=> hardirq/softirq
2777#                            || / _--=> preempt-depth
2778#                            ||| /     delay
2779#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2780#              | |       |   ||||       |         |
2781            bash-1998  [000] d...   140.733501: sys_write -> 0x2
2782            bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
2783            bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
2784            bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
2785            bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
2786            bash-1998  [000] d...   140.733510: sys_close(fd: a)
2787            bash-1998  [000] d...   140.733510: sys_close -> 0x0
2788            bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
2789            bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
2790            bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
2791            bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
2792
2793You can see that the trace of the top most trace buffer shows only
2794the function tracing. The foo instance displays wakeups and task
2795switches.
2796
2797To remove the instances, simply delete their directories:
2798
2799 # rmdir instances/foo
2800 # rmdir instances/bar
2801 # rmdir instances/zoot
2802
2803Note, if a process has a trace file open in one of the instance
2804directories, the rmdir will fail with EBUSY.
2805
2806
2807Stack trace
2808-----------
2809Since the kernel has a fixed sized stack, it is important not to
2810waste it in functions. A kernel developer must be conscience of
2811what they allocate on the stack. If they add too much, the system
2812can be in danger of a stack overflow, and corruption will occur,
2813usually leading to a system panic.
2814
2815There are some tools that check this, usually with interrupts
2816periodically checking usage. But if you can perform a check
2817at every function call that will become very useful. As ftrace provides
2818a function tracer, it makes it convenient to check the stack size
2819at every function call. This is enabled via the stack tracer.
2820
2821CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
2822To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
2823
2824 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
2825
2826You can also enable it from the kernel command line to trace
2827the stack size of the kernel during boot up, by adding "stacktrace"
2828to the kernel command line parameter.
2829
2830After running it for a few minutes, the output looks like:
2831
2832 # cat stack_max_size
28332928
2834
2835 # cat stack_trace
2836        Depth    Size   Location    (18 entries)
2837        -----    ----   --------
2838  0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
2839  1)     2704     160   find_busiest_group+0x31/0x1f1
2840  2)     2544     256   load_balance+0xd9/0x662
2841  3)     2288      80   idle_balance+0xbb/0x130
2842  4)     2208     128   __schedule+0x26e/0x5b9
2843  5)     2080      16   schedule+0x64/0x66
2844  6)     2064     128   schedule_timeout+0x34/0xe0
2845  7)     1936     112   wait_for_common+0x97/0xf1
2846  8)     1824      16   wait_for_completion+0x1d/0x1f
2847  9)     1808     128   flush_work+0xfe/0x119
2848 10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
2849 11)     1664      48   input_available_p+0x1d/0x5c
2850 12)     1616      48   n_tty_poll+0x6d/0x134
2851 13)     1568      64   tty_poll+0x64/0x7f
2852 14)     1504     880   do_select+0x31e/0x511
2853 15)      624     400   core_sys_select+0x177/0x216
2854 16)      224      96   sys_select+0x91/0xb9
2855 17)      128     128   system_call_fastpath+0x16/0x1b
2856
2857Note, if -mfentry is being used by gcc, functions get traced before
2858they set up the stack frame. This means that leaf level functions
2859are not tested by the stack tracer when -mfentry is used.
2860
2861Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
2862
2863---------
2864
2865More details can be found in the source code, in the
2866kernel/trace/*.c files.
2867