• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Glue code for the SHA256 Secure Hash Algorithm assembly implementation
3  * using NEON instructions.
4  *
5  * Copyright � 2015 Google Inc.
6  *
7  * This file is based on sha512_neon_glue.c:
8  *   Copyright � 2014 Jussi Kivilinna <jussi.kivilinna@iki.fi>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  *
15  */
16 
17 #include <crypto/internal/hash.h>
18 #include <linux/cryptohash.h>
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <crypto/sha.h>
22 #include <asm/byteorder.h>
23 #include <asm/simd.h>
24 #include <asm/neon.h>
25 #include "sha256_glue.h"
26 
27 asmlinkage void sha256_block_data_order_neon(u32 *digest, const void *data,
28 				      unsigned int num_blks);
29 
30 
__sha256_neon_update(struct shash_desc * desc,const u8 * data,unsigned int len,unsigned int partial)31 static int __sha256_neon_update(struct shash_desc *desc, const u8 *data,
32 				unsigned int len, unsigned int partial)
33 {
34 	struct sha256_state *sctx = shash_desc_ctx(desc);
35 	unsigned int done = 0;
36 
37 	sctx->count += len;
38 
39 	if (partial) {
40 		done = SHA256_BLOCK_SIZE - partial;
41 		memcpy(sctx->buf + partial, data, done);
42 		sha256_block_data_order_neon(sctx->state, sctx->buf, 1);
43 	}
44 
45 	if (len - done >= SHA256_BLOCK_SIZE) {
46 		const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE;
47 
48 		sha256_block_data_order_neon(sctx->state, data + done, rounds);
49 		done += rounds * SHA256_BLOCK_SIZE;
50 	}
51 
52 	memcpy(sctx->buf, data + done, len - done);
53 
54 	return 0;
55 }
56 
sha256_neon_update(struct shash_desc * desc,const u8 * data,unsigned int len)57 static int sha256_neon_update(struct shash_desc *desc, const u8 *data,
58 			      unsigned int len)
59 {
60 	struct sha256_state *sctx = shash_desc_ctx(desc);
61 	unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
62 	int res;
63 
64 	/* Handle the fast case right here */
65 	if (partial + len < SHA256_BLOCK_SIZE) {
66 		sctx->count += len;
67 		memcpy(sctx->buf + partial, data, len);
68 
69 		return 0;
70 	}
71 
72 	if (!may_use_simd()) {
73 		res = __sha256_update(desc, data, len, partial);
74 	} else {
75 		kernel_neon_begin();
76 		res = __sha256_neon_update(desc, data, len, partial);
77 		kernel_neon_end();
78 	}
79 
80 	return res;
81 }
82 
83 /* Add padding and return the message digest. */
sha256_neon_final(struct shash_desc * desc,u8 * out)84 static int sha256_neon_final(struct shash_desc *desc, u8 *out)
85 {
86 	struct sha256_state *sctx = shash_desc_ctx(desc);
87 	unsigned int i, index, padlen;
88 	__be32 *dst = (__be32 *)out;
89 	__be64 bits;
90 	static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };
91 
92 	/* save number of bits */
93 	bits = cpu_to_be64(sctx->count << 3);
94 
95 	/* Pad out to 56 mod 64 and append length */
96 	index = sctx->count % SHA256_BLOCK_SIZE;
97 	padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index);
98 
99 	if (!may_use_simd()) {
100 		sha256_update(desc, padding, padlen);
101 		sha256_update(desc, (const u8 *)&bits, sizeof(bits));
102 	} else {
103 		kernel_neon_begin();
104 		/* We need to fill a whole block for __sha256_neon_update() */
105 		if (padlen <= 56) {
106 			sctx->count += padlen;
107 			memcpy(sctx->buf + index, padding, padlen);
108 		} else {
109 			__sha256_neon_update(desc, padding, padlen, index);
110 		}
111 		__sha256_neon_update(desc, (const u8 *)&bits,
112 					sizeof(bits), 56);
113 		kernel_neon_end();
114 	}
115 
116 	/* Store state in digest */
117 	for (i = 0; i < 8; i++)
118 		dst[i] = cpu_to_be32(sctx->state[i]);
119 
120 	/* Wipe context */
121 	memzero_explicit(sctx, sizeof(*sctx));
122 
123 	return 0;
124 }
125 
sha224_neon_final(struct shash_desc * desc,u8 * out)126 static int sha224_neon_final(struct shash_desc *desc, u8 *out)
127 {
128 	u8 D[SHA256_DIGEST_SIZE];
129 
130 	sha256_neon_final(desc, D);
131 
132 	memcpy(out, D, SHA224_DIGEST_SIZE);
133 	memzero_explicit(D, SHA256_DIGEST_SIZE);
134 
135 	return 0;
136 }
137 
138 struct shash_alg sha256_neon_algs[] = { {
139 	.digestsize	=	SHA256_DIGEST_SIZE,
140 	.init		=	sha256_init,
141 	.update		=	sha256_neon_update,
142 	.final		=	sha256_neon_final,
143 	.export		=	sha256_export,
144 	.import		=	sha256_import,
145 	.descsize	=	sizeof(struct sha256_state),
146 	.statesize	=	sizeof(struct sha256_state),
147 	.base		=	{
148 		.cra_name	=	"sha256",
149 		.cra_driver_name =	"sha256-neon",
150 		.cra_priority	=	250,
151 		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
152 		.cra_blocksize	=	SHA256_BLOCK_SIZE,
153 		.cra_module	=	THIS_MODULE,
154 	}
155 }, {
156 	.digestsize	=	SHA224_DIGEST_SIZE,
157 	.init		=	sha224_init,
158 	.update		=	sha256_neon_update,
159 	.final		=	sha224_neon_final,
160 	.export		=	sha256_export,
161 	.import		=	sha256_import,
162 	.descsize	=	sizeof(struct sha256_state),
163 	.statesize	=	sizeof(struct sha256_state),
164 	.base		=	{
165 		.cra_name	=	"sha224",
166 		.cra_driver_name =	"sha224-neon",
167 		.cra_priority	=	250,
168 		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
169 		.cra_blocksize	=	SHA224_BLOCK_SIZE,
170 		.cra_module	=	THIS_MODULE,
171 	}
172 } };
173