• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension	virt");
50 #endif
51 
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55 
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58 
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63 
64 static bool vgic_present;
65 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 	BUG_ON(preemptible());
69 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71 
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
kvm_arm_get_running_vcpu(void)76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 	BUG_ON(preemptible());
79 	return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81 
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
kvm_get_running_vcpus(void)85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87 	return &kvm_arm_running_vcpu;
88 }
89 
kvm_arch_hardware_enable(void)90 int kvm_arch_hardware_enable(void)
91 {
92 	return 0;
93 }
94 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99 
kvm_arch_hardware_setup(void)100 int kvm_arch_hardware_setup(void)
101 {
102 	return 0;
103 }
104 
kvm_arch_check_processor_compat(void * rtn)105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 	*(int *)rtn = 0;
108 }
109 
110 
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:	pointer to the KVM struct
114  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 	int ret = 0;
118 
119 	if (type)
120 		return -EINVAL;
121 
122 	ret = kvm_alloc_stage2_pgd(kvm);
123 	if (ret)
124 		goto out_fail_alloc;
125 
126 	ret = create_hyp_mappings(kvm, kvm + 1);
127 	if (ret)
128 		goto out_free_stage2_pgd;
129 
130 	kvm_timer_init(kvm);
131 
132 	/* Mark the initial VMID generation invalid */
133 	kvm->arch.vmid_gen = 0;
134 
135 	return ret;
136 out_free_stage2_pgd:
137 	kvm_free_stage2_pgd(kvm);
138 out_fail_alloc:
139 	return ret;
140 }
141 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)142 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
143 {
144 	return VM_FAULT_SIGBUS;
145 }
146 
147 
148 /**
149  * kvm_arch_destroy_vm - destroy the VM data structure
150  * @kvm:	pointer to the KVM struct
151  */
kvm_arch_destroy_vm(struct kvm * kvm)152 void kvm_arch_destroy_vm(struct kvm *kvm)
153 {
154 	int i;
155 
156 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
157 		if (kvm->vcpus[i]) {
158 			kvm_arch_vcpu_free(kvm->vcpus[i]);
159 			kvm->vcpus[i] = NULL;
160 		}
161 	}
162 
163 	kvm_vgic_destroy(kvm);
164 }
165 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)166 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
167 {
168 	int r;
169 	switch (ext) {
170 	case KVM_CAP_IRQCHIP:
171 		r = vgic_present;
172 		break;
173 	case KVM_CAP_DEVICE_CTRL:
174 	case KVM_CAP_USER_MEMORY:
175 	case KVM_CAP_SYNC_MMU:
176 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
177 	case KVM_CAP_ONE_REG:
178 	case KVM_CAP_ARM_PSCI:
179 	case KVM_CAP_ARM_PSCI_0_2:
180 	case KVM_CAP_READONLY_MEM:
181 		r = 1;
182 		break;
183 	case KVM_CAP_COALESCED_MMIO:
184 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
185 		break;
186 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
187 		r = 1;
188 		break;
189 	case KVM_CAP_NR_VCPUS:
190 		r = num_online_cpus();
191 		break;
192 	case KVM_CAP_MAX_VCPUS:
193 		r = KVM_MAX_VCPUS;
194 		break;
195 	default:
196 		r = kvm_arch_dev_ioctl_check_extension(ext);
197 		break;
198 	}
199 	return r;
200 }
201 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)202 long kvm_arch_dev_ioctl(struct file *filp,
203 			unsigned int ioctl, unsigned long arg)
204 {
205 	return -EINVAL;
206 }
207 
208 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)209 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
210 {
211 	int err;
212 	struct kvm_vcpu *vcpu;
213 
214 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
215 		err = -EBUSY;
216 		goto out;
217 	}
218 
219 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
220 	if (!vcpu) {
221 		err = -ENOMEM;
222 		goto out;
223 	}
224 
225 	err = kvm_vcpu_init(vcpu, kvm, id);
226 	if (err)
227 		goto free_vcpu;
228 
229 	err = create_hyp_mappings(vcpu, vcpu + 1);
230 	if (err)
231 		goto vcpu_uninit;
232 
233 	return vcpu;
234 vcpu_uninit:
235 	kvm_vcpu_uninit(vcpu);
236 free_vcpu:
237 	kmem_cache_free(kvm_vcpu_cache, vcpu);
238 out:
239 	return ERR_PTR(err);
240 }
