• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 #include <linux/export.h>
24 
25 #include <asm/cp15.h>
26 #include <asm/cputype.h>
27 #include <asm/system_info.h>
28 #include <asm/thread_notify.h>
29 #include <asm/vfp.h>
30 
31 #include "vfpinstr.h"
32 #include "vfp.h"
33 
34 /*
35  * Our undef handlers (in entry.S)
36  */
37 void vfp_testing_entry(void);
38 void vfp_support_entry(void);
39 void vfp_null_entry(void);
40 
41 void (*vfp_vector)(void) = vfp_null_entry;
42 
43 /*
44  * Dual-use variable.
45  * Used in startup: set to non-zero if VFP checks fail
46  * After startup, holds VFP architecture
47  */
48 unsigned int VFP_arch;
49 
50 /*
51  * The pointer to the vfpstate structure of the thread which currently
52  * owns the context held in the VFP hardware, or NULL if the hardware
53  * context is invalid.
54  *
55  * For UP, this is sufficient to tell which thread owns the VFP context.
56  * However, for SMP, we also need to check the CPU number stored in the
57  * saved state too to catch migrations.
58  */
59 union vfp_state *vfp_current_hw_state[NR_CPUS];
60 
61 /*
62  * Is 'thread's most up to date state stored in this CPUs hardware?
63  * Must be called from non-preemptible context.
64  */
vfp_state_in_hw(unsigned int cpu,struct thread_info * thread)65 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
66 {
67 #ifdef CONFIG_SMP
68 	if (thread->vfpstate.hard.cpu != cpu)
69 		return false;
70 #endif
71 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
72 }
73 
74 /*
75  * Force a reload of the VFP context from the thread structure.  We do
76  * this by ensuring that access to the VFP hardware is disabled, and
77  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
78  */
vfp_force_reload(unsigned int cpu,struct thread_info * thread)79 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
80 {
81 	if (vfp_state_in_hw(cpu, thread)) {
82 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 		vfp_current_hw_state[cpu] = NULL;
84 	}
85 #ifdef CONFIG_SMP
86 	thread->vfpstate.hard.cpu = NR_CPUS;
87 #endif
88 }
89 
90 /*
91  * Per-thread VFP initialization.
92  */
vfp_thread_flush(struct thread_info * thread)93 static void vfp_thread_flush(struct thread_info *thread)
94 {
95 	union vfp_state *vfp = &thread->vfpstate;
96 	unsigned int cpu;
97 
98 	/*
99 	 * Disable VFP to ensure we initialize it first.  We must ensure
100 	 * that the modification of vfp_current_hw_state[] and hardware
101 	 * disable are done for the same CPU and without preemption.
102 	 *
103 	 * Do this first to ensure that preemption won't overwrite our
104 	 * state saving should access to the VFP be enabled at this point.
105 	 */
106 	cpu = get_cpu();
107 	if (vfp_current_hw_state[cpu] == vfp)
108 		vfp_current_hw_state[cpu] = NULL;
109 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
110 	put_cpu();
111 
112 	memset(vfp, 0, sizeof(union vfp_state));
113 
114 	vfp->hard.fpexc = FPEXC_EN;
115 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
116 #ifdef CONFIG_SMP
117 	vfp->hard.cpu = NR_CPUS;
118 #endif
119 }
120 
vfp_thread_exit(struct thread_info * thread)121 static void vfp_thread_exit(struct thread_info *thread)
122 {
123 	/* release case: Per-thread VFP cleanup. */
124 	union vfp_state *vfp = &thread->vfpstate;
125 	unsigned int cpu = get_cpu();
126 
127 	if (vfp_current_hw_state[cpu] == vfp)
128 		vfp_current_hw_state[cpu] = NULL;
129 	put_cpu();
130 }
131 
vfp_thread_copy(struct thread_info * thread)132 static void vfp_thread_copy(struct thread_info *thread)
133 {
134 	struct thread_info *parent = current_thread_info();
135 
136 	vfp_sync_hwstate(parent);
137 	thread->vfpstate = parent->vfpstate;
138 #ifdef CONFIG_SMP
139 	thread->vfpstate.hard.cpu = NR_CPUS;
140 #endif
141 }
142 
143 /*
144  * When this function is called with the following 'cmd's, the following
145  * is true while this function is being run:
146  *  THREAD_NOFTIFY_SWTICH:
147  *   - the previously running thread will not be scheduled onto another CPU.
