1 /*
2 * linux/arch/alpha/kernel/smp.c
3 *
4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5 * Renamed modified smp_call_function to smp_call_function_on_cpu()
6 * Created an function that conforms to the old calling convention
7 * of smp_call_function().
8 *
9 * This is helpful for DCPI.
10 *
11 */
12
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
30 #include <linux/cpu.h>
31
32 #include <asm/hwrpb.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42
43 #include "proto.h"
44 #include "irq_impl.h"
45
46
47 #define DEBUG_SMP 0
48 #if DEBUG_SMP
49 #define DBGS(args) printk args
50 #else
51 #define DBGS(args)
52 #endif
53
54 /* A collection of per-processor data. */
55 struct cpuinfo_alpha cpu_data[NR_CPUS];
56 EXPORT_SYMBOL(cpu_data);
57
58 /* A collection of single bit ipi messages. */
59 static struct {
60 unsigned long bits ____cacheline_aligned;
61 } ipi_data[NR_CPUS] __cacheline_aligned;
62
63 enum ipi_message_type {
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CALL_FUNC_SINGLE,
67 IPI_CPU_STOP,
68 };
69
70 /* Set to a secondary's cpuid when it comes online. */
71 static int smp_secondary_alive = 0;
72
73 int smp_num_probed; /* Internal processor count */
74 int smp_num_cpus = 1; /* Number that came online. */
75 EXPORT_SYMBOL(smp_num_cpus);
76
77 /*
78 * Called by both boot and secondaries to move global data into
79 * per-processor storage.
80 */
81 static inline void __init
smp_store_cpu_info(int cpuid)82 smp_store_cpu_info(int cpuid)
83 {
84 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
85 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
86 cpu_data[cpuid].need_new_asn = 0;
87 cpu_data[cpuid].asn_lock = 0;
88 }
89
90 /*
91 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
92 */
93 static inline void __init
smp_setup_percpu_timer(int cpuid)94 smp_setup_percpu_timer(int cpuid)
95 {
96 cpu_data[cpuid].prof_counter = 1;
97 cpu_data[cpuid].prof_multiplier = 1;
98 }
99
100 static void __init
wait_boot_cpu_to_stop(int cpuid)101 wait_boot_cpu_to_stop(int cpuid)
102 {
103 unsigned long stop = jiffies + 10*HZ;
104
105 while (time_before(jiffies, stop)) {
106 if (!smp_secondary_alive)
107 return;
108 barrier();
109 }
110
111 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
112 for (;;)
113 barrier();
114 }
115
116 /*
117 * Where secondaries begin a life of C.
118 */
119 void
smp_callin(void)120 smp_callin(void)
121 {
122 int cpuid = hard_smp_processor_id();
123
124 if (cpu_online(cpuid)) {
125 printk("??, cpu 0x%x already present??\n", cpuid);
126 BUG();
127 }
128 set_cpu_online(cpuid, true);
129
130 /* Turn on machine checks. */
131 wrmces(7);
132
133 /* Set trap vectors. */
134 trap_init();
135
136 /* Set interrupt vector. */
137 wrent(entInt, 0);
138
139 /* Get our local ticker going. */
140 smp_setup_percpu_timer(cpuid);
141 init_clockevent();
142
143 /* Call platform-specific callin, if specified */
144 if (alpha_mv.smp_callin)
145 alpha_mv.smp_callin();
146
147 /* All kernel threads share the same mm context. */
148 atomic_inc(&init_mm.mm_count);
149 current->active_mm = &init_mm;
150
151 /* inform the notifiers about the new cpu */
152 notify_cpu_starting(cpuid);
153
154 /* Must have completely accurate bogos. */
155 local_irq_enable();
156
157 /* Wait boot CPU to stop with irq enabled before running
158 calibrate_delay. */
159 wait_boot_cpu_to_stop(cpuid);
160 mb();
161 calibrate_delay();
162
163 smp_store_cpu_info(cpuid);
164 /* Allow master to continue only after we written loops_per_jiffy. */
165 wmb();
166 smp_secondary_alive = 1;
167
168 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
169 cpuid, current, current->active_mm));
170
171 preempt_disable();
172 cpu_startup_entry(CPUHP_ONLINE);
173 }
174
175 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */
176 static int
wait_for_txrdy(unsigned long cpumask)177 wait_for_txrdy (unsigned long cpumask)
178 {
179 unsigned long timeout;
180
181 if (!(hwrpb->txrdy & cpumask))
182 return 0;
183
184 timeout = jiffies + 10*HZ;
