1 /*
2 * linux/arch/arm/mm/alignment.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2001 Russell King
6 * Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
7 * - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
8 * Copyright (C) 1996, Cygnus Software Technologies Ltd.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14 #include <linux/moduleparam.h>
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/string.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/cp15.h>
26 #include <asm/system_info.h>
27 #include <asm/unaligned.h>
28 #include <asm/opcodes.h>
29
30 #include "fault.h"
31 #include "mm.h"
32
33 /*
34 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
35 * /proc/sys/debug/alignment, modified and integrated into
36 * Linux 2.1 by Russell King
37 *
38 * Speed optimisations and better fault handling by Russell King.
39 *
40 * *** NOTE ***
41 * This code is not portable to processors with late data abort handling.
42 */
43 #define CODING_BITS(i) (i & 0x0e000000)
44 #define COND_BITS(i) (i & 0xf0000000)
45
46 #define LDST_I_BIT(i) (i & (1 << 26)) /* Immediate constant */
47 #define LDST_P_BIT(i) (i & (1 << 24)) /* Preindex */
48 #define LDST_U_BIT(i) (i & (1 << 23)) /* Add offset */
49 #define LDST_W_BIT(i) (i & (1 << 21)) /* Writeback */
50 #define LDST_L_BIT(i) (i & (1 << 20)) /* Load */
51
52 #define LDST_P_EQ_U(i) ((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
53
54 #define LDSTHD_I_BIT(i) (i & (1 << 22)) /* double/half-word immed */
55 #define LDM_S_BIT(i) (i & (1 << 22)) /* write CPSR from SPSR */
56
57 #define RN_BITS(i) ((i >> 16) & 15) /* Rn */
58 #define RD_BITS(i) ((i >> 12) & 15) /* Rd */
59 #define RM_BITS(i) (i & 15) /* Rm */
60
61 #define REGMASK_BITS(i) (i & 0xffff)
62 #define OFFSET_BITS(i) (i & 0x0fff)
63
64 #define IS_SHIFT(i) (i & 0x0ff0)
65 #define SHIFT_BITS(i) ((i >> 7) & 0x1f)
66 #define SHIFT_TYPE(i) (i & 0x60)
67 #define SHIFT_LSL 0x00
68 #define SHIFT_LSR 0x20
69 #define SHIFT_ASR 0x40
70 #define SHIFT_RORRRX 0x60
71
72 #define BAD_INSTR 0xdeadc0de
73
74 /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
75 #define IS_T32(hi16) \
76 (((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
77
78 static unsigned long ai_user;
79 static unsigned long ai_sys;
80 static void *ai_sys_last_pc;
81 static unsigned long ai_skipped;
82 static unsigned long ai_half;
83 static unsigned long ai_word;
84 static unsigned long ai_dword;
85 static unsigned long ai_multi;
86 static int ai_usermode;
87 static unsigned long cr_no_alignment;
88
89 core_param(alignment, ai_usermode, int, 0600);
90
91 #define UM_WARN (1 << 0)
92 #define UM_FIXUP (1 << 1)
93 #define UM_SIGNAL (1 << 2)
94
95 /* Return true if and only if the ARMv6 unaligned access model is in use. */
cpu_is_v6_unaligned(void)96 static bool cpu_is_v6_unaligned(void)
97 {
98 return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U;
99 }
100
safe_usermode(int new_usermode,bool warn)101 static int safe_usermode(int new_usermode, bool warn)
102 {
103 /*
104 * ARMv6 and later CPUs can perform unaligned accesses for
105 * most single load and store instructions up to word size.
106 * LDM, STM, LDRD and STRD still need to be handled.
107 *
108 * Ignoring the alignment fault is not an option on these
109 * CPUs since we spin re-faulting the instruction without
110 * making any progress.
