• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 
25 #include <asm/cputype.h>
26 #include <asm/topology.h>
27 
28 /*
29  * cpu capacity scale management
30  */
31 
32 /*
33  * cpu capacity table
34  * This per cpu data structure describes the relative capacity of each core.
35  * On a heteregenous system, cores don't have the same computation capacity
36  * and we reflect that difference in the cpu_capacity field so the scheduler
37  * can take this difference into account during load balance. A per cpu
38  * structure is preferred because each CPU updates its own cpu_capacity field
39  * during the load balance except for idle cores. One idle core is selected
40  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
41  * updated during this sequence.
42  */
43 static DEFINE_PER_CPU(unsigned long, cpu_scale);
44 
scale_cpu_capacity(struct sched_domain * sd,int cpu)45 unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)
46 {
47 #ifdef CONFIG_CPU_FREQ
48 	unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu);
49 
50 	return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT;
51 #else
52 	return per_cpu(cpu_scale, cpu);
53 #endif
54 }
55 
set_capacity_scale(unsigned int cpu,unsigned long capacity)56 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
57 {
58 	per_cpu(cpu_scale, cpu) = capacity;
59 }
60 
61 #ifdef CONFIG_OF
62 struct cpu_efficiency {
63 	const char *compatible;
64 	unsigned long efficiency;
65 };
66 
67 /*
68  * Table of relative efficiency of each processors
69  * The efficiency value must fit in 20bit and the final
70  * cpu_scale value must be in the range
71  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
72  * in order to return at most 1 when DIV_ROUND_CLOSEST
73  * is used to compute the capacity of a CPU.
74  * Processors that are not defined in the table,
75  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
76  */
77 static const struct cpu_efficiency table_efficiency[] = {
78 	{"arm,cortex-a15", 3891},
79 	{"arm,cortex-a7",  2048},
80 	{NULL, },
81 };
82 
83 static unsigned long *__cpu_capacity;
84 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
85 
86 static unsigned long middle_capacity = 1;
87 
88 /*
89  * Iterate all CPUs' descriptor in DT and compute the efficiency
90  * (as per table_efficiency). Also calculate a middle efficiency
91  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
92  * This is later used to scale the cpu_capacity field such that an
93  * 'average' CPU is of middle capacity. Also see the comments near
94  * table_efficiency[] and update_cpu_capacity().
95  */
parse_dt_topology(void)96 static void __init parse_dt_topology(void)
97 {
98 	const struct cpu_efficiency *cpu_eff;
99 	struct device_node *cn = NULL;
100 	unsigned long min_capacity = ULONG_MAX;
101 	unsigned long max_capacity = 0;
102 	unsigned long capacity = 0;
103 	int cpu = 0;
104 
105 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
106 				 GFP_NOWAIT);
107 
108 	for_each_possible_cpu(cpu) {
109 		const u32 *rate;
110 		int len;
111 
112 		/* too early to use cpu->of_node */
113 		cn = of_get_cpu_node(cpu, NULL);
114 		if (!cn) {
115 			pr_err("missing device node for CPU %d\n", cpu);
116 			continue;
117 		}
118 
119 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
120 			if (of_device_is_compatible(cn, cpu_eff->compatible))
121 				break;
122 
123 		if (cpu_eff->compatible == NULL)
124 			continue;
125 
126 		rate = of_get_property(cn, "clock-frequency", &len);
127 		if (!rate || len != 4) {
128 			pr_err("%s missing clock-frequency property\n",
129 				cn->full_name);
130 			continue;
131 		}
132 
133 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
134 
135 		/* Save min capacity of the system */
136 		if (capacity < min_capacity)
137 			min_capacity = capacity;
138 
139 		/* Save max capacity of the system */
140 		if (capacity > max_capacity)
141 			max_capacity = capacity;
142 
143 		cpu_capacity(cpu) = capacity;
144 	}
145 
146 	/* If min and max capacities are equals, we bypass the update of the
147 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
148 	 * compute a middle_capacity factor that will ensure that the capacity
149 	 * of an 'average' CPU of the system will be as close as possible to
150 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
151 	 * constraint explained near table_efficiency[].
