• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52 
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59 
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65 
66 enum ipi_msg_type {
67 	IPI_WAKEUP,
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CALL_FUNC_SINGLE,
72 	IPI_CPU_STOP,
73 	IPI_IRQ_WORK,
74 	IPI_COMPLETION,
75 	IPI_CPU_BACKTRACE,
76 };
77 
78 static DECLARE_COMPLETION(cpu_running);
79 
80 static struct smp_operations smp_ops;
81 
smp_set_ops(struct smp_operations * ops)82 void __init smp_set_ops(struct smp_operations *ops)
83 {
84 	if (ops)
85 		smp_ops = *ops;
86 };
87 
get_arch_pgd(pgd_t * pgd)88 static unsigned long get_arch_pgd(pgd_t *pgd)
89 {
90 #ifdef CONFIG_ARM_LPAE
91 	return __phys_to_pfn(virt_to_phys(pgd));
92 #else
93 	return virt_to_phys(pgd);
94 #endif
95 }
96 
__cpu_up(unsigned int cpu,struct task_struct * idle)97 int __cpu_up(unsigned int cpu, struct task_struct *idle)
98 {
99 	int ret;
100 
101 	if (!smp_ops.smp_boot_secondary)
102 		return -ENOSYS;
103 
104 	/*
105 	 * We need to tell the secondary core where to find
106 	 * its stack and the page tables.
107 	 */
108 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
109 #ifdef CONFIG_ARM_MPU
110 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
111 #endif
112 
113 #ifdef CONFIG_MMU
114 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
115 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
116 #endif
117 	sync_cache_w(&secondary_data);
118 
119 	/*
120 	 * Now bring the CPU into our world.
121 	 */
122 	ret = smp_ops.smp_boot_secondary(cpu, idle);
123 	if (ret == 0) {
124 		/*
125 		 * CPU was successfully started, wait for it
126 		 * to come online or time out.
127 		 */
128 		wait_for_completion_timeout(&cpu_running,
129 						 msecs_to_jiffies(1000));
130 
131 		if (!cpu_online(cpu)) {
132 			pr_crit("CPU%u: failed to come online\n", cpu);
133 			ret = -EIO;
134 		}
135 	} else {
136 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
137 	}
138 
139 
140 	memset(&secondary_data, 0, sizeof(secondary_data));
141 	return ret;
142 }
143 
144 /* platform specific SMP operations */
smp_init_cpus(void)145 void __init smp_init_cpus(void)
146 {
147 	if (smp_ops.smp_init_cpus)
148 		smp_ops.smp_init_cpus();
149 }
150 
platform_can_cpu_hotplug(void)151 int platform_can_cpu_hotplug(void)
152 {
153 #ifdef CONFIG_HOTPLUG_CPU
154 	if (smp_ops.cpu_kill)
155 		return 1;
156 #endif
157 
158 	return 0;
159 }
160 
161 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)162 static int platform_cpu_kill(unsigned int cpu)
163 {
164 	if (smp_ops.cpu_kill)
165 		return smp_ops.cpu_kill(cpu);
166 	return 1;
167 }
168 
platform_cpu_disable(unsigned int cpu)169 static int platform_cpu_disable(unsigned int cpu)
170 {
171 	if (smp_ops.cpu_disable)
172 		return smp_ops.cpu_disable(cpu);
173 
174 	/*
175 	 * By default, allow disabling all CPUs except the first one,
176 	 * since this is special on a lot of platforms, e.g. because
177 	 * of clock tick interrupts.
178 	 */
179 	return cpu == 0 ? -EPERM : 0;
180 }
181 /*
182  * __cpu_disable runs on the processor to be shutdown.
183  */
__cpu_disable(void)184 int __cpu_disable(void)
185 {
186 	unsigned int cpu = smp_processor_id();
187 	int ret;
188 
189 	ret = platform_cpu_disable(cpu);
190 	if (ret)
191 		return ret;
192 
193 	/*
194 	 * Take this CPU offline.  Once we clear this, we can't return,
195 	 * and we must not schedule until we're ready to give up the cpu.