111 */
112 if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
113 new_usermode |= UM_FIXUP;
114
115 if (warn)
116 printk(KERN_WARNING "alignment: ignoring faults is unsafe on this CPU. Defaulting to fixup mode.\n");
117 }
118
119 return new_usermode;
120 }
121
122 #ifdef CONFIG_PROC_FS
123 static const char *usermode_action[] = {
124 "ignored",
125 "warn",
126 "fixup",
127 "fixup+warn",
128 "signal",
129 "signal+warn"
130 };
131
alignment_proc_show(struct seq_file * m,void * v)132 static int alignment_proc_show(struct seq_file *m, void *v)
133 {
134 seq_printf(m, "User:\t\t%lu\n", ai_user);
135 seq_printf(m, "System:\t\t%lu (%pF)\n", ai_sys, ai_sys_last_pc);
136 seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
137 seq_printf(m, "Half:\t\t%lu\n", ai_half);
138 seq_printf(m, "Word:\t\t%lu\n", ai_word);
139 if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
140 seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
141 seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
142 seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
143 usermode_action[ai_usermode]);
144
145 return 0;
146 }
147
alignment_proc_open(struct inode * inode,struct file * file)148 static int alignment_proc_open(struct inode *inode, struct file *file)
149 {
150 return single_open(file, alignment_proc_show, NULL);
151 }
152
alignment_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)153 static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
154 size_t count, loff_t *pos)
155 {
156 char mode;
157
158 if (count > 0) {
159 if (get_user(mode, buffer))
160 return -EFAULT;
161 if (mode >= '0' && mode <= '5')
162 ai_usermode = safe_usermode(mode - '0', true);
163 }
164 return count;
165 }
166
167 static const struct file_operations alignment_proc_fops = {
168 .open = alignment_proc_open,
169 .read = seq_read,
170 .llseek = seq_lseek,
171 .release = single_release,
172 .write = alignment_proc_write,
173 };
174 #endif /* CONFIG_PROC_FS */
175
176 union offset_union {
177 unsigned long un;
178 signed long sn;
179 };
180
181 #define TYPE_ERROR 0
182 #define TYPE_FAULT 1
183 #define TYPE_LDST 2
184 #define TYPE_DONE 3
185
186 #ifdef __ARMEB__
187 #define BE 1
188 #define FIRST_BYTE_16 "mov %1, %1, ror #8\n"
189 #define FIRST_BYTE_32 "mov %1, %1, ror #24\n"
190 #define NEXT_BYTE "ror #24"
191 #else
192 #define BE 0
193 #define FIRST_BYTE_16
194 #define FIRST_BYTE_32
195 #define NEXT_BYTE "lsr #8"
196 #endif
197
198 #define __get8_unaligned_check(ins,val,addr,err) \
199 __asm__( \
200 ARM( "1: "ins" %1, [%2], #1\n" ) \
201 THUMB( "1: "ins" %1, [%2]\n" ) \
202 THUMB( " add %2, %2, #1\n" ) \
203 "2:\n" \
204 " .pushsection .fixup,\"ax\"\n" \
205 " .align 2\n" \
206 "3: mov %0, #1\n" \
207 " b 2b\n" \
208 " .popsection\n" \
209 " .pushsection __ex_table,\"a\"\n" \
210 " .align 3\n" \
211 " .long 1b, 3b\n" \
212 " .popsection\n" \
213 : "=r" (err), "=&r" (val), "=r" (addr) \
214 : "0" (err), "2" (addr))
215
216 #define __get16_unaligned_check(ins,val,addr) \
217 do { \
218 unsigned int err = 0, v, a = addr; \
219 __get8_unaligned_check(ins,v,a,err); \
220 val = v << ((BE) ? 8 : 0); \
221 __get8_unaligned_check(ins,v,a,err); \
222 val |= v << ((BE) ? 0 : 8); \
223 if (err) \
224 goto fault; \
225 } while (0)
226
227 #define get16_unaligned_check(val,addr) \
228 __get16_unaligned_check("ldrb",val,addr)
229
230 #define get16t_unaligned_check(val,addr) \
231 __get16_unaligned_check("ldrbt",val,addr)
232