152 	 */
153 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
154 		middle_capacity = (min_capacity + max_capacity)
155 				>> (SCHED_CAPACITY_SHIFT+1);
156 	else
157 		middle_capacity = ((max_capacity / 3)
158 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
159 
160 }
161 
162 static const struct sched_group_energy * const cpu_core_energy(int cpu);
163 
164 /*
165  * Look for a customed capacity of a CPU in the cpu_capacity table during the
166  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
167  * function returns directly for SMP system.
168  */
update_cpu_capacity(unsigned int cpu)169 static void update_cpu_capacity(unsigned int cpu)
170 {
171 	unsigned long capacity = SCHED_CAPACITY_SCALE;
172 
173 	if (cpu_core_energy(cpu)) {
174 		int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1;
175 		capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap;
176 	}
177 
178 	set_capacity_scale(cpu, capacity);
179 
180 	printk(KERN_INFO "CPU%u: update cpu_capacity %lu\n",
181 		cpu, arch_scale_cpu_capacity(NULL, cpu));
182 }
183 
184 #else
parse_dt_topology(void)185 static inline void parse_dt_topology(void) {}
update_cpu_capacity(unsigned int cpuid)186 static inline void update_cpu_capacity(unsigned int cpuid) {}
187 #endif
188 
189  /*
190  * cpu topology table
191  */
192 struct cputopo_arm cpu_topology[NR_CPUS];
193 EXPORT_SYMBOL_GPL(cpu_topology);
194 
cpu_coregroup_mask(int cpu)195 const struct cpumask *cpu_coregroup_mask(int cpu)
196 {
197 	return &cpu_topology[cpu].core_sibling;
198 }
199 
200 /*
201  * The current assumption is that we can power gate each core independently.
202  * This will be superseded by DT binding once available.
203  */
cpu_corepower_mask(int cpu)204 const struct cpumask *cpu_corepower_mask(int cpu)
205 {
206 	return &cpu_topology[cpu].thread_sibling;
207 }
208 
update_siblings_masks(unsigned int cpuid)209 static void update_siblings_masks(unsigned int cpuid)
210 {
211 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
212 	int cpu;
213 
214 	/* update core and thread sibling masks */
215 	for_each_possible_cpu(cpu) {
216 		cpu_topo = &cpu_topology[cpu];
217 
218 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
219 			continue;
220 
221 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
222 		if (cpu != cpuid)
223 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
224 
225 		if (cpuid_topo->core_id != cpu_topo->core_id)
226 			continue;
227 
228 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
229 		if (cpu != cpuid)
230 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
231 	}
232 	smp_wmb();
233 }
234 
235 /*
236  * store_cpu_topology is called at boot when only one cpu is running
237  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
238  * which prevents simultaneous write access to cpu_topology array
239  */
store_cpu_topology(unsigned int cpuid)240 void store_cpu_topology(unsigned int cpuid)
241 {
242 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
243 	unsigned int mpidr;
244 
245 	/* If the cpu topology has been already set, just return */
246 	if (cpuid_topo->core_id != -1)
247 		return;
248 
249 	mpidr = read_cpuid_mpidr();
250 
251 	/* create cpu topology mapping */
252 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
253 		/*
254 		 * This is a multiprocessor system
255 		 * multiprocessor format & multiprocessor mode field are set
256 		 */
257 
258 		if (mpidr & MPIDR_MT_BITMASK) {
259 			/* core performance interdependency */
260 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
261 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
262 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
263 		} else {
264 			/* largely independent cores */
265 			cpuid_topo->thread_id = -1;
266 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
267 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
268 		}
269 	} else {
270 		/*
271 		 * This is an uniprocessor system
272 		 * we are in multiprocessor format but uniprocessor system
273 		 * or in the old uniprocessor format
274 		 */
275 		cpuid_topo->thread_id = -1;
276 		cpuid_topo->core_id = 0;
277 		cpuid_topo->socket_id = -1;
278 	}
279 
280 	update_siblings_masks(cpuid);
281 
282 	update_cpu_capacity(cpuid);
283 
284 	printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
285 		cpuid, cpu_topology[cpuid].thread_id,
286 		cpu_topology[cpuid].core_id,
287 		cpu_topology[cpuid].socket_id, mpidr);
288 }
289 
290 /*
291  * ARM TC2 specific energy cost model data. There are no unit requirements for
292  * the data. Data can be normalized to any reference point, but the
293  * normalization must be consistent. That is, one bogo-joule/watt must be the
294  * same quantity for all data, but we don't care what it is.
