• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/arch/arm/mach-omap2/gpmc-onenand.c
3  *
4  * Copyright (C) 2006 - 2009 Nokia Corporation
5  * Contacts:	Juha Yrjola
6  *		Tony Lindgren
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/onenand_regs.h>
17 #include <linux/io.h>
18 #include <linux/platform_data/mtd-onenand-omap2.h>
19 #include <linux/err.h>
20 
21 #include <asm/mach/flash.h>
22 
23 #include "gpmc.h"
24 #include "soc.h"
25 #include "gpmc-onenand.h"
26 
27 #define	ONENAND_IO_SIZE	SZ_128K
28 
29 #define	ONENAND_FLAG_SYNCREAD	(1 << 0)
30 #define	ONENAND_FLAG_SYNCWRITE	(1 << 1)
31 #define	ONENAND_FLAG_HF		(1 << 2)
32 #define	ONENAND_FLAG_VHF	(1 << 3)
33 
34 static unsigned onenand_flags;
35 static unsigned latency;
36 
37 static struct omap_onenand_platform_data *gpmc_onenand_data;
38 
39 static struct resource gpmc_onenand_resource = {
40 	.flags		= IORESOURCE_MEM,
41 };
42 
43 static struct platform_device gpmc_onenand_device = {
44 	.name		= "omap2-onenand",
45 	.id		= -1,
46 	.num_resources	= 1,
47 	.resource	= &gpmc_onenand_resource,
48 };
49 
50 static struct gpmc_settings onenand_async = {
51 	.device_width	= GPMC_DEVWIDTH_16BIT,
52 	.mux_add_data	= GPMC_MUX_AD,
53 };
54 
55 static struct gpmc_settings onenand_sync = {
56 	.burst_read	= true,
57 	.burst_wrap	= true,
58 	.burst_len	= GPMC_BURST_16,
59 	.device_width	= GPMC_DEVWIDTH_16BIT,
60 	.mux_add_data	= GPMC_MUX_AD,
61 	.wait_pin	= 0,
62 };
63 
omap2_onenand_calc_async_timings(struct gpmc_timings * t)64 static void omap2_onenand_calc_async_timings(struct gpmc_timings *t)
65 {
66 	struct gpmc_device_timings dev_t;
67 	const int t_cer = 15;
68 	const int t_avdp = 12;
69 	const int t_aavdh = 7;
70 	const int t_ce = 76;
71 	const int t_aa = 76;
72 	const int t_oe = 20;
73 	const int t_cez = 20; /* max of t_cez, t_oez */
74 	const int t_wpl = 40;
75 	const int t_wph = 30;
76 
77 	memset(&dev_t, 0, sizeof(dev_t));
78 
79 	dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
80 	dev_t.t_avdp_w = dev_t.t_avdp_r;
81 	dev_t.t_aavdh = t_aavdh * 1000;
82 	dev_t.t_aa = t_aa * 1000;
83 	dev_t.t_ce = t_ce * 1000;
84 	dev_t.t_oe = t_oe * 1000;
85 	dev_t.t_cez_r = t_cez * 1000;
86 	dev_t.t_cez_w = dev_t.t_cez_r;
87 	dev_t.t_wpl = t_wpl * 1000;
88 	dev_t.t_wph = t_wph * 1000;
89 
90 	gpmc_calc_timings(t, &onenand_async, &dev_t);
91 }
92 
omap2_onenand_set_async_mode(void __iomem * onenand_base)93 static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
94 {
95 	u32 reg;
96 
97 	/* Ensure sync read and sync write are disabled */
98 	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
99 	reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
100 	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
101 }
102 
set_onenand_cfg(void __iomem * onenand_base)103 static void set_onenand_cfg(void __iomem *onenand_base)
104 {
105 	u32 reg;
106 
107 	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
108 	reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
109 	reg |=	(latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
110 		ONENAND_SYS_CFG1_BL_16;
111 	if (onenand_flags & ONENAND_FLAG_SYNCREAD)
112 		reg |= ONENAND_SYS_CFG1_SYNC_READ;
113 	else
114 		reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
115 	if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
116 		reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
117 	else
118 		reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
119 	if (onenand_flags & ONENAND_FLAG_HF)
120 		reg |= ONENAND_SYS_CFG1_HF;
121 	else
122 		reg &= ~ONENAND_SYS_CFG1_HF;
123 	if (onenand_flags & ONENAND_FLAG_VHF)
124 		reg |= ONENAND_SYS_CFG1_VHF;
125 	else
126 		reg &= ~ONENAND_SYS_CFG1_VHF;
127 	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
128 }
129 
omap2_onenand_get_freq(struct omap_onenand_platform_data * cfg,void __iomem * onenand_base)130 static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
131 				  void __iomem *onenand_base)