196 	 */
197 	set_cpu_online(cpu, false);
198 
199 	/*
200 	 * OK - migrate IRQs away from this CPU
201 	 */
202 	migrate_irqs();
203 
204 	/*
205 	 * Flush user cache and TLB mappings, and then remove this CPU
206 	 * from the vm mask set of all processes.
207 	 *
208 	 * Caches are flushed to the Level of Unification Inner Shareable
209 	 * to write-back dirty lines to unified caches shared by all CPUs.
210 	 */
211 	flush_cache_louis();
212 	local_flush_tlb_all();
213 
214 	clear_tasks_mm_cpumask(cpu);
215 
216 	return 0;
217 }
218 
219 static DECLARE_COMPLETION(cpu_died);
220 
221 /*
222  * called on the thread which is asking for a CPU to be shutdown -
223  * waits until shutdown has completed, or it is timed out.
224  */
__cpu_die(unsigned int cpu)225 void __cpu_die(unsigned int cpu)
226 {
227 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
228 		pr_err("CPU%u: cpu didn't die\n", cpu);
229 		return;
230 	}
231 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
232 
233 	/*
234 	 * platform_cpu_kill() is generally expected to do the powering off
235 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
236 	 * be done by the CPU which is dying in preference to supporting
237 	 * this call, but that means there is _no_ synchronisation between
238 	 * the requesting CPU and the dying CPU actually losing power.
239 	 */
240 	if (!platform_cpu_kill(cpu))
241 		printk("CPU%u: unable to kill\n", cpu);
242 }
243 
244 /*
245  * Called from the idle thread for the CPU which has been shutdown.
246  *
247  * Note that we disable IRQs here, but do not re-enable them
248  * before returning to the caller. This is also the behaviour
249  * of the other hotplug-cpu capable cores, so presumably coming
250  * out of idle fixes this.
251  */
cpu_die(void)252 void __ref cpu_die(void)
253 {
254 	unsigned int cpu = smp_processor_id();
255 
256 	idle_task_exit();
257 
258 	local_irq_disable();
259 
260 	/*
261 	 * Flush the data out of the L1 cache for this CPU.  This must be
262 	 * before the completion to ensure that data is safely written out
263 	 * before platform_cpu_kill() gets called - which may disable
264 	 * *this* CPU and power down its cache.
265 	 */
266 	flush_cache_louis();
267 
268 	/*
269 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
270 	 * this returns, power and/or clocks can be removed at any point
271 	 * from this CPU and its cache by platform_cpu_kill().
272 	 */
273 	complete(&cpu_died);
274 
275 	/*
276 	 * Ensure that the cache lines associated with that completion are
277 	 * written out.  This covers the case where _this_ CPU is doing the
278 	 * powering down, to ensure that the completion is visible to the
279 	 * CPU waiting for this one.
280 	 */
281 	flush_cache_louis();
282 
283 	/*
284 	 * The actual CPU shutdown procedure is at least platform (if not
285 	 * CPU) specific.  This may remove power, or it may simply spin.
286 	 *
287 	 * Platforms are generally expected *NOT* to return from this call,
288 	 * although there are some which do because they have no way to
289 	 * power down the CPU.  These platforms are the _only_ reason we
290 	 * have a return path which uses the fragment of assembly below.
291 	 *
292 	 * The return path should not be used for platforms which can
293 	 * power off the CPU.
294 	 */
295 	if (smp_ops.cpu_die)
296 		smp_ops.cpu_die(cpu);
297 
298 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
299 		cpu);
300 
301 	/*
302 	 * Do not return to the idle loop - jump back to the secondary
303 	 * cpu initialisation.  There's some initialisation which needs
304 	 * to be repeated to undo the effects of taking the CPU offline.
