• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OMAP2/3/4 DPLL clock functions
3  *
4  * Copyright (C) 2005-2008 Texas Instruments, Inc.
5  * Copyright (C) 2004-2010 Nokia Corporation
6  *
7  * Contacts:
8  * Richard Woodruff <r-woodruff2@ti.com>
9  * Paul Walmsley
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 #undef DEBUG
16 
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/clk-provider.h>
20 #include <linux/io.h>
21 
22 #include <asm/div64.h>
23 
24 #include "clock.h"
25 
26 /* DPLL rate rounding: minimum DPLL multiplier, divider values */
27 #define DPLL_MIN_MULTIPLIER		2
28 #define DPLL_MIN_DIVIDER		1
29 
30 /* Possible error results from _dpll_test_mult */
31 #define DPLL_MULT_UNDERFLOW		-1
32 
33 /*
34  * Scale factor to mitigate roundoff errors in DPLL rate rounding.
35  * The higher the scale factor, the greater the risk of arithmetic overflow,
36  * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
37  * must be a power of DPLL_SCALE_BASE.
38  */
39 #define DPLL_SCALE_FACTOR		64
40 #define DPLL_SCALE_BASE			2
41 #define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
42 					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
43 
44 /*
45  * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
46  * From device data manual section 4.3 "DPLL and DLL Specifications".
47  */
48 #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN	500000
49 #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX	2500000
50 
51 /* _dpll_test_fint() return codes */
52 #define DPLL_FINT_UNDERFLOW		-1
53 #define DPLL_FINT_INVALID		-2
54 
55 /* Private functions */
56 
57 /*
58  * _dpll_test_fint - test whether an Fint value is valid for the DPLL
59  * @clk: DPLL struct clk to test
60  * @n: divider value (N) to test
61  *
62  * Tests whether a particular divider @n will result in a valid DPLL
63  * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
64  * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
65  * (assuming that it is counting N upwards), or -2 if the enclosing loop
66  * should skip to the next iteration (again assuming N is increasing).
67  */
_dpll_test_fint(struct clk_hw_omap * clk,unsigned int n)68 static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
69 {
70 	struct dpll_data *dd;
71 	long fint, fint_min, fint_max;
72 	int ret = 0;
73 
74 	dd = clk->dpll_data;
75 
76 	/* DPLL divider must result in a valid jitter correction val */
77 	fint = __clk_get_rate(__clk_get_parent(clk->hw.clk)) / n;
78 
79 	if (dd->flags & DPLL_J_TYPE) {
80 		fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
81 		fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
82 	} else {
83 		fint_min = ti_clk_features.fint_min;
84 		fint_max = ti_clk_features.fint_max;
85 	}
86 
87 	if (!fint_min || !fint_max) {
88 		WARN(1, "No fint limits available!\n");
89 		return DPLL_FINT_INVALID;
90 	}
91 
92 	if (fint < ti_clk_features.fint_min) {
93 		pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
94 			 n);
95 		dd->max_divider = n;
96 		ret = DPLL_FINT_UNDERFLOW;
97 	} else if (fint > ti_clk_features.fint_max) {
98 		pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
99 			 n);
100 		dd->min_divider = n;
101 		ret = DPLL_FINT_INVALID;
102 	} else if (fint > ti_clk_features.fint_band1_max &&
103 		   fint < ti_clk_features.fint_band2_min) {
104 		pr_debug("rejecting n=%d due to Fint failure\n", n);
105 		ret = DPLL_FINT_INVALID;
106 	}
107 
108 	return ret;
109 }
110 
_dpll_compute_new_rate(unsigned long parent_rate,unsigned int m,unsigned int n)111 static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
112 					    unsigned int m, unsigned int n)
113 {
114 	unsigned long long num;
115 
116 	num = (unsigned long long)parent_rate * m;
117 	do_div(num, n);
118 	return num;
119 }
120 
121 /*
122  * _dpll_test_mult - test a DPLL multiplier value
123  * @m: pointer to the DPLL m (multiplier) value under test
124  * @n: current DPLL n (divider) value under test
125  * @new_rate: pointer to storage for the resulting rounded rate
126  * @target_rate: the desired DPLL rate
127  * @parent_rate: the DPLL's parent clock rate
128  *
129  * This code tests a DPLL multiplier value, ensuring that the
130  * resulting rate will not be higher than the target_rate, and that
131  * the multiplier value itself is valid for the DPLL.  Initially, the
132  * integer pointed to by the m argument should be prescaled by
133  * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
134  * a non-scaled m upon return.  This non-scaled m will result in a
135  * new_rate as close as possible to target_rate (but not greater than
136  * target_rate) given the current (parent_rate, n, prescaled m)
137  * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
138  * non-scaled m attempted to underflow, which can allow the calling
139  * function to bail out early; or 0 upon success.