241 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)242 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
243 {
244 	return 0;
245 }
246 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)247 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
248 {
249 	kvm_mmu_free_memory_caches(vcpu);
250 	kvm_timer_vcpu_terminate(vcpu);
251 	kvm_vgic_vcpu_destroy(vcpu);
252 	kvm_vcpu_uninit(vcpu);
253 	kmem_cache_free(kvm_vcpu_cache, vcpu);
254 }
255 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)256 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
257 {
258 	kvm_arch_vcpu_free(vcpu);
259 }
260 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)261 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
262 {
263 	return 0;
264 }
265 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)266 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
267 {
268 	/* Force users to call KVM_ARM_VCPU_INIT */
269 	vcpu->arch.target = -1;
270 
271 	/* Set up the timer */
272 	kvm_timer_vcpu_init(vcpu);
273 
274 	return 0;
275 }
276 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)277 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
278 {
279 	vcpu->cpu = cpu;
280 	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
281 
282 	kvm_arm_set_running_vcpu(vcpu);
283 }
284 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)285 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
286 {
287 	/*
288 	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
289 	 * if the vcpu is no longer assigned to a cpu.  This is used for the
290 	 * optimized make_all_cpus_request path.
291 	 */
292 	vcpu->cpu = -1;
293 
294 	kvm_arm_set_running_vcpu(NULL);
295 }
296 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)297 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
298 					struct kvm_guest_debug *dbg)
299 {
300 	return -EINVAL;
301 }
302 
303 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)304 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
305 				    struct kvm_mp_state *mp_state)
306 {
307 	return -EINVAL;
308 }
309 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)310 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
311 				    struct kvm_mp_state *mp_state)
312 {
313 	return -EINVAL;
314 }
315 
316 /**
317  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
318  * @v:		The VCPU pointer
319  *
320  * If the guest CPU is not waiting for interrupts or an interrupt line is
321  * asserted, the CPU is by definition runnable.
322  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)323 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
324 {
325 	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
326 }
327 
328 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)329 static void exit_vm_noop(void *info)
330 {
331 }
332 
force_vm_exit(const cpumask_t * mask)333 void force_vm_exit(const cpumask_t *mask)
334 {
335 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
336 }
337 
338 /**
339  * need_new_vmid_gen - check that the VMID is still valid
340  * @kvm: The VM's VMID to checkt
341  *
342  * return true if there is a new generation of VMIDs being used
343  *
344  * The hardware supports only 256 values with the value zero reserved for the
345  * host, so we check if an assigned value belongs to a previous generation,
346  * which which requires us to assign a new value. If we're the first to use a
347  * VMID for the new generation, we must flush necessary caches and TLBs on all
348  * CPUs.
349  */
need_new_vmid_gen(struct kvm * kvm)350 static bool need_new_vmid_gen(struct kvm *kvm)
351 {
352 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
353 }
354 
355 /**
356  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
357  * @kvm	The guest that we are about to run
358  *
359  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
360  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
361  * caches and TLBs.
362  */
update_vttbr(struct kvm * kvm)363 static void update_vttbr(struct kvm *kvm)
364 {
365 	phys_addr_t pgd_phys;
366 	u64 vmid;
367 
368 	if (!need_new_vmid_gen(kvm))
369 		return;
370 
371 	spin_lock(&kvm_vmid_lock);
372 
373 	/*
374 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
375 	 * already allocated a valid vmid for this vm, then this vcpu should
376 	 * use the same vmid.