305 	 */
306 	__asm__("mov	sp, %0\n"
307 	"	mov	fp, #0\n"
308 	"	b	secondary_start_kernel"
309 		:
310 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
311 }
312 #endif /* CONFIG_HOTPLUG_CPU */
313 
314 /*
315  * Called by both boot and secondaries to move global data into
316  * per-processor storage.
317  */
smp_store_cpu_info(unsigned int cpuid)318 static void smp_store_cpu_info(unsigned int cpuid)
319 {
320 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
321 
322 	cpu_info->loops_per_jiffy = loops_per_jiffy;
323 	cpu_info->cpuid = read_cpuid_id();
324 
325 	store_cpu_topology(cpuid);
326 }
327 
328 /*
329  * This is the secondary CPU boot entry.  We're using this CPUs
330  * idle thread stack, but a set of temporary page tables.
331  */
secondary_start_kernel(void)332 asmlinkage void secondary_start_kernel(void)
333 {
334 	struct mm_struct *mm = &init_mm;
335 	unsigned int cpu;
336 
337 	/*
338 	 * The identity mapping is uncached (strongly ordered), so
339 	 * switch away from it before attempting any exclusive accesses.
340 	 */
341 	cpu_switch_mm(mm->pgd, mm);
342 	local_flush_bp_all();
343 	enter_lazy_tlb(mm, current);
344 	local_flush_tlb_all();
345 
346 	/*
347 	 * All kernel threads share the same mm context; grab a
348 	 * reference and switch to it.
349 	 */
350 	cpu = smp_processor_id();
351 	atomic_inc(&mm->mm_count);
352 	current->active_mm = mm;
353 	cpumask_set_cpu(cpu, mm_cpumask(mm));
354 
355 	cpu_init();
356 
357 	printk("CPU%u: Booted secondary processor\n", cpu);
358 
359 	preempt_disable();
360 	trace_hardirqs_off();
361 
362 	/*
363 	 * Give the platform a chance to do its own initialisation.
364 	 */
365 	if (smp_ops.smp_secondary_init)
366 		smp_ops.smp_secondary_init(cpu);
367 
368 	notify_cpu_starting(cpu);
369 
370 	calibrate_delay();
371 
372 	smp_store_cpu_info(cpu);
373 
374 	/*
375 	 * OK, now it's safe to let the boot CPU continue.  Wait for
376 	 * the CPU migration code to notice that the CPU is online
377 	 * before we continue - which happens after __cpu_up returns.
378 	 */
379 	set_cpu_online(cpu, true);
380 	complete(&cpu_running);
381 
382 	local_irq_enable();
383 	local_fiq_enable();
384 
385 	/*
386 	 * OK, it's off to the idle thread for us
387 	 */
388 	cpu_startup_entry(CPUHP_ONLINE);
389 }
390 
smp_cpus_done(unsigned int max_cpus)391 void __init smp_cpus_done(unsigned int max_cpus)
392 {
393 	int cpu;
394 	unsigned long bogosum = 0;
395 
396 	for_each_online_cpu(cpu)
397 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
398 
399 	printk(KERN_INFO "SMP: Total of %d processors activated "
400 	       "(%lu.%02lu BogoMIPS).\n",
401 	       num_online_cpus(),
402 	       bogosum / (500000/HZ),
403 	       (bogosum / (5000/HZ)) % 100);
404 
405 	hyp_mode_check();
406 }
407 
smp_prepare_boot_cpu(void)408 void __init smp_prepare_boot_cpu(void)
409 {
410 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
411 }
412 
smp_prepare_cpus(unsigned int max_cpus)413 void __init smp_prepare_cpus(unsigned int max_cpus)
414 {
415 	unsigned int ncores = num_possible_cpus();
416 
417 	init_cpu_topology();
418 
419 	smp_store_cpu_info(smp_processor_id());
420 
421 	/*
422 	 * are we trying to boot more cores than exist?