233 #define __get32_unaligned_check(ins,val,addr) \
234 do { \
235 unsigned int err = 0, v, a = addr; \
236 __get8_unaligned_check(ins,v,a,err); \
237 val = v << ((BE) ? 24 : 0); \
238 __get8_unaligned_check(ins,v,a,err); \
239 val |= v << ((BE) ? 16 : 8); \
240 __get8_unaligned_check(ins,v,a,err); \
241 val |= v << ((BE) ? 8 : 16); \
242 __get8_unaligned_check(ins,v,a,err); \
243 val |= v << ((BE) ? 0 : 24); \
244 if (err) \
245 goto fault; \
246 } while (0)
247
248 #define get32_unaligned_check(val,addr) \
249 __get32_unaligned_check("ldrb",val,addr)
250
251 #define get32t_unaligned_check(val,addr) \
252 __get32_unaligned_check("ldrbt",val,addr)
253
254 #define __put16_unaligned_check(ins,val,addr) \
255 do { \
256 unsigned int err = 0, v = val, a = addr; \
257 __asm__( FIRST_BYTE_16 \
258 ARM( "1: "ins" %1, [%2], #1\n" ) \
259 THUMB( "1: "ins" %1, [%2]\n" ) \
260 THUMB( " add %2, %2, #1\n" ) \
261 " mov %1, %1, "NEXT_BYTE"\n" \
262 "2: "ins" %1, [%2]\n" \
263 "3:\n" \
264 " .pushsection .fixup,\"ax\"\n" \
265 " .align 2\n" \
266 "4: mov %0, #1\n" \
267 " b 3b\n" \
268 " .popsection\n" \
269 " .pushsection __ex_table,\"a\"\n" \
270 " .align 3\n" \
271 " .long 1b, 4b\n" \
272 " .long 2b, 4b\n" \
273 " .popsection\n" \
274 : "=r" (err), "=&r" (v), "=&r" (a) \
275 : "0" (err), "1" (v), "2" (a)); \
276 if (err) \
277 goto fault; \
278 } while (0)
279
280 #define put16_unaligned_check(val,addr) \
281 __put16_unaligned_check("strb",val,addr)
282
283 #define put16t_unaligned_check(val,addr) \
284 __put16_unaligned_check("strbt",val,addr)
285
286 #define __put32_unaligned_check(ins,val,addr) \
287 do { \
288 unsigned int err = 0, v = val, a = addr; \
289 __asm__( FIRST_BYTE_32 \
290 ARM( "1: "ins" %1, [%2], #1\n" ) \
291 THUMB( "1: "ins" %1, [%2]\n" ) \
292 THUMB( " add %2, %2, #1\n" ) \
293 " mov %1, %1, "NEXT_BYTE"\n" \
294 ARM( "2: "ins" %1, [%2], #1\n" ) \
295 THUMB( "2: "ins" %1, [%2]\n" ) \
296 THUMB( " add %2, %2, #1\n" ) \
297 " mov %1, %1, "NEXT_BYTE"\n" \
298 ARM( "3: "ins" %1, [%2], #1\n" ) \
299 THUMB( "3: "ins" %1, [%2]\n" ) \
300 THUMB( " add %2, %2, #1\n" ) \
301 " mov %1, %1, "NEXT_BYTE"\n" \
302 "4: "ins" %1, [%2]\n" \
303 "5:\n" \
304 " .pushsection .fixup,\"ax\"\n" \
305 " .align 2\n" \
306 "6: mov %0, #1\n" \
307 " b 5b\n" \
308 " .popsection\n" \
309 " .pushsection __ex_table,\"a\"\n" \
310 " .align 3\n" \
311 " .long 1b, 6b\n" \
312 " .long 2b, 6b\n" \
313 " .long 3b, 6b\n" \
314 " .long 4b, 6b\n" \
315 " .popsection\n" \
316 : "=r" (err), "=&r" (v), "=&r" (a) \
317 : "0" (err), "1" (v), "2" (a)); \
318 if (err) \
319 goto fault; \
320 } while (0)
321
322 #define put32_unaligned_check(val,addr) \
323 __put32_unaligned_check("strb", val, addr)
324
325 #define put32t_unaligned_check(val,addr) \
326 __put32_unaligned_check("strbt", val, addr)
327
328 static void
do_alignment_finish_ldst(unsigned long addr,unsigned long instr,struct pt_regs * regs,union offset_union offset)329 do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset)
330 {
331 if (!LDST_U_BIT(instr))
332 offset.un = -offset.un;
333
334 if (!LDST_P_BIT(instr))
335 addr += offset.un;
336
337 if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
338 regs->uregs[RN_BITS(instr)] = addr;
339 }
340
341 static int
do_alignment_ldrhstrh(unsigned long addr,unsigned long instr,struct pt_regs * regs)342 do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs)
343 {
344 unsigned int rd = RD_BITS(instr);
345
346 ai_half += 1;
347
348 if (user_mode(regs))