377 	 */
378 	if (!need_new_vmid_gen(kvm)) {
379 		spin_unlock(&kvm_vmid_lock);
380 		return;
381 	}
382 
383 	/* First user of a new VMID generation? */
384 	if (unlikely(kvm_next_vmid == 0)) {
385 		atomic64_inc(&kvm_vmid_gen);
386 		kvm_next_vmid = 1;
387 
388 		/*
389 		 * On SMP we know no other CPUs can use this CPU's or each
390 		 * other's VMID after force_vm_exit returns since the
391 		 * kvm_vmid_lock blocks them from reentry to the guest.
392 		 */
393 		force_vm_exit(cpu_all_mask);
394 		/*
395 		 * Now broadcast TLB + ICACHE invalidation over the inner
396 		 * shareable domain to make sure all data structures are
397 		 * clean.
398 		 */
399 		kvm_call_hyp(__kvm_flush_vm_context);
400 	}
401 
402 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
403 	kvm->arch.vmid = kvm_next_vmid;
404 	kvm_next_vmid++;
405 
406 	/* update vttbr to be used with the new vmid */
407 	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
408 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
409 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
410 	kvm->arch.vttbr = pgd_phys | vmid;
411 
412 	spin_unlock(&kvm_vmid_lock);
413 }
414 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)415 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
416 {
417 	struct kvm *kvm = vcpu->kvm;
418 	int ret;
419 
420 	if (likely(vcpu->arch.has_run_once))
421 		return 0;
422 
423 	vcpu->arch.has_run_once = true;
424 
425 	/*
426 	 * Map the VGIC hardware resources before running a vcpu the first
427 	 * time on this VM.
428 	 */
429 	if (unlikely(!vgic_initialized(kvm))) {
430 		ret = kvm_vgic_map_resources(kvm);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	/*
436 	 * Enable the arch timers only if we have an in-kernel VGIC
437 	 * and it has been properly initialized, since we cannot handle
438 	 * interrupts from the virtual timer with a userspace gic.
439 	 */
440 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
441 		kvm_timer_enable(kvm);
442 
443 	return 0;
444 }
445 
vcpu_pause(struct kvm_vcpu * vcpu)446 static void vcpu_pause(struct kvm_vcpu *vcpu)
447 {
448 	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
449 
450 	wait_event_interruptible(*wq, !vcpu->arch.pause);
451 }
452 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)453 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
454 {
455 	return vcpu->arch.target >= 0;
456 }
457 
458 /**
459  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
460  * @vcpu:	The VCPU pointer
461  * @run:	The kvm_run structure pointer used for userspace state exchange
462  *
463  * This function is called through the VCPU_RUN ioctl called from user space. It
464  * will execute VM code in a loop until the time slice for the process is used
465  * or some emulation is needed from user space in which case the function will
466  * return with return value 0 and with the kvm_run structure filled in with the
467  * required data for the requested emulation.