423 	 */
424 	if (max_cpus > ncores)
425 		max_cpus = ncores;
426 	if (ncores > 1 && max_cpus) {
427 		/*
428 		 * Initialise the present map, which describes the set of CPUs
429 		 * actually populated at the present time. A platform should
430 		 * re-initialize the map in the platforms smp_prepare_cpus()
431 		 * if present != possible (e.g. physical hotplug).
432 		 */
433 		init_cpu_present(cpu_possible_mask);
434 
435 		/*
436 		 * Initialise the SCU if there are more than one CPU
437 		 * and let them know where to start.
438 		 */
439 		if (smp_ops.smp_prepare_cpus)
440 			smp_ops.smp_prepare_cpus(max_cpus);
441 	}
442 }
443 
444 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
445 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))446 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
447 {
448 	if (!__smp_cross_call)
449 		__smp_cross_call = fn;
450 }
451 
452 static const char *ipi_types[NR_IPI] __tracepoint_string = {
453 #define S(x,s)	[x] = s
454 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
455 	S(IPI_TIMER, "Timer broadcast interrupts"),
456 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
457 	S(IPI_CALL_FUNC, "Function call interrupts"),
458 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
459 	S(IPI_CPU_STOP, "CPU stop interrupts"),
460 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
461 	S(IPI_COMPLETION, "completion interrupts"),
462 	S(IPI_CPU_BACKTRACE, "CPU backtrace"),
463 };
464 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)465 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
466 {
467 	trace_ipi_raise(target, ipi_types[ipinr]);
468 	__smp_cross_call(target, ipinr);
469 }
470 
show_ipi_list(struct seq_file * p,int prec)471 void show_ipi_list(struct seq_file *p, int prec)
472 {
473 	unsigned int cpu, i;
474 
475 	for (i = 0; i < NR_IPI; i++) {
476 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
477 
478 		for_each_online_cpu(cpu)
479 			seq_printf(p, "%10u ",
480 				   __get_irq_stat(cpu, ipi_irqs[i]));
481 
482 		seq_printf(p, " %s\n", ipi_types[i]);
483 	}
484 }
485 
smp_irq_stat_cpu(unsigned int cpu)486 u64 smp_irq_stat_cpu(unsigned int cpu)
487 {
488 	u64 sum = 0;
489 	int i;
490 
491 	for (i = 0; i < NR_IPI; i++)
492 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
493 
494 	return sum;
495 }
496 
arch_send_call_function_ipi_mask(const struct cpumask * mask)497 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
498 {
499 	smp_cross_call(mask, IPI_CALL_FUNC);
500 }
501 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)502 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
503 {
504 	smp_cross_call(mask, IPI_WAKEUP);
505 }
506 
arch_send_call_function_single_ipi(int cpu)507 void arch_send_call_function_single_ipi(int cpu)
508 {
509 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
510 }
511 
512 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)513 void arch_irq_work_raise(void)
514 {
515 	if (arch_irq_work_has_interrupt())
516 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
517 }
518 #endif
519 
520 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)521 void tick_broadcast(const struct cpumask *mask)
522 {
523 	smp_cross_call(mask, IPI_TIMER);
524 }
525 #endif
526 
527 static DEFINE_RAW_SPINLOCK(stop_lock);
528 
529 /*
530  * ipi_cpu_stop - handle IPI from smp_send_stop()
531  */