349 goto user;
350
351 if (LDST_L_BIT(instr)) {
352 unsigned long val;
353 get16_unaligned_check(val, addr);
354
355 /* signed half-word? */
356 if (instr & 0x40)
357 val = (signed long)((signed short) val);
358
359 regs->uregs[rd] = val;
360 } else
361 put16_unaligned_check(regs->uregs[rd], addr);
362
363 return TYPE_LDST;
364
365 user:
366 if (LDST_L_BIT(instr)) {
367 unsigned long val;
368 unsigned int __ua_flags = uaccess_save_and_enable();
369
370 get16t_unaligned_check(val, addr);
371 uaccess_restore(__ua_flags);
372
373 /* signed half-word? */
374 if (instr & 0x40)
375 val = (signed long)((signed short) val);
376
377 regs->uregs[rd] = val;
378 } else {
379 unsigned int __ua_flags = uaccess_save_and_enable();
380 put16t_unaligned_check(regs->uregs[rd], addr);
381 uaccess_restore(__ua_flags);
382 }
383
384 return TYPE_LDST;
385
386 fault:
387 return TYPE_FAULT;
388 }
389
390 static int
do_alignment_ldrdstrd(unsigned long addr,unsigned long instr,struct pt_regs * regs)391 do_alignment_ldrdstrd(unsigned long addr, unsigned long instr,
392 struct pt_regs *regs)
393 {
394 unsigned int rd = RD_BITS(instr);
395 unsigned int rd2;
396 int load;
397
398 if ((instr & 0xfe000000) == 0xe8000000) {
399 /* ARMv7 Thumb-2 32-bit LDRD/STRD */
400 rd2 = (instr >> 8) & 0xf;
401 load = !!(LDST_L_BIT(instr));
402 } else if (((rd & 1) == 1) || (rd == 14))
403 goto bad;
404 else {
405 load = ((instr & 0xf0) == 0xd0);
406 rd2 = rd + 1;
407 }
408
409 ai_dword += 1;
410
411 if (user_mode(regs))
412 goto user;
413
414 if (load) {
415 unsigned long val;
416 get32_unaligned_check(val, addr);
417 regs->uregs[rd] = val;
418 get32_unaligned_check(val, addr + 4);
419 regs->uregs[rd2] = val;
420 } else {
421 put32_unaligned_check(regs->uregs[rd], addr);
422 put32_unaligned_check(regs->uregs[rd2], addr + 4);
423 }
424
425 return TYPE_LDST;
426
427 user:
428 if (load) {
429 unsigned long val, val2;
430 unsigned int __ua_flags = uaccess_save_and_enable();
431
432 get32t_unaligned_check(val, addr);
433 get32t_unaligned_check(val2, addr + 4);
434
435 uaccess_restore(__ua_flags);
436
437 regs->uregs[rd] = val;
438 regs->uregs[rd2] = val2;
439 } else {
440 unsigned int __ua_flags = uaccess_save_and_enable();
441 put32t_unaligned_check(regs->uregs[rd], addr);
442 put32t_unaligned_check(regs->uregs[rd2], addr + 4);
443 uaccess_restore(__ua_flags);
444 }
445
446 return TYPE_LDST;
447 bad:
448 return TYPE_ERROR;
449 fault:
450 return TYPE_FAULT;
451 }
452
453 static int
do_alignment_ldrstr(unsigned long addr,unsigned long instr,struct pt_regs * regs)454 do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs)
455 {
456 unsigned int rd = RD_BITS(instr);
457
458 ai_word += 1;
459
460 if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
461 goto trans;
462
463 if (LDST_L_BIT(instr)) {
464 unsigned int val;
465 get32_unaligned_check(val, addr);
466 regs->uregs[rd] = val;
467 } else
468 put32_unaligned_check(regs->uregs[rd], addr);
469 return TYPE_LDST;
470
471 trans:
472 if (LDST_L_BIT(instr)) {
473 unsigned int val;
474 unsigned int __ua_flags = uaccess_save_and_enable();
475 get32t_unaligned_check(val, addr);
476 uaccess_restore(__ua_flags);
477 regs->uregs[rd] = val;
478 } else {
479 unsigned int __ua_flags = uaccess_save_and_enable();
480 put32t_unaligned_check(regs->uregs[rd], addr);
481 uaccess_restore(__ua_flags);
482 }
483 return TYPE_LDST;
484
485 fault:
486 return TYPE_FAULT;
487 }
488
489 /*
490 * LDM/STM alignment handler.