468  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)469 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
470 {
471 	int ret;
472 	sigset_t sigsaved;
473 
474 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
475 		return -ENOEXEC;
476 
477 	ret = kvm_vcpu_first_run_init(vcpu);
478 	if (ret)
479 		return ret;
480 
481 	if (run->exit_reason == KVM_EXIT_MMIO) {
482 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
483 		if (ret)
484 			return ret;
485 	}
486 
487 	if (vcpu->sigset_active)
488 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
489 
490 	ret = 1;
491 	run->exit_reason = KVM_EXIT_UNKNOWN;
492 	while (ret > 0) {
493 		/*
494 		 * Check conditions before entering the guest
495 		 */
496 		cond_resched();
497 
498 		update_vttbr(vcpu->kvm);
499 
500 		if (vcpu->arch.pause)
501 			vcpu_pause(vcpu);
502 
503 		kvm_vgic_flush_hwstate(vcpu);
504 		kvm_timer_flush_hwstate(vcpu);
505 
506 		local_irq_disable();
507 
508 		/*
509 		 * Re-check atomic conditions
510 		 */
511 		if (signal_pending(current)) {
512 			ret = -EINTR;
513 			run->exit_reason = KVM_EXIT_INTR;
514 		}
515 
516 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
517 			local_irq_enable();
518 			kvm_timer_sync_hwstate(vcpu);
519 			kvm_vgic_sync_hwstate(vcpu);
520 			continue;
521 		}
522 
523 		/**************************************************************
524 		 * Enter the guest
525 		 */
526 		trace_kvm_entry(*vcpu_pc(vcpu));
527 		kvm_guest_enter();
528 		vcpu->mode = IN_GUEST_MODE;
529 
530 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
531 
532 		vcpu->mode = OUTSIDE_GUEST_MODE;
533 		kvm_guest_exit();
534 		trace_kvm_exit(*vcpu_pc(vcpu));
535 		/*
536 		 * We may have taken a host interrupt in HYP mode (ie
537 		 * while executing the guest). This interrupt is still
538 		 * pending, as we haven't serviced it yet!
539 		 *
540 		 * We're now back in SVC mode, with interrupts
541 		 * disabled.  Enabling the interrupts now will have
542 		 * the effect of taking the interrupt again, in SVC
543 		 * mode this time.
544 		 */
545 		local_irq_enable();
546 
547 		/*
548 		 * Back from guest
549 		 *************************************************************/
550 
551 		kvm_timer_sync_hwstate(vcpu);
552 		kvm_vgic_sync_hwstate(vcpu);
553 
554 		ret = handle_exit(vcpu, run, ret);
555 	}
556 
557 	if (vcpu->sigset_active)
558 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
559 	return ret;
560 }
561 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)562 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
563 {
564 	int bit_index;
565 	bool set;
566 	unsigned long *ptr;
567 
568 	if (number == KVM_ARM_IRQ_CPU_IRQ)
569 		bit_index = __ffs(HCR_VI);
570 	else /* KVM_ARM_IRQ_CPU_FIQ */
571 		bit_index = __ffs(HCR_VF);
572 
573 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
574 	if (level)
575 		set = test_and_set_bit(bit_index, ptr);
576 	else
577 		set = test_and_clear_bit(bit_index, ptr);
578 
579 	/*
580 	 * If we didn't change anything, no need to wake up or kick other CPUs
581 	 */
582 	if (set == level)
583 		return 0;
584 
585 	/*
586 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
587 	 * trigger a world-switch round on the running physical CPU to set the
588 	 * virtual IRQ/FIQ fields in the HCR appropriately.
589 	 */
590 	kvm_vcpu_kick(vcpu);
591 
592 	return 0;
593 }
594 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)595 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
596 			  bool line_status)
597 {
598 	u32 irq = irq_level->irq;
599 	unsigned int irq_type, vcpu_idx, irq_num;
600 	int nrcpus = atomic_read(&kvm->online_vcpus);
601 	struct kvm_vcpu *vcpu = NULL;
602 	bool level = irq_level->level;
603 
604 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
605 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
606 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
607 
608 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
609 
610 	switch (irq_type) {
611 	case KVM_ARM_IRQ_TYPE_CPU:
612 		if (irqchip_in_kernel(kvm))
613 			return -ENXIO;
614 
615 		if (vcpu_idx >= nrcpus)
616 			return -EINVAL;
617 
618 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
619 		if (!vcpu)
620 			return -EINVAL;
621 
622 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
623 			return -EINVAL;
624 
625 		return vcpu_interrupt_line(vcpu, irq_num, level);
626 	case KVM_ARM_IRQ_TYPE_PPI:
627 		if (!irqchip_in_kernel(kvm))
628 			return -ENXIO;
629 
630 		if (vcpu_idx >= nrcpus)
631 			return -EINVAL;
632 
633 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
634 		if (!vcpu)
635 			return -EINVAL;
636 
637 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
638 			return -EINVAL;
639 
640 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
641 	case KVM_ARM_IRQ_TYPE_SPI:
642 		if (!irqchip_in_kernel(kvm))
643 			return -ENXIO;
644 
645 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
646 			return -EINVAL;
647 
648 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
649 	}
650 
651 	return -EINVAL;
652 }
653 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)654 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
655 					 struct kvm_vcpu_init *init)
656 {
657 	int ret;
658 
659 	ret = kvm_vcpu_set_target(vcpu, init);
660 	if (ret)
661 		return ret;
662 
663 	vcpu_reset_hcr(vcpu);
664 
665 	/*
666 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
667 	 * guest MMU is turned off and flush the caches as needed.