ipi_cpu_stop(unsigned int cpu)532 static void ipi_cpu_stop(unsigned int cpu)
533 {
534 	if (system_state == SYSTEM_BOOTING ||
535 	    system_state == SYSTEM_RUNNING) {
536 		raw_spin_lock(&stop_lock);
537 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
538 		dump_stack();
539 		raw_spin_unlock(&stop_lock);
540 	}
541 
542 	set_cpu_online(cpu, false);
543 
544 	local_fiq_disable();
545 	local_irq_disable();
546 
547 	while (1)
548 		cpu_relax();
549 }
550 
551 static DEFINE_PER_CPU(struct completion *, cpu_completion);
552 
register_ipi_completion(struct completion * completion,int cpu)553 int register_ipi_completion(struct completion *completion, int cpu)
554 {
555 	per_cpu(cpu_completion, cpu) = completion;
556 	return IPI_COMPLETION;
557 }
558 
ipi_complete(unsigned int cpu)559 static void ipi_complete(unsigned int cpu)
560 {
561 	complete(per_cpu(cpu_completion, cpu));
562 }
563 
564 static cpumask_t backtrace_mask;
565 static DEFINE_RAW_SPINLOCK(backtrace_lock);
566 
567 /* "in progress" flag of arch_trigger_all_cpu_backtrace */
568 static unsigned long backtrace_flag;
569 
smp_send_all_cpu_backtrace(void)570 void smp_send_all_cpu_backtrace(void)
571 {
572 	unsigned int this_cpu = smp_processor_id();
573 	int i;
574 
575 	if (test_and_set_bit(0, &backtrace_flag))
576 		/*
577 		 * If there is already a trigger_all_cpu_backtrace() in progress
578 		 * (backtrace_flag == 1), don't output double cpu dump infos.
579 		 */
580 		return;
581 
582 	cpumask_copy(&backtrace_mask, cpu_online_mask);
583 	cpu_clear(this_cpu, backtrace_mask);
584 
585 	pr_info("Backtrace for cpu %d (current):\n", this_cpu);
586 	dump_stack();
587 
588 	pr_info("\nsending IPI to all other CPUs:\n");
589 	smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
590 
591 	/* Wait for up to 10 seconds for all other CPUs to do the backtrace */
592 	for (i = 0; i < 10 * 1000; i++) {
593 		if (cpumask_empty(&backtrace_mask))
594 			break;
595 		mdelay(1);
596 	}
597 
598 	clear_bit(0, &backtrace_flag);
599 	smp_mb__after_atomic();
600 }
601 
602 /*
603  * ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
604  */
ipi_cpu_backtrace(unsigned int cpu,struct pt_regs * regs)605 static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
606 {
607 	if (cpu_isset(cpu, backtrace_mask)) {
608 		raw_spin_lock(&backtrace_lock);
609 		pr_warning("IPI backtrace for cpu %d\n", cpu);
610 		show_regs(regs);
611 		raw_spin_unlock(&backtrace_lock);
612 		cpu_clear(cpu, backtrace_mask);
613 	}
614 }
615 
616 /*
617  * Main handler for inter-processor interrupts
618  */
do_IPI(int ipinr,struct pt_regs * regs)619 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
620 {
621 	handle_IPI(ipinr, regs);
622 }
623 
handle_IPI(int ipinr,struct pt_regs * regs)624 void handle_IPI(int ipinr, struct pt_regs *regs)
625 {
626 	unsigned int cpu = smp_processor_id();
627 	struct pt_regs *old_regs = set_irq_regs(regs);
628 
629 	if ((unsigned)ipinr < NR_IPI) {
630 		trace_ipi_entry(ipi_types[ipinr]);
631 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
632 	}
633 
634 	switch (ipinr) {
635 	case IPI_WAKEUP:
636 		break;
637 
638 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
639 	case IPI_TIMER:
640 		irq_enter();
641 		tick_receive_broadcast();
642 		irq_exit();
643 		break;
644 #endif
645 
646 	case IPI_RESCHEDULE:
647 		scheduler_ipi();
648 		break;
649 
650 	case IPI_CALL_FUNC:
651 		irq_enter();