295  */
296 static struct idle_state idle_states_cluster_a7[] = {
297 	 { .power = 25 }, /* arch_cpu_idle() (active idle) = WFI */
298 	 { .power = 25 }, /* WFI */
299 	 { .power = 10 }, /* cluster-sleep-l */
300 	};
301 
302 static struct idle_state idle_states_cluster_a15[] = {
303 	 { .power = 70 }, /* arch_cpu_idle() (active idle) = WFI */
304 	 { .power = 70 }, /* WFI */
305 	 { .power = 25 }, /* cluster-sleep-b */
306 	};
307 
308 static struct capacity_state cap_states_cluster_a7[] = {
309 	/* Cluster only power */
310 	 { .cap =  150, .power = 2967, }, /*  350 MHz */
311 	 { .cap =  172, .power = 2792, }, /*  400 MHz */
312 	 { .cap =  215, .power = 2810, }, /*  500 MHz */
313 	 { .cap =  258, .power = 2815, }, /*  600 MHz */
314 	 { .cap =  301, .power = 2919, }, /*  700 MHz */
315 	 { .cap =  344, .power = 2847, }, /*  800 MHz */
316 	 { .cap =  387, .power = 3917, }, /*  900 MHz */
317 	 { .cap =  430, .power = 4905, }, /* 1000 MHz */
318 	};
319 
320 static struct capacity_state cap_states_cluster_a15[] = {
321 	/* Cluster only power */
322 	 { .cap =  426, .power =  7920, }, /*  500 MHz */
323 	 { .cap =  512, .power =  8165, }, /*  600 MHz */
324 	 { .cap =  597, .power =  8172, }, /*  700 MHz */
325 	 { .cap =  682, .power =  8195, }, /*  800 MHz */
326 	 { .cap =  768, .power =  8265, }, /*  900 MHz */
327 	 { .cap =  853, .power =  8446, }, /* 1000 MHz */
328 	 { .cap =  938, .power = 11426, }, /* 1100 MHz */
329 	 { .cap = 1024, .power = 15200, }, /* 1200 MHz */
330 	};
331 
332 static struct sched_group_energy energy_cluster_a7 = {
333 	  .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a7),
334 	  .idle_states    = idle_states_cluster_a7,
335 	  .nr_cap_states  = ARRAY_SIZE(cap_states_cluster_a7),
336 	  .cap_states     = cap_states_cluster_a7,
337 };
338 
339 static struct sched_group_energy energy_cluster_a15 = {
340 	  .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a15),
341 	  .idle_states    = idle_states_cluster_a15,
342 	  .nr_cap_states  = ARRAY_SIZE(cap_states_cluster_a15),
343 	  .cap_states     = cap_states_cluster_a15,
344 };
345 
346 static struct idle_state idle_states_core_a7[] = {
347 	 { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
348 	 { .power = 0 }, /* WFI */
349 	 { .power = 0 }, /* cluster-sleep-l */
350 	};
351 
352 static struct idle_state idle_states_core_a15[] = {
353 	 { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
354 	 { .power = 0 }, /* WFI */
355 	 { .power = 0 }, /* cluster-sleep-b */
356 	};
357 
358 static struct capacity_state cap_states_core_a7[] = {
359 	/* Power per cpu */
360 	 { .cap =  150, .power =  187, }, /*  350 MHz */
361 	 { .cap =  172, .power =  275, }, /*  400 MHz */
362 	 { .cap =  215, .power =  334, }, /*  500 MHz */
363 	 { .cap =  258, .power =  407, }, /*  600 MHz */
364 	 { .cap =  301, .power =  447, }, /*  700 MHz */
365 	 { .cap =  344, .power =  549, }, /*  800 MHz */