668 	 */
669 	if (vcpu->arch.has_run_once)
670 		stage2_unmap_vm(vcpu->kvm);
671 
672 	vcpu_reset_hcr(vcpu);
673 
674 	/*
675 	 * Handle the "start in power-off" case by marking the VCPU as paused.
676 	 */
677 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
678 		vcpu->arch.pause = true;
679 	else
680 		vcpu->arch.pause = false;
681 
682 	return 0;
683 }
684 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)685 long kvm_arch_vcpu_ioctl(struct file *filp,
686 			 unsigned int ioctl, unsigned long arg)
687 {
688 	struct kvm_vcpu *vcpu = filp->private_data;
689 	void __user *argp = (void __user *)arg;
690 
691 	switch (ioctl) {
692 	case KVM_ARM_VCPU_INIT: {
693 		struct kvm_vcpu_init init;
694 
695 		if (copy_from_user(&init, argp, sizeof(init)))
696 			return -EFAULT;
697 
698 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
699 	}
700 	case KVM_SET_ONE_REG:
701 	case KVM_GET_ONE_REG: {
702 		struct kvm_one_reg reg;
703 
704 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
705 			return -ENOEXEC;
706 
707 		if (copy_from_user(&reg, argp, sizeof(reg)))
708 			return -EFAULT;
709 		if (ioctl == KVM_SET_ONE_REG)
710 			return kvm_arm_set_reg(vcpu, &reg);
711 		else
712 			return kvm_arm_get_reg(vcpu, &reg);
713 	}
714 	case KVM_GET_REG_LIST: {
715 		struct kvm_reg_list __user *user_list = argp;
716 		struct kvm_reg_list reg_list;
717 		unsigned n;
718 
719 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
720 			return -ENOEXEC;
721 
722 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
723 			return -EFAULT;
724 		n = reg_list.n;
725 		reg_list.n = kvm_arm_num_regs(vcpu);
726 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
727 			return -EFAULT;
728 		if (n < reg_list.n)
729 			return -E2BIG;
730 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
731 	}
732 	default:
733 		return -EINVAL;
734 	}
735 }
736 
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)737 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
738 {
739 	return -EINVAL;
740 }
741 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)742 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
743 					struct kvm_arm_device_addr *dev_addr)
744 {
745 	unsigned long dev_id, type;
746 
747 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
748 		KVM_ARM_DEVICE_ID_SHIFT;
749 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
750 		KVM_ARM_DEVICE_TYPE_SHIFT;
751 
752 	switch (dev_id) {
753 	case KVM_ARM_DEVICE_VGIC_V2:
754 		if (!vgic_present)
755 			return -ENXIO;
756 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
757 	default:
758 		return -ENODEV;
759 	}
760 }
761 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)762 long kvm_arch_vm_ioctl(struct file *filp,
763 		       unsigned int ioctl, unsigned long arg)
764 {
765 	struct kvm *kvm = filp->private_data;
766 	void __user *argp = (void __user *)arg;
767 
768 	switch (ioctl) {
769 	case KVM_CREATE_IRQCHIP: {
770 		if (vgic_present)