185 while (time_before(jiffies, timeout)) {
186 if (!(hwrpb->txrdy & cpumask))
187 return 0;
188 udelay(10);
189 barrier();
190 }
191
192 return -1;
193 }
194
195 /*
196 * Send a message to a secondary's console. "START" is one such
197 * interesting message. ;-)
198 */
199 static void
send_secondary_console_msg(char * str,int cpuid)200 send_secondary_console_msg(char *str, int cpuid)
201 {
202 struct percpu_struct *cpu;
203 register char *cp1, *cp2;
204 unsigned long cpumask;
205 size_t len;
206
207 cpu = (struct percpu_struct *)
208 ((char*)hwrpb
209 + hwrpb->processor_offset
210 + cpuid * hwrpb->processor_size);
211
212 cpumask = (1UL << cpuid);
213 if (wait_for_txrdy(cpumask))
214 goto timeout;
215
216 cp2 = str;
217 len = strlen(cp2);
218 *(unsigned int *)&cpu->ipc_buffer[0] = len;
219 cp1 = (char *) &cpu->ipc_buffer[1];
220 memcpy(cp1, cp2, len);
221
222 /* atomic test and set */
223 wmb();
224 set_bit(cpuid, &hwrpb->rxrdy);
225
226 if (wait_for_txrdy(cpumask))
227 goto timeout;
228 return;
229
230 timeout:
231 printk("Processor %x not ready\n", cpuid);
232 }
233
234 /*
235 * A secondary console wants to send a message. Receive it.
236 */
237 static void
recv_secondary_console_msg(void)238 recv_secondary_console_msg(void)
239 {
240 int mycpu, i, cnt;
241 unsigned long txrdy = hwrpb->txrdy;
242 char *cp1, *cp2, buf[80];
243 struct percpu_struct *cpu;
244
245 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
246
247 mycpu = hard_smp_processor_id();
248
249 for (i = 0; i < NR_CPUS; i++) {
250 if (!(txrdy & (1UL << i)))
251 continue;
252
253 DBGS(("recv_secondary_console_msg: "
254 "TXRDY contains CPU %d.\n", i));
255
256 cpu = (struct percpu_struct *)
257 ((char*)hwrpb
258 + hwrpb->processor_offset
259 + i * hwrpb->processor_size);
260
261 DBGS(("recv_secondary_console_msg: on %d from %d"
262 " HALT_REASON 0x%lx FLAGS 0x%lx\n",
263 mycpu, i, cpu->halt_reason, cpu->flags));
264
265 cnt = cpu->ipc_buffer[0] >> 32;
266 if (cnt <= 0 || cnt >= 80)
267 strcpy(buf, "<<< BOGUS MSG >>>");
268 else {
269 cp1 = (char *) &cpu->ipc_buffer[1];
270 cp2 = buf;
271 memcpy(cp2, cp1, cnt);
272 cp2[cnt] = '\0';
273
274 while ((cp2 = strchr(cp2, '\r')) != 0) {
275 *cp2 = ' ';
276 if (cp2[1] == '\n')
277 cp2[1] = ' ';
278 }
279 }
280
281 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
282 "message is '%s'\n", mycpu, buf));
283 }
284
285 hwrpb->txrdy = 0;
286 }
287
288 /*
289 * Convince the console to have a secondary cpu begin execution.
290 */
291 static int
secondary_cpu_start(int cpuid,struct task_struct * idle)292 secondary_cpu_start(int cpuid, struct task_struct *idle)
293 {
294 struct percpu_struct *cpu;
295 struct pcb_struct *hwpcb, *ipcb;
296 unsigned long timeout;
297
298 cpu = (struct percpu_struct *)
299 ((char*)hwrpb
300 + hwrpb->processor_offset
301 + cpuid * hwrpb->processor_size);
302 hwpcb = (struct pcb_struct *) cpu->hwpcb;
303 ipcb = &task_thread_info(idle)->pcb;
304
305 /* Initialize the CPU's HWPCB to something just good enough for
306 us to get started. Immediately after starting, we'll swpctx
307 to the target idle task's pcb. Reuse the stack in the mean
308 time. Precalculate the target PCBB. */
309 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
310 hwpcb->usp = 0;
311 hwpcb->ptbr = ipcb->ptbr;
312 hwpcb->pcc = 0;
313 hwpcb->asn = 0;
314 hwpcb->unique = virt_to_phys(ipcb);
315 hwpcb->flags = ipcb->flags;
316 hwpcb->res1 = hwpcb->res2 = 0;
317
318 #if 0
319 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
320 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
321 #endif
322 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
323 cpuid, idle->state, ipcb->flags));
324
325 /* Setup HWRPB fields that SRM uses to activate secondary CPU */
326 hwrpb->CPU_restart = __smp_callin;
327 hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
328
329 /* Recalculate and update the HWRPB checksum */
330 hwrpb_update_checksum(hwrpb);
331
332 /*
333 * Send a "start" command to the specified processor.