132 {
133 	u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
134 	int freq;
135 
136 	switch ((ver >> 4) & 0xf) {
137 	case 0:
138 		freq = 40;
139 		break;
140 	case 1:
141 		freq = 54;
142 		break;
143 	case 2:
144 		freq = 66;
145 		break;
146 	case 3:
147 		freq = 83;
148 		break;
149 	case 4:
150 		freq = 104;
151 		break;
152 	default:
153 		freq = 54;
154 		break;
155 	}
156 
157 	return freq;
158 }
159 
omap2_onenand_calc_sync_timings(struct gpmc_timings * t,unsigned int flags,int freq)160 static void omap2_onenand_calc_sync_timings(struct gpmc_timings *t,
161 					    unsigned int flags,
162 					    int freq)
163 {
164 	struct gpmc_device_timings dev_t;
165 	const int t_cer  = 15;
166 	const int t_avdp = 12;
167 	const int t_cez  = 20; /* max of t_cez, t_oez */
168 	const int t_wpl  = 40;
169 	const int t_wph  = 30;
170 	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
171 	int div, gpmc_clk_ns;
172 
173 	if (flags & ONENAND_SYNC_READ)
174 		onenand_flags = ONENAND_FLAG_SYNCREAD;
175 	else if (flags & ONENAND_SYNC_READWRITE)
176 		onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;
177 
178 	switch (freq) {
179 	case 104:
180 		min_gpmc_clk_period = 9600; /* 104 MHz */
181 		t_ces   = 3;
182 		t_avds  = 4;
183 		t_avdh  = 2;
184 		t_ach   = 3;
185 		t_aavdh = 6;
186 		t_rdyo  = 6;
187 		break;
188 	case 83:
189 		min_gpmc_clk_period = 12000; /* 83 MHz */
190 		t_ces   = 5;
191 		t_avds  = 4;
192 		t_avdh  = 2;
193 		t_ach   = 6;
194 		t_aavdh = 6;
195 		t_rdyo  = 9;
196 		break;
197 	case 66:
198 		min_gpmc_clk_period = 15000; /* 66 MHz */
199 		t_ces   = 6;
200 		t_avds  = 5;
201 		t_avdh  = 2;
202 		t_ach   = 6;
203 		t_aavdh = 6;
204 		t_rdyo  = 11;
205 		break;
206 	default:
207 		min_gpmc_clk_period = 18500; /* 54 MHz */
208 		t_ces   = 7;
209 		t_avds  = 7;
210 		t_avdh  = 7;
211 		t_ach   = 9;
212 		t_aavdh = 7;
213 		t_rdyo  = 15;
214 		onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
215 		break;
216 	}
217 
218 	div = gpmc_calc_divider(min_gpmc_clk_period);
219 	gpmc_clk_ns = gpmc_ticks_to_ns(div);
220 	if (gpmc_clk_ns < 15) /* >66Mhz */
221 		onenand_flags |= ONENAND_FLAG_HF;
222 	else
223 		onenand_flags &= ~ONENAND_FLAG_HF;
224 	if (gpmc_clk_ns < 12) /* >83Mhz */
225 		onenand_flags |= ONENAND_FLAG_VHF;
226 	else
227 		onenand_flags &= ~ONENAND_FLAG_VHF;
228 	if (onenand_flags & ONENAND_FLAG_VHF)
229 		latency = 8;
230 	else if (onenand_flags & ONENAND_FLAG_HF)
231 		latency = 6;
232 	else if (gpmc_clk_ns >= 25) /* 40 MHz*/
233 		latency = 3;
234 	else
235 		latency = 4;
236 
237 	/* Set synchronous read timings */
238 	memset(&dev_t, 0, sizeof(dev_t));
239 
240 	if (onenand_flags & ONENAND_FLAG_SYNCREAD)
241 		onenand_sync.sync_read = true;
242 	if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
243 		onenand_sync.sync_write = true;
244 		onenand_sync.burst_write = true;
245 	} else {
246 		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
247 		dev_t.t_wpl = t_wpl * 1000;
248 		dev_t.t_wph = t_wph * 1000;
249 		dev_t.t_aavdh = t_aavdh * 1000;
250 	}
251 	dev_t.ce_xdelay = true;
252 	dev_t.avd_xdelay = true;
253 	dev_t.oe_xdelay = true;
254 	dev_t.we_xdelay = true;
255 	dev_t.clk = min_gpmc_clk_period;
256 	dev_t.t_bacc = dev_t.clk;
257 	dev_t.t_ces = t_ces * 1000;
258 	dev_t.t_avds = t_avds * 1000;
259 	dev_t.t_avdh = t_avdh * 1000;
260 	dev_t.t_ach = t_ach * 1000;
261 	dev_t.cyc_iaa = (latency + 1);
262 	dev_t.t_cez_r = t_cez * 1000;
263 	dev_t.t_cez_w = dev_t.t_cez_r;
264 	dev_t.cyc_aavdh_oe = 1;
265 	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
266 
267 	gpmc_calc_timings(t, &onenand_sync, &dev_t);
268 }
269 
omap2_onenand_setup_async(void __iomem * onenand_base)270 static int omap2_onenand_setup_async(void __iomem *onenand_base)
271 {
272 	struct gpmc_timings t;
273 	int ret;
274 
275 	if (gpmc_onenand_data->of_node) {
276 		gpmc_read_settings_dt(gpmc_onenand_data->of_node,