491 *
492 * There are 4 variants of this instruction:
493 *
494 * B = rn pointer before instruction, A = rn pointer after instruction
495 * ------ increasing address ----->
496 * | | r0 | r1 | ... | rx | |
497 * PU = 01 B A
498 * PU = 11 B A
499 * PU = 00 A B
500 * PU = 10 A B
501 */
502 static int
do_alignment_ldmstm(unsigned long addr,unsigned long instr,struct pt_regs * regs)503 do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs)
504 {
505 unsigned int rd, rn, correction, nr_regs, regbits;
506 unsigned long eaddr, newaddr;
507
508 if (LDM_S_BIT(instr))
509 goto bad;
510
511 correction = 4; /* processor implementation defined */
512 regs->ARM_pc += correction;
513
514 ai_multi += 1;
515
516 /* count the number of registers in the mask to be transferred */
517 nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
518
519 rn = RN_BITS(instr);
520 newaddr = eaddr = regs->uregs[rn];
521
522 if (!LDST_U_BIT(instr))
523 nr_regs = -nr_regs;
524 newaddr += nr_regs;
525 if (!LDST_U_BIT(instr))
526 eaddr = newaddr;
527
528 if (LDST_P_EQ_U(instr)) /* U = P */
529 eaddr += 4;
530
531 /*
532 * For alignment faults on the ARM922T/ARM920T the MMU makes
533 * the FSR (and hence addr) equal to the updated base address
534 * of the multiple access rather than the restored value.
535 * Switch this message off if we've got a ARM92[02], otherwise
536 * [ls]dm alignment faults are noisy!
537 */
538 #if !(defined CONFIG_CPU_ARM922T) && !(defined CONFIG_CPU_ARM920T)
539 /*
540 * This is a "hint" - we already have eaddr worked out by the
541 * processor for us.
542 */
543 if (addr != eaddr) {
544 printk(KERN_ERR "LDMSTM: PC = %08lx, instr = %08lx, "
545 "addr = %08lx, eaddr = %08lx\n",
546 instruction_pointer(regs), instr, addr, eaddr);
547 show_regs(regs);
548 }
549 #endif
550
551 if (user_mode(regs)) {
552 unsigned int __ua_flags = uaccess_save_and_enable();
553 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
554 regbits >>= 1, rd += 1)
555 if (regbits & 1) {
556 if (LDST_L_BIT(instr)) {
557 unsigned int val;
558 get32t_unaligned_check(val, eaddr);
559 regs->uregs[rd] = val;
560 } else
561 put32t_unaligned_check(regs->uregs[rd], eaddr);
562 eaddr += 4;
563 }
564 uaccess_restore(__ua_flags);
565 } else {
566 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
567 regbits >>= 1, rd += 1)
568 if (regbits & 1) {
569 if (LDST_L_BIT(instr)) {
570 unsigned int val;
571 get32_unaligned_check(val, eaddr);
572 regs->uregs[rd] = val;
573 } else
574 put32_unaligned_check(regs->uregs[rd], eaddr);
575 eaddr += 4;
576 }
577 }
578
579 if (LDST_W_BIT(instr))
580 regs->uregs[rn] = newaddr;
581 if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
582 regs->ARM_pc -= correction;
583 return TYPE_DONE;
584
585 fault:
586 regs->ARM_pc -= correction;
587 return TYPE_FAULT;
588
589 bad:
590 printk(KERN_ERR "Alignment trap: not handling ldm with s-bit set\n");
591 return TYPE_ERROR;
592 }
593
594 /*
595 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
596 * we can reuse ARM userland alignment fault fixups for Thumb.
597 *
598 * This implementation was initially based on the algorithm found in
599 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
600 * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
601 *
602 * NOTES:
603 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
604 * 2. If for some reason we're passed an non-ld/st Thumb instruction to
605 * decode, we return 0xdeadc0de. This should never happen under normal
606 * circumstances but if it does, we've got other problems to deal with
607 * elsewhere and we obviously can't fix those problems here.