771 			return kvm_vgic_create(kvm);
772 		else
773 			return -ENXIO;
774 	}
775 	case KVM_ARM_SET_DEVICE_ADDR: {
776 		struct kvm_arm_device_addr dev_addr;
777 
778 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
779 			return -EFAULT;
780 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
781 	}
782 	case KVM_ARM_PREFERRED_TARGET: {
783 		int err;
784 		struct kvm_vcpu_init init;
785 
786 		err = kvm_vcpu_preferred_target(&init);
787 		if (err)
788 			return err;
789 
790 		if (copy_to_user(argp, &init, sizeof(init)))
791 			return -EFAULT;
792 
793 		return 0;
794 	}
795 	default:
796 		return -EINVAL;
797 	}
798 }
799 
cpu_init_hyp_mode(void * dummy)800 static void cpu_init_hyp_mode(void *dummy)
801 {
802 	phys_addr_t boot_pgd_ptr;
803 	phys_addr_t pgd_ptr;
804 	unsigned long hyp_stack_ptr;
805 	unsigned long stack_page;
806 	unsigned long vector_ptr;
807 
808 	/* Switch from the HYP stub to our own HYP init vector */
809 	__hyp_set_vectors(kvm_get_idmap_vector());
810 
811 	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
812 	pgd_ptr = kvm_mmu_get_httbr();
813 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
814 	hyp_stack_ptr = stack_page + PAGE_SIZE;
815 	vector_ptr = (unsigned long)__kvm_hyp_vector;
816 
817 	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
818 }
819 
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)820 static int hyp_init_cpu_notify(struct notifier_block *self,
821 			       unsigned long action, void *cpu)
822 {
823 	switch (action) {
824 	case CPU_STARTING:
825 	case CPU_STARTING_FROZEN:
826 		if (__hyp_get_vectors() == hyp_default_vectors)
827 			cpu_init_hyp_mode(NULL);
828 		break;
829 	}
830 
831 	return NOTIFY_OK;
832 }
833 
834 static struct notifier_block hyp_init_cpu_nb = {
835 	.notifier_call = hyp_init_cpu_notify,
836 };
837 
838 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)839 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
840 				    unsigned long cmd,
841 				    void *v)
842 {
843 	if (cmd == CPU_PM_EXIT &&
844 	    __hyp_get_vectors() == hyp_default_vectors) {
845 		cpu_init_hyp_mode(NULL);
846 		return NOTIFY_OK;
847 	}
848 
849 	return NOTIFY_DONE;
850 }
851 
852 static struct notifier_block hyp_init_cpu_pm_nb = {
853 	.notifier_call = hyp_init_cpu_pm_notifier,
854 };
855 
hyp_cpu_pm_init(void)856 static void __init hyp_cpu_pm_init(void)
857 {
858 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
859 }
860 #else
hyp_cpu_pm_init(void)861 static inline void hyp_cpu_pm_init(void)
862 {
863 }
864 #endif
865 
866 /**
867  * Inits Hyp-mode on all online CPUs
868  */
init_hyp_mode(void)869 static int init_hyp_mode(void)
870 {
871 	int cpu;
872 	int err = 0;
873 
874 	/*
875 	 * Allocate Hyp PGD and setup Hyp identity mapping
876 	 */
877 	err = kvm_mmu_init();
878 	if (err)
879 		goto out_err;
880 
881 	/*
882 	 * It is probably enough to obtain the default on one
883 	 * CPU. It's unlikely to be different on the others.