334 */
335
336 /* SRM III 3.4.1.3 */
337 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */
338 cpu->flags &= ~1; /* turn off Bootstrap In Progress */
339 wmb();
340
341 send_secondary_console_msg("START\r\n", cpuid);
342
343 /* Wait 10 seconds for an ACK from the console. */
344 timeout = jiffies + 10*HZ;
345 while (time_before(jiffies, timeout)) {
346 if (cpu->flags & 1)
347 goto started;
348 udelay(10);
349 barrier();
350 }
351 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
352 return -1;
353
354 started:
355 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
356 return 0;
357 }
358
359 /*
360 * Bring one cpu online.
361 */
362 static int
smp_boot_one_cpu(int cpuid,struct task_struct * idle)363 smp_boot_one_cpu(int cpuid, struct task_struct *idle)
364 {
365 unsigned long timeout;
366
367 /* Signal the secondary to wait a moment. */
368 smp_secondary_alive = -1;
369
370 /* Whirrr, whirrr, whirrrrrrrrr... */
371 if (secondary_cpu_start(cpuid, idle))
372 return -1;
373
374 /* Notify the secondary CPU it can run calibrate_delay. */
375 mb();
376 smp_secondary_alive = 0;
377
378 /* We've been acked by the console; wait one second for
379 the task to start up for real. */
380 timeout = jiffies + 1*HZ;
381 while (time_before(jiffies, timeout)) {
382 if (smp_secondary_alive == 1)
383 goto alive;
384 udelay(10);
385 barrier();
386 }
387
388 /* We failed to boot the CPU. */
389
390 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
391 return -1;
392
393 alive:
394 /* Another "Red Snapper". */
395 return 0;
396 }
397
398 /*
399 * Called from setup_arch. Detect an SMP system and which processors
400 * are present.
401 */
402 void __init
setup_smp(void)403 setup_smp(void)
404 {
405 struct percpu_struct *cpubase, *cpu;
406 unsigned long i;
407
408 if (boot_cpuid != 0) {
409 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
410 boot_cpuid);
411 }
412
413 if (hwrpb->nr_processors > 1) {
414 int boot_cpu_palrev;
415
416 DBGS(("setup_smp: nr_processors %ld\n",
417 hwrpb->nr_processors));
418
419 cpubase = (struct percpu_struct *)
420 ((char*)hwrpb + hwrpb->processor_offset);
421 boot_cpu_palrev = cpubase->pal_revision;
422
423 for (i = 0; i < hwrpb->nr_processors; i++) {
424 cpu = (struct percpu_struct *)
425 ((char *)cpubase + i*hwrpb->processor_size);
426 if ((cpu->flags & 0x1cc) == 0x1cc) {
427 smp_num_probed++;
428 set_cpu_possible(i, true);
429 set_cpu_present(i, true);
430 cpu->pal_revision = boot_cpu_palrev;
431 }
432
433 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
434 i, cpu->flags, cpu->type));
435 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
436 i, cpu->pal_revision));
437 }
438 } else {
439 smp_num_probed = 1;
440 }
441
442 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
443 smp_num_probed, cpumask_bits(cpu_present_mask)[0]);
444 }
445
446 /*
447 * Called by smp_init prepare the secondaries
448 */
449 void __init
smp_prepare_cpus(unsigned int max_cpus)450 smp_prepare_cpus(unsigned int max_cpus)
451 {
452 /* Take care of some initial bookkeeping. */
453 memset(ipi_data, 0, sizeof(ipi_data));
454
455 current_thread_info()->cpu = boot_cpuid;
456
457 smp_store_cpu_info(boot_cpuid);
458 smp_setup_percpu_timer(boot_cpuid);
459
460 /* Nothing to do on a UP box, or when told not to. */
461 if (smp_num_probed == 1 || max_cpus == 0) {
462 init_cpu_possible(cpumask_of(boot_cpuid));
463 init_cpu_present(cpumask_of(boot_cpuid));
464 printk(KERN_INFO "SMP mode deactivated.\n");
465 return;
466 }
467
468 printk(KERN_INFO "SMP starting up secondaries.\n");
469
470 smp_num_cpus = smp_num_probed;
471 }
472
473 void
smp_prepare_boot_cpu(void)474 smp_prepare_boot_cpu(void)
475 {
476 }
477
478 int
__cpu_up(unsigned int cpu,struct task_struct * tidle)479 __cpu_up(unsigned int cpu, struct task_struct *tidle)
480 {
481 smp_boot_one_cpu(cpu, tidle);