652 		generic_smp_call_function_interrupt();
653 		irq_exit();
654 		break;
655 
656 	case IPI_CALL_FUNC_SINGLE:
657 		irq_enter();
658 		generic_smp_call_function_single_interrupt();
659 		irq_exit();
660 		break;
661 
662 	case IPI_CPU_STOP:
663 		irq_enter();
664 		ipi_cpu_stop(cpu);
665 		irq_exit();
666 		break;
667 
668 #ifdef CONFIG_IRQ_WORK
669 	case IPI_IRQ_WORK:
670 		irq_enter();
671 		irq_work_run();
672 		irq_exit();
673 		break;
674 #endif
675 
676 	case IPI_COMPLETION:
677 		irq_enter();
678 		ipi_complete(cpu);
679 		irq_exit();
680 		break;
681 
682 	case IPI_CPU_BACKTRACE:
683 		ipi_cpu_backtrace(cpu, regs);
684 		break;
685 
686 	default:
687 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
688 		       cpu, ipinr);
689 		break;
690 	}
691 
692 	if ((unsigned)ipinr < NR_IPI)
693 		trace_ipi_exit(ipi_types[ipinr]);
694 	set_irq_regs(old_regs);
695 }
696 
smp_send_reschedule(int cpu)697 void smp_send_reschedule(int cpu)
698 {
699 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
700 }
701 
smp_send_stop(void)702 void smp_send_stop(void)
703 {
704 	unsigned long timeout;
705 	struct cpumask mask;
706 
707 	cpumask_copy(&mask, cpu_online_mask);
708 	cpumask_clear_cpu(smp_processor_id(), &mask);
709 	if (!cpumask_empty(&mask))
710 		smp_cross_call(&mask, IPI_CPU_STOP);
711 
712 	/* Wait up to one second for other CPUs to stop */
713 	timeout = USEC_PER_SEC;
714 	while (num_online_cpus() > 1 && timeout--)
715 		udelay(1);
716 
717 	if (num_online_cpus() > 1)
718 		pr_warn("SMP: failed to stop secondary CPUs\n");
719 }
720 
721 /*
722  * not supported here
723  */
setup_profiling_timer(unsigned int multiplier)724 int setup_profiling_timer(unsigned int multiplier)
725 {
726 	return -EINVAL;
727 }
728 
729 #ifdef CONFIG_CPU_FREQ
730 
731 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
732 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
733 static unsigned long global_l_p_j_ref;
734 static unsigned long global_l_p_j_ref_freq;
735 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)736 static int cpufreq_callback(struct notifier_block *nb,
737 					unsigned long val, void *data)
738 {
739 	struct cpufreq_freqs *freq = data;
740 	int cpu = freq->cpu;
741 
742 	if (freq->flags & CPUFREQ_CONST_LOOPS)
743 		return NOTIFY_OK;
744 
745 	if (!per_cpu(l_p_j_ref, cpu)) {
746 		per_cpu(l_p_j_ref, cpu) =
747 			per_cpu(cpu_data, cpu).loops_per_jiffy;
748 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
749 		if (!global_l_p_j_ref) {
750 			global_l_p_j_ref = loops_per_jiffy;
751 			global_l_p_j_ref_freq = freq->old;
752 		}
753 	}
754 
755 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
756 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
757 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
758 						global_l_p_j_ref_freq,
759 						freq->new);
760 		per_cpu(cpu_data, cpu).loops_per_jiffy =
761 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
762 					per_cpu(l_p_j_ref_freq, cpu),
763 					freq->new);
764 	}
765 	return NOTIFY_OK;
766 }
767 
768 static struct notifier_block cpufreq_notifier = {
769 	.notifier_call  = cpufreq_callback,
770 };
771 
register_cpufreq_notifier(void)772 static int __init register_cpufreq_notifier(void)
773 {
774 	return cpufreq_register_notifier(&cpufreq_notifier,
775 						CPUFREQ_TRANSITION_NOTIFIER);
776 }
777 core_initcall(register_cpufreq_notifier);
778 
779 #endif
780