608 */
609
610 static unsigned long
thumb2arm(u16 tinstr)611 thumb2arm(u16 tinstr)
612 {
613 u32 L = (tinstr & (1<<11)) >> 11;
614
615 switch ((tinstr & 0xf800) >> 11) {
616 /* 6.5.1 Format 1: */
617 case 0x6000 >> 11: /* 7.1.52 STR(1) */
618 case 0x6800 >> 11: /* 7.1.26 LDR(1) */
619 case 0x7000 >> 11: /* 7.1.55 STRB(1) */
620 case 0x7800 >> 11: /* 7.1.30 LDRB(1) */
621 return 0xe5800000 |
622 ((tinstr & (1<<12)) << (22-12)) | /* fixup */
623 (L<<20) | /* L==1? */
624 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
625 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
626 ((tinstr & (31<<6)) >> /* immed_5 */
627 (6 - ((tinstr & (1<<12)) ? 0 : 2)));
628 case 0x8000 >> 11: /* 7.1.57 STRH(1) */
629 case 0x8800 >> 11: /* 7.1.32 LDRH(1) */
630 return 0xe1c000b0 |
631 (L<<20) | /* L==1? */
632 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
633 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
634 ((tinstr & (7<<6)) >> (6-1)) | /* immed_5[2:0] */
635 ((tinstr & (3<<9)) >> (9-8)); /* immed_5[4:3] */
636
637 /* 6.5.1 Format 2: */
638 case 0x5000 >> 11:
639 case 0x5800 >> 11:
640 {
641 static const u32 subset[8] = {
642 0xe7800000, /* 7.1.53 STR(2) */
643 0xe18000b0, /* 7.1.58 STRH(2) */
644 0xe7c00000, /* 7.1.56 STRB(2) */
645 0xe19000d0, /* 7.1.34 LDRSB */
646 0xe7900000, /* 7.1.27 LDR(2) */
647 0xe19000b0, /* 7.1.33 LDRH(2) */
648 0xe7d00000, /* 7.1.31 LDRB(2) */
649 0xe19000f0 /* 7.1.35 LDRSH */
650 };
651 return subset[(tinstr & (7<<9)) >> 9] |
652 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
653 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
654 ((tinstr & (7<<6)) >> (6-0)); /* Rm */
655 }
656
657 /* 6.5.1 Format 3: */
658 case 0x4800 >> 11: /* 7.1.28 LDR(3) */
659 /* NOTE: This case is not technically possible. We're
660 * loading 32-bit memory data via PC relative
661 * addressing mode. So we can and should eliminate
662 * this case. But I'll leave it here for now.
663 */
664 return 0xe59f0000 |
665 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
666 ((tinstr & 255) << (2-0)); /* immed_8 */
667
668 /* 6.5.1 Format 4: */
669 case 0x9000 >> 11: /* 7.1.54 STR(3) */
670 case 0x9800 >> 11: /* 7.1.29 LDR(4) */
671 return 0xe58d0000 |
672 (L<<20) | /* L==1? */
673 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
674 ((tinstr & 255) << 2); /* immed_8 */
675
676 /* 6.6.1 Format 1: */
677 case 0xc000 >> 11: /* 7.1.51 STMIA */
678 case 0xc800 >> 11: /* 7.1.25 LDMIA */
679 {
680 u32 Rn = (tinstr & (7<<8)) >> 8;
681 u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
682
683 return 0xe8800000 | W | (L<<20) | (Rn<<16) |
684 (tinstr&255);
685 }
686
687 /* 6.6.1 Format 2: */
688 case 0xb000 >> 11: /* 7.1.48 PUSH */
689 case 0xb800 >> 11: /* 7.1.47 POP */
690 if ((tinstr & (3 << 9)) == 0x0400) {
691 static const u32 subset[4] = {
692 0xe92d0000, /* STMDB sp!,{registers} */
693 0xe92d4000, /* STMDB sp!,{registers,lr} */
694 0xe8bd0000, /* LDMIA sp!,{registers} */
695 0xe8bd8000 /* LDMIA sp!,{registers,pc} */
696 };
697 return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
698 (tinstr & 255); /* register_list */
699 }
700 /* Else fall through for illegal instruction case */
701
702 default:
703 return BAD_INSTR;
704 }
705 }
706
707 /*
708 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
709 * handlable by ARM alignment handler, also find the corresponding handler,
710 * so that we can reuse ARM userland alignment fault fixups for Thumb.
711 *
712 * @pinstr: original Thumb-2 instruction; returns new handlable instruction
713 * @regs: register context.
714 * @poffset: return offset from faulted addr for later writeback
715 *
716 * NOTES:
717 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
718 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
719 */
720 static void *
do_alignment_t32_to_handler(unsigned long * pinstr,struct pt_regs * regs,union offset_union * poffset)721 do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs,
722 union offset_union *poffset)
723 {
724 unsigned long instr = *pinstr;
725 u16 tinst1 = (instr >> 16) & 0xffff;
726 u16 tinst2 = instr & 0xffff;
727
728 switch (tinst1 & 0xffe0) {
729 /* A6.3.5 Load/Store multiple */
730 case 0xe880: /* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
731 case 0xe8a0: /* ...above writeback version */
732 case 0xe900: /* STMDB/STMFD, LDMDB/LDMEA */
733 case 0xe920: /* ...above writeback version */
734 /* no need offset decision since handler calculates it */
735 return do_alignment_ldmstm;
736
737 case 0xf840: /* POP/PUSH T3 (single register) */
738 if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
739 u32 L = !!(LDST_L_BIT(instr));
740 const u32 subset[2] = {
741 0xe92d0000, /* STMDB sp!,{registers} */
742 0xe8bd0000, /* LDMIA sp!,{registers} */
743 };
744 *pinstr = subset[L] | (1<<RD_BITS(instr));
745 return do_alignment_ldmstm;
746 }
747 /* Else fall through for illegal instruction case */
748 break;
749
750 /* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
751 case 0xe860:
752 case 0xe960:
753 case 0xe8e0:
754 case 0xe9e0:
755 poffset->un = (tinst2 & 0xff) << 2;
756 case 0xe940:
757 case 0xe9c0:
758 return do_alignment_ldrdstrd;
759
760 /*
761 * No need to handle load/store instructions up to word size
762 * since ARMv6 and later CPUs can perform unaligned accesses.