482
483 return cpu_online(cpu) ? 0 : -ENOSYS;
484 }
485
486 void __init
smp_cpus_done(unsigned int max_cpus)487 smp_cpus_done(unsigned int max_cpus)
488 {
489 int cpu;
490 unsigned long bogosum = 0;
491
492 for(cpu = 0; cpu < NR_CPUS; cpu++)
493 if (cpu_online(cpu))
494 bogosum += cpu_data[cpu].loops_per_jiffy;
495
496 printk(KERN_INFO "SMP: Total of %d processors activated "
497 "(%lu.%02lu BogoMIPS).\n",
498 num_online_cpus(),
499 (bogosum + 2500) / (500000/HZ),
500 ((bogosum + 2500) / (5000/HZ)) % 100);
501 }
502
503 int
setup_profiling_timer(unsigned int multiplier)504 setup_profiling_timer(unsigned int multiplier)
505 {
506 return -EINVAL;
507 }
508
509
510 static void
send_ipi_message(const struct cpumask * to_whom,enum ipi_message_type operation)511 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation)
512 {
513 int i;
514
515 mb();
516 for_each_cpu(i, to_whom)
517 set_bit(operation, &ipi_data[i].bits);
518
519 mb();
520 for_each_cpu(i, to_whom)
521 wripir(i);
522 }
523
524 void
handle_ipi(struct pt_regs * regs)525 handle_ipi(struct pt_regs *regs)
526 {
527 int this_cpu = smp_processor_id();
528 unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
529 unsigned long ops;
530
531 #if 0
532 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
533 this_cpu, *pending_ipis, regs->pc));
534 #endif
535
536 mb(); /* Order interrupt and bit testing. */
537 while ((ops = xchg(pending_ipis, 0)) != 0) {
538 mb(); /* Order bit clearing and data access. */
539 do {
540 unsigned long which;
541
542 which = ops & -ops;
543 ops &= ~which;
544 which = __ffs(which);
545
546 switch (which) {
547 case IPI_RESCHEDULE:
548 scheduler_ipi();
549 break;
550
551 case IPI_CALL_FUNC:
552 generic_smp_call_function_interrupt();
553 break;
554
555 case IPI_CALL_FUNC_SINGLE:
556 generic_smp_call_function_single_interrupt();
557 break;
558
559 case IPI_CPU_STOP:
560 halt();
561
562 default:
563 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
564 this_cpu, which);
565 break;
566 }
567 } while (ops);
568
569 mb(); /* Order data access and bit testing. */
570 }
571
572 cpu_data[this_cpu].ipi_count++;
573
574 if (hwrpb->txrdy)
575 recv_secondary_console_msg();
576 }
577
578 void
smp_send_reschedule(int cpu)579 smp_send_reschedule(int cpu)
580 {
581 #ifdef DEBUG_IPI_MSG
582 if (cpu == hard_smp_processor_id())
583 printk(KERN_WARNING
584 "smp_send_reschedule: Sending IPI to self.\n");
585 #endif
586 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
587 }
588
589 void
smp_send_stop(void)590 smp_send_stop(void)
591 {
592 cpumask_t to_whom;
593 cpumask_copy(&to_whom, cpu_possible_mask);
594 cpumask_clear_cpu(smp_processor_id(), &to_whom);
595 #ifdef DEBUG_IPI_MSG
596 if (hard_smp_processor_id() != boot_cpu_id)
597 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
598 #endif
599 send_ipi_message(&to_whom, IPI_CPU_STOP);
600 }
601
arch_send_call_function_ipi_mask(const struct cpumask * mask)602 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
603 {
604 send_ipi_message(mask, IPI_CALL_FUNC);
605 }
606
arch_send_call_function_single_ipi(int cpu)607 void arch_send_call_function_single_ipi(int cpu)
608 {
609 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
610 }
611
612 static void
ipi_imb(void * ignored)613 ipi_imb(void *ignored)
614 {
615 imb();
616 }
617
618 void
smp_imb(void)619 smp_imb(void)
620 {
621 /* Must wait other processors to flush their icache before continue. */
622 if (on_each_cpu(ipi_imb, NULL, 1))
623 printk(KERN_CRIT "smp_imb: timed out\n");
624 }
625 EXPORT_SYMBOL(smp_imb);
626
627 static void
ipi_flush_tlb_all(void * ignored)628 ipi_flush_tlb_all(void *ignored)
629 {
630 tbia();
631 }
632
633 void
flush_tlb_all(void)634 flush_tlb_all(void)
635 {
636 /* Although we don't have any data to pass, we do want to
637 synchronize with the other processors. */