140  */
_dpll_test_mult(int * m,int n,unsigned long * new_rate,unsigned long target_rate,unsigned long parent_rate)141 static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
142 			   unsigned long target_rate,
143 			   unsigned long parent_rate)
144 {
145 	int r = 0, carry = 0;
146 
147 	/* Unscale m and round if necessary */
148 	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
149 		carry = 1;
150 	*m = (*m / DPLL_SCALE_FACTOR) + carry;
151 
152 	/*
153 	 * The new rate must be <= the target rate to avoid programming
154 	 * a rate that is impossible for the hardware to handle
155 	 */
156 	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
157 	if (*new_rate > target_rate) {
158 		(*m)--;
159 		*new_rate = 0;
160 	}
161 
162 	/* Guard against m underflow */
163 	if (*m < DPLL_MIN_MULTIPLIER) {
164 		*m = DPLL_MIN_MULTIPLIER;
165 		*new_rate = 0;
166 		r = DPLL_MULT_UNDERFLOW;
167 	}
168 
169 	if (*new_rate == 0)
170 		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
171 
172 	return r;
173 }
174 
175 /**
176  * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
177  * @v: bitfield value of the DPLL enable
178  *
179  * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
180  * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
181  */
_omap2_dpll_is_in_bypass(u32 v)182 static int _omap2_dpll_is_in_bypass(u32 v)
183 {
184 	u8 mask, val;
185 
186 	mask = ti_clk_features.dpll_bypass_vals;
187 
188 	/*
189 	 * Each set bit in the mask corresponds to a bypass value equal
190 	 * to the bitshift. Go through each set-bit in the mask and
191 	 * compare against the given register value.
192 	 */
193 	while (mask) {
194 		val = __ffs(mask);
195 		mask ^= (1 << val);
196 		if (v == val)
197 			return 1;
198 	}
199 
200 	return 0;
201 }
202 
203 /* Public functions */
omap2_init_dpll_parent(struct clk_hw * hw)204 u8 omap2_init_dpll_parent(struct clk_hw *hw)
205 {
206 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
207 	u32 v;
208 	struct dpll_data *dd;
209 
210 	dd = clk->dpll_data;
211 	if (!dd)
212 		return -EINVAL;
213 
214 	v = omap2_clk_readl(clk, dd->control_reg);
215 	v &= dd->enable_mask;
216 	v >>= __ffs(dd->enable_mask);
217 
218 	/* Reparent the struct clk in case the dpll is in bypass */
219 	if (_omap2_dpll_is_in_bypass(v))
220 		return 1;
221 
222 	return 0;
223 }
224 
225 /**
226  * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
227  * @clk: struct clk * of a DPLL
228  *
229  * DPLLs can be locked or bypassed - basically, enabled or disabled.
230  * When locked, the DPLL output depends on the M and N values.  When
231  * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
232  * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
233  * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
234  * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
235  * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
236  * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
237  * if the clock @clk is not a DPLL.