763 */
764 default:
765 break;
766 }
767 return NULL;
768 }
769
770 static int
do_alignment(unsigned long addr,unsigned int fsr,struct pt_regs * regs)771 do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
772 {
773 union offset_union uninitialized_var(offset);
774 unsigned long instr = 0, instrptr;
775 int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs);
776 unsigned int type;
777 unsigned int fault;
778 u16 tinstr = 0;
779 int isize = 4;
780 int thumb2_32b = 0;
781
782 if (interrupts_enabled(regs))
783 local_irq_enable();
784
785 instrptr = instruction_pointer(regs);
786
787 if (thumb_mode(regs)) {
788 u16 *ptr = (u16 *)(instrptr & ~1);
789 fault = probe_kernel_address(ptr, tinstr);
790 tinstr = __mem_to_opcode_thumb16(tinstr);
791 if (!fault) {
792 if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
793 IS_T32(tinstr)) {
794 /* Thumb-2 32-bit */
795 u16 tinst2 = 0;
796 fault = probe_kernel_address(ptr + 1, tinst2);
797 tinst2 = __mem_to_opcode_thumb16(tinst2);
798 instr = __opcode_thumb32_compose(tinstr, tinst2);
799 thumb2_32b = 1;
800 } else {
801 isize = 2;
802 instr = thumb2arm(tinstr);
803 }
804 }
805 } else {
806 fault = probe_kernel_address(instrptr, instr);
807 instr = __mem_to_opcode_arm(instr);
808 }
809
810 if (fault) {
811 type = TYPE_FAULT;
812 goto bad_or_fault;
813 }
814
815 if (user_mode(regs))
816 goto user;
817
818 ai_sys += 1;
819 ai_sys_last_pc = (void *)instruction_pointer(regs);
820
821 fixup:
822
823 regs->ARM_pc += isize;
824
825 switch (CODING_BITS(instr)) {
826 case 0x00000000: /* 3.13.4 load/store instruction extensions */
827 if (LDSTHD_I_BIT(instr))
828 offset.un = (instr & 0xf00) >> 4 | (instr & 15);
829 else
830 offset.un = regs->uregs[RM_BITS(instr)];
831
832 if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
833 (instr & 0x001000f0) == 0x001000f0) /* LDRSH */
834 handler = do_alignment_ldrhstrh;
835 else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
836 (instr & 0x001000f0) == 0x000000f0) /* STRD */
837 handler = do_alignment_ldrdstrd;
838 else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
839 goto swp;
840 else
841 goto bad;
842 break;
843
844 case 0x04000000: /* ldr or str immediate */
845 if (COND_BITS(instr) == 0xf0000000) /* NEON VLDn, VSTn */
846 goto bad;
847 offset.un = OFFSET_BITS(instr);
848 handler = do_alignment_ldrstr;
849 break;
850
851 case 0x06000000: /* ldr or str register */
852 offset.un = regs->uregs[RM_BITS(instr)];
853
854 if (IS_SHIFT(instr)) {
855 unsigned int shiftval = SHIFT_BITS(instr);
856
857 switch(SHIFT_TYPE(instr)) {
858 case SHIFT_LSL:
859 offset.un <<= shiftval;
860 break;
861
862 case SHIFT_LSR:
863 offset.un >>= shiftval;
864 break;
865
866 case SHIFT_ASR:
867 offset.sn >>= shiftval;
868 break;
869
870 case SHIFT_RORRRX:
871 if (shiftval == 0) {
872 offset.un >>= 1;
873 if (regs->ARM_cpsr & PSR_C_BIT)
874 offset.un |= 1 << 31;
875 } else
876 offset.un = offset.un >> shiftval |
877 offset.un << (32 - shiftval);
878 break;
879 }
880 }
881 handler = do_alignment_ldrstr;
882 break;
883
884 case 0x08000000: /* ldm or stm, or thumb-2 32bit instruction */
885 if (thumb2_32b) {
886 offset.un = 0;
887 handler = do_alignment_t32_to_handler(&instr, regs, &offset);
888 } else {
889 offset.un = 0;
890 handler = do_alignment_ldmstm;
891 }
892 break;
893
894 default:
895 goto bad;
896 }
897
898 if (!handler)
899 goto bad;
900 type = handler(addr, instr, regs);
901
902 if (type == TYPE_ERROR || type == TYPE_FAULT) {
903 regs->ARM_pc -= isize;
904 goto bad_or_fault;
905 }
906
907 if (type == TYPE_LDST)
908 do_alignment_finish_ldst(addr, instr, regs, offset);
909
910 return 0;
911
912 bad_or_fault:
913 if (type == TYPE_ERROR)
914 goto bad;
915 /*
916 * We got a fault - fix it up, or die.