884 	 */
885 	hyp_default_vectors = __hyp_get_vectors();
886 
887 	/*
888 	 * Allocate stack pages for Hypervisor-mode
889 	 */
890 	for_each_possible_cpu(cpu) {
891 		unsigned long stack_page;
892 
893 		stack_page = __get_free_page(GFP_KERNEL);
894 		if (!stack_page) {
895 			err = -ENOMEM;
896 			goto out_free_stack_pages;
897 		}
898 
899 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
900 	}
901 
902 	/*
903 	 * Map the Hyp-code called directly from the host
904 	 */
905 	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
906 	if (err) {
907 		kvm_err("Cannot map world-switch code\n");
908 		goto out_free_mappings;
909 	}
910 
911 	/*
912 	 * Map the Hyp stack pages
913 	 */
914 	for_each_possible_cpu(cpu) {
915 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
916 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
917 
918 		if (err) {
919 			kvm_err("Cannot map hyp stack\n");
920 			goto out_free_mappings;
921 		}
922 	}
923 
924 	/*
925 	 * Map the host CPU structures
926 	 */
927 	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
928 	if (!kvm_host_cpu_state) {
929 		err = -ENOMEM;
930 		kvm_err("Cannot allocate host CPU state\n");
931 		goto out_free_mappings;
932 	}
933 
934 	for_each_possible_cpu(cpu) {
935 		kvm_cpu_context_t *cpu_ctxt;
936 
937 		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
938 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
939 
940 		if (err) {
941 			kvm_err("Cannot map host CPU state: %d\n", err);
942 			goto out_free_context;
943 		}
944 	}
945 
946 	/*
947 	 * Execute the init code on each CPU.
948 	 */
949 	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
950 
951 	/*
952 	 * Init HYP view of VGIC
953 	 */
954 	err = kvm_vgic_hyp_init();
955 	if (err)
956 		goto out_free_context;
957 
958 #ifdef CONFIG_KVM_ARM_VGIC
959 		vgic_present = true;
960 #endif
961 
962 	/*
963 	 * Init HYP architected timer support
964 	 */
965 	err = kvm_timer_hyp_init();
966 	if (err)
967 		goto out_free_mappings;
968 
969 #ifndef CONFIG_HOTPLUG_CPU
970 	free_boot_hyp_pgd();
971 #endif
972 
973 	kvm_perf_init();
974 
975 	kvm_info("Hyp mode initialized successfully\n");
976 
977 	return 0;
978 out_free_context:
979 	free_percpu(kvm_host_cpu_state);
980 out_free_mappings:
981 	free_hyp_pgds();
982 out_free_stack_pages:
983 	for_each_possible_cpu(cpu)
984 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
985 out_err:
986 	kvm_err("error initializing Hyp mode: %d\n", err);
987 	return err;
988 }
989 
check_kvm_target_cpu(void * ret)990 static void check_kvm_target_cpu(void *ret)
991 {
992 	*(int *)ret = kvm_target_cpu();
993 }
994 
995 /**
996  * Initialize Hyp-mode and memory mappings on all CPUs.
997  */
kvm_arch_init(void * opaque)998 int kvm_arch_init(void *opaque)
999 {
1000 	int err;
1001 	int ret, cpu;
1002 
1003 	if (!is_hyp_mode_available()) {
1004 		kvm_err("HYP mode not available\n");
1005 		return -ENODEV;
1006 	}
1007 
1008 	for_each_online_cpu(cpu) {
1009 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1010 		if (ret < 0) {
1011 			kvm_err("Error, CPU %d not supported!\n", cpu);
1012 			return -ENODEV;
1013 		}
1014 	}
1015 
1016 	cpu_notifier_register_begin();
1017 
1018 	err = init_hyp_mode();
1019 	if (err)
1020 		goto out_err;
1021 
1022 	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1023 	if (err) {
1024 		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1025 		goto out_err;
1026 	}
1027 
1028 	cpu_notifier_register_done();
1029 
1030 	hyp_cpu_pm_init();
1031 
1032 	kvm_coproc_table_init();
1033 	return 0;
1034 out_err:
1035 	cpu_notifier_register_done();
1036 	return err;
1037 }
1038 
1039 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1040 void kvm_arch_exit(void)
1041 {
1042 	kvm_perf_teardown();
1043 }
1044 
arm_init(void)1045 static int arm_init(void)
1046 {
1047 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1048 	return rc;
1049 }
1050 
1051 module_init(arm_init);
1052