277 				      &onenand_async);
278 		if (onenand_async.sync_read || onenand_async.sync_write) {
279 			if (onenand_async.sync_write)
280 				gpmc_onenand_data->flags |=
281 					ONENAND_SYNC_READWRITE;
282 			else
283 				gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
284 			onenand_async.sync_read = false;
285 			onenand_async.sync_write = false;
286 		}
287 	}
288 
289 	omap2_onenand_set_async_mode(onenand_base);
290 
291 	omap2_onenand_calc_async_timings(&t);
292 
293 	ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_async);
294 	if (ret < 0)
295 		return ret;
296 
297 	ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t);
298 	if (ret < 0)
299 		return ret;
300 
301 	omap2_onenand_set_async_mode(onenand_base);
302 
303 	return 0;
304 }
305 
omap2_onenand_setup_sync(void __iomem * onenand_base,int * freq_ptr)306 static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
307 {
308 	int ret, freq = *freq_ptr;
309 	struct gpmc_timings t;
310 
311 	if (!freq) {
312 		/* Very first call freq is not known */
313 		freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
314 		set_onenand_cfg(onenand_base);
315 	}
316 
317 	if (gpmc_onenand_data->of_node) {
318 		gpmc_read_settings_dt(gpmc_onenand_data->of_node,
319 				      &onenand_sync);
320 	} else {
321 		/*
322 		 * FIXME: Appears to be legacy code from initial ONENAND commit.
323 		 * Unclear what boards this is for and if this can be removed.
324 		 */
325 		if (!cpu_is_omap34xx())
326 			onenand_sync.wait_on_read = true;
327 	}
328 
329 	omap2_onenand_calc_sync_timings(&t, gpmc_onenand_data->flags, freq);
330 
331 	ret = gpmc_cs_program_settings(gpmc_onenand_data->cs, &onenand_sync);
332 	if (ret < 0)
333 		return ret;
334 
335 	ret = gpmc_cs_set_timings(gpmc_onenand_data->cs, &t);
336 	if (ret < 0)
337 		return ret;
338 
339 	set_onenand_cfg(onenand_base);
340 
341 	*freq_ptr = freq;
342 
343 	return 0;
344 }
345 
gpmc_onenand_setup(void __iomem * onenand_base,int * freq_ptr)346 static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
347 {
348 	struct device *dev = &gpmc_onenand_device.dev;
349 	unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
350 	int ret;
351 
352 	ret = omap2_onenand_setup_async(onenand_base);
353 	if (ret) {
354 		dev_err(dev, "unable to set to async mode\n");
355 		return ret;
356 	}
357 
358 	if (!(gpmc_onenand_data->flags & l))
359 		return 0;
360 
361 	ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
362 	if (ret)
363 		dev_err(dev, "unable to set to sync mode\n");
364 	return ret;
365 }
366 
gpmc_onenand_init(struct omap_onenand_platform_data * _onenand_data)367 void gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
368 {
369 	int err;
370 	struct device *dev = &gpmc_onenand_device.dev;
371 
372 	gpmc_onenand_data = _onenand_data;
373 	gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
374 	gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
375 
376 	if (cpu_is_omap24xx() &&
377 			(gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
378 		dev_warn(dev, "OneNAND using only SYNC_READ on 24xx\n");
379 		gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
380 		gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
381 	}
382 
383 	if (cpu_is_omap34xx())
384 		gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
385 	else
386 		gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;
387 
388 	err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
389 				(unsigned long *)&gpmc_onenand_resource.start);
390 	if (err < 0) {
391 		dev_err(dev, "Cannot request GPMC CS %d, error %d\n",
392 			gpmc_onenand_data->cs, err);
393 		return;
394 	}
395 
396 	gpmc_onenand_resource.end = gpmc_onenand_resource.start +
397 							ONENAND_IO_SIZE - 1;
398 
399 	if (platform_device_register(&gpmc_onenand_device) < 0) {
400 		dev_err(dev, "Unable to register OneNAND device\n");
401 		gpmc_cs_free(gpmc_onenand_data->cs);
402 		return;
403 	}
404 }
405