917 */
918 do_bad_area(addr, fsr, regs);
919 return 0;
920
921 swp:
922 printk(KERN_ERR "Alignment trap: not handling swp instruction\n");
923
924 bad:
925 /*
926 * Oops, we didn't handle the instruction.
927 */
928 printk(KERN_ERR "Alignment trap: not handling instruction "
929 "%0*lx at [<%08lx>]\n",
930 isize << 1,
931 isize == 2 ? tinstr : instr, instrptr);
932 ai_skipped += 1;
933 return 1;
934
935 user:
936 ai_user += 1;
937
938 if (ai_usermode & UM_WARN)
939 printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx "
940 "Address=0x%08lx FSR 0x%03x\n", current->comm,
941 task_pid_nr(current), instrptr,
942 isize << 1,
943 isize == 2 ? tinstr : instr,
944 addr, fsr);
945
946 if (ai_usermode & UM_FIXUP)
947 goto fixup;
948
949 if (ai_usermode & UM_SIGNAL) {
950 siginfo_t si;
951
952 si.si_signo = SIGBUS;
953 si.si_errno = 0;
954 si.si_code = BUS_ADRALN;
955 si.si_addr = (void __user *)addr;
956
957 force_sig_info(si.si_signo, &si, current);
958 } else {
959 /*
960 * We're about to disable the alignment trap and return to
961 * user space. But if an interrupt occurs before actually
962 * reaching user space, then the IRQ vector entry code will
963 * notice that we were still in kernel space and therefore
964 * the alignment trap won't be re-enabled in that case as it
965 * is presumed to be always on from kernel space.
966 * Let's prevent that race by disabling interrupts here (they
967 * are disabled on the way back to user space anyway in
968 * entry-common.S) and disable the alignment trap only if
969 * there is no work pending for this thread.
970 */
971 raw_local_irq_disable();
972 if (!(current_thread_info()->flags & _TIF_WORK_MASK))
973 set_cr(cr_no_alignment);
974 }
975
976 return 0;
977 }
978
noalign_setup(char * __unused)979 static int __init noalign_setup(char *__unused)
980 {
981 set_cr(__clear_cr(CR_A));
982 return 1;
983 }
984 __setup("noalign", noalign_setup);
985
986 /*
987 * This needs to be done after sysctl_init, otherwise sys/ will be
988 * overwritten. Actually, this shouldn't be in sys/ at all since
989 * it isn't a sysctl, and it doesn't contain sysctl information.
990 * We now locate it in /proc/cpu/alignment instead.
991 */
alignment_init(void)992 static int __init alignment_init(void)
993 {
994 #ifdef CONFIG_PROC_FS
995 struct proc_dir_entry *res;
996
997 res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
998 &alignment_proc_fops);
999 if (!res)
1000 return -ENOMEM;
1001 #endif
1002
1003 if (cpu_is_v6_unaligned()) {
1004 set_cr(__clear_cr(CR_A));
1005 ai_usermode = safe_usermode(ai_usermode, false);
1006 }
1007
1008 cr_no_alignment = get_cr() & ~CR_A;
1009
1010 hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
1011 "alignment exception");
1012
1013 /*
1014 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
1015 * fault, not as alignment error.
1016 *
1017 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
1018 * needed.
1019 */
1020 if (cpu_architecture() <= CPU_ARCH_ARMv6) {
1021 hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
1022 "alignment exception");
1023 }
1024
1025 return 0;
1026 }
1027
1028 fs_initcall(alignment_init);
1029