366 	 { .cap =  387, .power =  761, }, /*  900 MHz */
367 	 { .cap =  430, .power = 1024, }, /* 1000 MHz */
368 	};
369 
370 static struct capacity_state cap_states_core_a15[] = {
371 	/* Power per cpu */
372 	 { .cap =  426, .power = 2021, }, /*  500 MHz */
373 	 { .cap =  512, .power = 2312, }, /*  600 MHz */
374 	 { .cap =  597, .power = 2756, }, /*  700 MHz */
375 	 { .cap =  682, .power = 3125, }, /*  800 MHz */
376 	 { .cap =  768, .power = 3524, }, /*  900 MHz */
377 	 { .cap =  853, .power = 3846, }, /* 1000 MHz */
378 	 { .cap =  938, .power = 5177, }, /* 1100 MHz */
379 	 { .cap = 1024, .power = 6997, }, /* 1200 MHz */
380 	};
381 
382 static struct sched_group_energy energy_core_a7 = {
383 	  .nr_idle_states = ARRAY_SIZE(idle_states_core_a7),
384 	  .idle_states    = idle_states_core_a7,
385 	  .nr_cap_states  = ARRAY_SIZE(cap_states_core_a7),
386 	  .cap_states     = cap_states_core_a7,
387 };
388 
389 static struct sched_group_energy energy_core_a15 = {
390 	  .nr_idle_states = ARRAY_SIZE(idle_states_core_a15),
391 	  .idle_states    = idle_states_core_a15,
392 	  .nr_cap_states  = ARRAY_SIZE(cap_states_core_a15),
393 	  .cap_states     = cap_states_core_a15,
394 };
395 
396 /* sd energy functions */
397 static inline
cpu_cluster_energy(int cpu)398 const struct sched_group_energy * const cpu_cluster_energy(int cpu)
399 {
400 	return cpu_topology[cpu].socket_id ? &energy_cluster_a7 :
401 			&energy_cluster_a15;
402 }
403 
404 static inline
cpu_core_energy(int cpu)405 const struct sched_group_energy * const cpu_core_energy(int cpu)
406 {
407 	return cpu_topology[cpu].socket_id ? &energy_core_a7 :
408 			&energy_core_a15;
409 }
410 
cpu_corepower_flags(void)411 static inline int cpu_corepower_flags(void)
412 {
413 	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN | \
414 	       SD_SHARE_CAP_STATES;
415 }
416 
417 static struct sched_domain_topology_level arm_topology[] = {
418 #ifdef CONFIG_SCHED_MC
419 	{ cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) },
420 #endif
421 	{ cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) },
422 	{ NULL, },
423 };
424 
425 /*
426  * init_cpu_topology is called at boot when only one cpu is running
427  * which prevent simultaneous write access to cpu_topology array
428  */
init_cpu_topology(void)429 void __init init_cpu_topology(void)
430 {
431 	unsigned int cpu;
432 
433 	/* init core mask and capacity */
434 	for_each_possible_cpu(cpu) {
435 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
436 
437 		cpu_topo->thread_id = -1;
438 		cpu_topo->core_id =  -1;
439 		cpu_topo->socket_id = -1;
440 		cpumask_clear(&cpu_topo->core_sibling);
441 		cpumask_clear(&cpu_topo->thread_sibling);
442 
443 		set_capacity_scale(cpu, SCHED_CAPACITY_SCALE);
444 	}
445 	smp_wmb();
446 
447 	parse_dt_topology();
448 
449 	/* Set scheduler topology descriptor */
450 	set_sched_topology(arm_topology);
451 }
452