• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/sched.h>
20 
21 #include <asm/smp.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
24 
25 /* Size of mapped Cortex A9 SCU address space */
26 #define CORTEX_A9_SCU_SIZE	0x58
27 
28 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
29 #define BOOT_ADDR_CPUID_MASK	0x3
30 
31 /* Name of device node property defining secondary boot register location */
32 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
33 
34 /* I/O address of register used to coordinate secondary core startup */
35 static u32	secondary_boot;
36 
37 /*
38  * Enable the Cortex A9 Snoop Control Unit
39  *
40  * By the time this is called we already know there are multiple
41  * cores present.  We assume we're running on a Cortex A9 processor,
42  * so any trouble getting the base address register or getting the
43  * SCU base is a problem.
44  *
45  * Return 0 if successful or an error code otherwise.
46  */
scu_a9_enable(void)47 static int __init scu_a9_enable(void)
48 {
49 	unsigned long config_base;
50 	void __iomem *scu_base;
51 
52 	if (!scu_a9_has_base()) {
53 		pr_err("no configuration base address register!\n");
54 		return -ENXIO;
55 	}
56 
57 	/* Config base address register value is zero for uniprocessor */
58 	config_base = scu_a9_get_base();
59 	if (!config_base) {
60 		pr_err("hardware reports only one core\n");
61 		return -ENOENT;
62 	}
63 
64 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
65 	if (!scu_base) {
66 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
67 			config_base, CORTEX_A9_SCU_SIZE);
68 		return -ENOMEM;
69 	}
70 
71 	scu_enable(scu_base);
72 
73 	iounmap(scu_base);	/* That's the last we'll need of this */
74 
75 	return 0;
76 }
77 
bcm_smp_prepare_cpus(unsigned int max_cpus)78 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
79 {
80 	static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
81 	struct device_node *node;
82 	int ret;
83 
84 	BUG_ON(secondary_boot);		/* We're called only once */
85 
86 	/*
87 	 * This function is only called via smp_ops->smp_prepare_cpu().
88 	 * That only happens if a "/cpus" device tree node exists
89 	 * and has an "enable-method" property that selects the SMP
90 	 * operations defined herein.
91 	 */
92 	node = of_find_node_by_path("/cpus");
93 	BUG_ON(!node);
94 
95 	/*
96 	 * Our secondary enable method requires a "secondary-boot-reg"
97 	 * property to specify a register address used to request the
98 	 * ROM code boot a secondary code.  If we have any trouble
99 	 * getting this we fall back to uniprocessor mode.
100 	 */
101 	if (of_property_read_u32(node, OF_SECONDARY_BOOT, &secondary_boot)) {
102 		pr_err("%s: missing/invalid " OF_SECONDARY_BOOT " property\n",
103 			node->name);
104 		ret = -ENOENT;		/* Arrange to disable SMP */
105 		goto out;
106 	}
107 
108 	/*
109 	 * Enable the SCU on Cortex A9 based SoCs.  If -ENOENT is
110 	 * returned, the SoC reported a uniprocessor configuration.
111 	 * We bail on any other error.
112 	 */
113 	ret = scu_a9_enable();
114 out:
115 	of_node_put(node);
116 	if (ret) {
117 		/* Update the CPU present map to reflect uniprocessor mode */
118 		BUG_ON(ret != -ENOENT);
119 		pr_warn("disabling SMP\n");
120 		init_cpu_present(&only_cpu_0);
121 	}
122 }
123 
124 /*
125  * The ROM code has the secondary cores looping, waiting for an event.
126  * When an event occurs each core examines the bottom two bits of the
127  * secondary boot register.  When a core finds those bits contain its
128  * own core id, it performs initialization, including computing its boot
129  * address by clearing the boot register value's bottom two bits.  The
130  * core signals that it is beginning its execution by writing its boot
131  * address back to the secondary boot register, and finally jumps to
132  * that address.
133  *
134  * So to start a core executing we need to:
135  * - Encode the (hardware) CPU id with the bottom bits of the secondary
136  *   start address.
137  * - Write that value into the secondary boot register.
138  * - Generate an event to wake up the secondary CPU(s).
139  * - Wait for the secondary boot register to be re-written, which
140  *   indicates the secondary core has started.
141  */
bcm_boot_secondary(unsigned int cpu,struct task_struct * idle)142 static int bcm_boot_secondary(unsigned int cpu, struct task_struct *idle)
143 {
144 	void __iomem *boot_reg;
145 	phys_addr_t boot_func;
146 	u64 start_clock;
147 	u32 cpu_id;
148 	u32 boot_val;
149 	bool timeout = false;
150 
151 	cpu_id = cpu_logical_map(cpu);
152 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
153 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
154 		return -EINVAL;
155 	}
156 
157 	if (!secondary_boot) {
158 		pr_err("required secondary boot register not specified\n");
159 		return -EINVAL;
160 	}
161 
162 	boot_reg = ioremap_nocache((phys_addr_t)secondary_boot, sizeof(u32));
163 	if (!boot_reg) {
164 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
165 		return -ENOSYS;
166 	}
167 
168 	/*
169 	 * Secondary cores will start in secondary_startup(),
170 	 * defined in "arch/arm/kernel/head.S"
171 	 */
172 	boot_func = virt_to_phys(secondary_startup);
173 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
174 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
175 
176 	/* The core to start is encoded in the low bits */
177 	boot_val = (u32)boot_func | cpu_id;
178 	writel_relaxed(boot_val, boot_reg);
179 
180 	sev();
181 
182 	/* The low bits will be cleared once the core has started */
183 	start_clock = local_clock();
184 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
185 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
186 
187 	iounmap(boot_reg);
188 
189 	if (!timeout)
190 		return 0;
191 
192 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
193 
194 	return -ENOSYS;
195 }
196 
197 static struct smp_operations bcm_smp_ops __initdata = {
198 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
199 	.smp_boot_secondary	= bcm_boot_secondary,
200 };
201 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
202 			&bcm_smp_ops);
203