638 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
639 printk(KERN_CRIT "flush_tlb_all: timed out\n");
640 }
641 }
642
643 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
644
645 static void
ipi_flush_tlb_mm(void * x)646 ipi_flush_tlb_mm(void *x)
647 {
648 struct mm_struct *mm = (struct mm_struct *) x;
649 if (mm == current->active_mm && !asn_locked())
650 flush_tlb_current(mm);
651 else
652 flush_tlb_other(mm);
653 }
654
655 void
flush_tlb_mm(struct mm_struct * mm)656 flush_tlb_mm(struct mm_struct *mm)
657 {
658 preempt_disable();
659
660 if (mm == current->active_mm) {
661 flush_tlb_current(mm);
662 if (atomic_read(&mm->mm_users) <= 1) {
663 int cpu, this_cpu = smp_processor_id();
664 for (cpu = 0; cpu < NR_CPUS; cpu++) {
665 if (!cpu_online(cpu) || cpu == this_cpu)
666 continue;
667 if (mm->context[cpu])
668 mm->context[cpu] = 0;
669 }
670 preempt_enable();
671 return;
672 }
673 }
674
675 if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
676 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
677 }
678
679 preempt_enable();
680 }
681 EXPORT_SYMBOL(flush_tlb_mm);
682
683 struct flush_tlb_page_struct {
684 struct vm_area_struct *vma;
685 struct mm_struct *mm;
686 unsigned long addr;
687 };
688
689 static void
ipi_flush_tlb_page(void * x)690 ipi_flush_tlb_page(void *x)
691 {
692 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
693 struct mm_struct * mm = data->mm;
694
695 if (mm == current->active_mm && !asn_locked())
696 flush_tlb_current_page(mm, data->vma, data->addr);
697 else
698 flush_tlb_other(mm);
699 }
700
701 void
flush_tlb_page(struct vm_area_struct * vma,unsigned long addr)702 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
703 {
704 struct flush_tlb_page_struct data;
705 struct mm_struct *mm = vma->vm_mm;
706
707 preempt_disable();
708
709 if (mm == current->active_mm) {
710 flush_tlb_current_page(mm, vma, addr);
711 if (atomic_read(&mm->mm_users) <= 1) {
712 int cpu, this_cpu = smp_processor_id();
713 for (cpu = 0; cpu < NR_CPUS; cpu++) {
714 if (!cpu_online(cpu) || cpu == this_cpu)
715 continue;
716 if (mm->context[cpu])
717 mm->context[cpu] = 0;
718 }
719 preempt_enable();
720 return;
721 }
722 }
723
724 data.vma = vma;
725 data.mm = mm;
726 data.addr = addr;
727
728 if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
729 printk(KERN_CRIT "flush_tlb_page: timed out\n");
730 }
731
732 preempt_enable();
733 }
734 EXPORT_SYMBOL(flush_tlb_page);
735
736 void
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)737 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
738 {
739 /* On the Alpha we always flush the whole user tlb. */
740 flush_tlb_mm(vma->vm_mm);
741 }
742 EXPORT_SYMBOL(flush_tlb_range);
743
744 static void
ipi_flush_icache_page(void * x)745 ipi_flush_icache_page(void *x)
746 {
747 struct mm_struct *mm = (struct mm_struct *) x;
748 if (mm == current->active_mm && !asn_locked())
749 __load_new_mm_context(mm);
750 else
751 flush_tlb_other(mm);
752 }
753
754 void
flush_icache_user_range(struct vm_area_struct * vma,struct page * page,unsigned long addr,int len)755 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
756 unsigned long addr, int len)
757 {
758 struct mm_struct *mm = vma->vm_mm;
759
760 if ((vma->vm_flags & VM_EXEC) == 0)
761 return;
762
763 preempt_disable();
764
765 if (mm == current->active_mm) {
766 __load_new_mm_context(mm);
767 if (atomic_read(&mm->mm_users) <= 1) {
768 int cpu, this_cpu = smp_processor_id();
769 for (cpu = 0; cpu < NR_CPUS; cpu++) {
770 if (!cpu_online(cpu) || cpu == this_cpu)
771 continue;
772 if (mm->context[cpu])
773 mm->context[cpu] = 0;
774 }
775 preempt_enable();
776 return;
777 }
778 }
779
780 if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
781 printk(KERN_CRIT "flush_icache_page: timed out\n");
782 }
783
784 preempt_enable();
785 }
786