238  */
omap2_get_dpll_rate(struct clk_hw_omap * clk)239 unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
240 {
241 	long long dpll_clk;
242 	u32 dpll_mult, dpll_div, v;
243 	struct dpll_data *dd;
244 
245 	dd = clk->dpll_data;
246 	if (!dd)
247 		return 0;
248 
249 	/* Return bypass rate if DPLL is bypassed */
250 	v = omap2_clk_readl(clk, dd->control_reg);
251 	v &= dd->enable_mask;
252 	v >>= __ffs(dd->enable_mask);
253 
254 	if (_omap2_dpll_is_in_bypass(v))
255 		return __clk_get_rate(dd->clk_bypass);
256 
257 	v = omap2_clk_readl(clk, dd->mult_div1_reg);
258 	dpll_mult = v & dd->mult_mask;
259 	dpll_mult >>= __ffs(dd->mult_mask);
260 	dpll_div = v & dd->div1_mask;
261 	dpll_div >>= __ffs(dd->div1_mask);
262 
263 	dpll_clk = (long long) __clk_get_rate(dd->clk_ref) * dpll_mult;
264 	do_div(dpll_clk, dpll_div + 1);
265 
266 	return dpll_clk;
267 }
268 
269 /* DPLL rate rounding code */
270 
271 /**
272  * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
273  * @clk: struct clk * for a DPLL
274  * @target_rate: desired DPLL clock rate
275  *
276  * Given a DPLL and a desired target rate, round the target rate to a
277  * possible, programmable rate for this DPLL.  Attempts to select the
278  * minimum possible n.  Stores the computed (m, n) in the DPLL's
279  * dpll_data structure so set_rate() will not need to call this
280  * (expensive) function again.  Returns ~0 if the target rate cannot
281  * be rounded, or the rounded rate upon success.
282  */
omap2_dpll_round_rate(struct clk_hw * hw,unsigned long target_rate,unsigned long * parent_rate)283 long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
284 		unsigned long *parent_rate)
285 {
286 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
287 	int m, n, r, scaled_max_m;
288 	int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
289 	unsigned long scaled_rt_rp;
290 	unsigned long new_rate = 0;
291 	struct dpll_data *dd;
292 	unsigned long ref_rate;
293 	long delta;
294 	long prev_min_delta = LONG_MAX;
295 	const char *clk_name;
296 
297 	if (!clk || !clk->dpll_data)
298 		return ~0;
299 
300 	dd = clk->dpll_data;
301 
302 	ref_rate = __clk_get_rate(dd->clk_ref);
303 	clk_name = __clk_get_name(hw->clk);
304 	pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
305 		 clk_name, target_rate);
306 
307 	scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
308 	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
309 
310 	dd->last_rounded_rate = 0;
311 
312 	for (n = dd->min_divider; n <= dd->max_divider; n++) {
313 
314 		/* Is the (input clk, divider) pair valid for the DPLL? */
315 		r = _dpll_test_fint(clk, n);
316 		if (r == DPLL_FINT_UNDERFLOW)
317 			break;
318 		else if (r == DPLL_FINT_INVALID)
319 			continue;
320 
321 		/* Compute the scaled DPLL multiplier, based on the divider */
322 		m = scaled_rt_rp * n;
323 
324 		/*
325 		 * Since we're counting n up, a m overflow means we
326 		 * can bail out completely (since as n increases in
327 		 * the next iteration, there's no way that m can
328 		 * increase beyond the current m)
329 		 */
330 		if (m > scaled_max_m)
331 			break;
332 
333 		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
334 				    ref_rate);
335 
336 		/* m can't be set low enough for this n - try with a larger n */
337 		if (r == DPLL_MULT_UNDERFLOW)
338 			continue;
339 
340 		/* skip rates above our target rate */
341 		delta = target_rate - new_rate;
342 		if (delta < 0)
343 			continue;
344 
345 		if (delta < prev_min_delta) {
346 			prev_min_delta = delta;
347 			min_delta_m = m;
348 			min_delta_n = n;
349 		}
350 
351 		pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
352 			 clk_name, m, n, new_rate);
353 
354 		if (delta == 0)
355 			break;
356 	}
357 
358 	if (prev_min_delta == LONG_MAX) {
359 		pr_debug("clock: %s: cannot round to rate %lu\n",
360 			 clk_name, target_rate);
361 		return ~0;
362 	}
363 
364 	dd->last_rounded_m = min_delta_m;
365 	dd->last_rounded_n = min_delta_n;
366 	dd->last_rounded_rate = target_rate - prev_min_delta;
367 
368 	return dd->last_rounded_rate;
369 }
370 
371