148  *   - the next thread to be run (v) will not be running on another CPU.
149  *   - thread->cpu is the local CPU number
150  *   - not preemptible as we're called in the middle of a thread switch
151  *  THREAD_NOTIFY_FLUSH:
152  *   - the thread (v) will be running on the local CPU, so
153  *	v === current_thread_info()
154  *   - thread->cpu is the local CPU number at the time it is accessed,
155  *	but may change at any time.
156  *   - we could be preempted if tree preempt rcu is enabled, so
157  *	it is unsafe to use thread->cpu.
158  *  THREAD_NOTIFY_EXIT
159  *   - we could be preempted if tree preempt rcu is enabled, so
160  *	it is unsafe to use thread->cpu.
161  */
vfp_notifier(struct notifier_block * self,unsigned long cmd,void * v)162 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
163 {
164 	struct thread_info *thread = v;
165 	u32 fpexc;
166 #ifdef CONFIG_SMP
167 	unsigned int cpu;
168 #endif
169 
170 	switch (cmd) {
171 	case THREAD_NOTIFY_SWITCH:
172 		fpexc = fmrx(FPEXC);
173 
174 #ifdef CONFIG_SMP
175 		cpu = thread->cpu;
176 
177 		/*
178 		 * On SMP, if VFP is enabled, save the old state in
179 		 * case the thread migrates to a different CPU. The
180 		 * restoring is done lazily.
181 		 */
182 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
183 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
184 #endif
185 
186 		/*
187 		 * Always disable VFP so we can lazily save/restore the
188 		 * old state.
189 		 */
190 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
191 		break;
192 
193 	case THREAD_NOTIFY_FLUSH:
194 		vfp_thread_flush(thread);
195 		break;
196 
197 	case THREAD_NOTIFY_EXIT:
198 		vfp_thread_exit(thread);
199 		break;
200 
201 	case THREAD_NOTIFY_COPY:
202 		vfp_thread_copy(thread);
203 		break;
204 	}
205 
206 	return NOTIFY_DONE;
207 }
208 
209 static struct notifier_block vfp_notifier_block = {
210 	.notifier_call	= vfp_notifier,
211 };
212 
213 /*
214  * Raise a SIGFPE for the current process.
215  * sicode describes the signal being raised.
216  */
vfp_raise_sigfpe(unsigned int sicode,struct pt_regs * regs)217 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
218 {
219 	siginfo_t info;
220 
221 	memset(&info, 0, sizeof(info));
222 
223 	info.si_signo = SIGFPE;
224 	info.si_code = sicode;
225 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
226 
227 	/*
228 	 * This is the same as NWFPE, because it's not clear what
229 	 * this is used for
230 	 */
231 	current->thread.error_code = 0;
232 	current->thread.trap_no = 6;
233 
234 	send_sig_info(SIGFPE, &info, current);
235 }
236 
vfp_panic(char * reason,u32 inst)237 static void vfp_panic(char *reason, u32 inst)
238 {
239 	int i;
240 
241 	pr_err("VFP: Error: %s\n", reason);
242 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
243 		fmrx(FPEXC), fmrx(FPSCR), inst);
244 	for (i = 0; i < 32; i += 2)
245 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
246 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
247 }
248 
249 /*
250  * Process bitmask of exception conditions.
251  */
vfp_raise_exceptions(u32 exceptions,u32 inst,u32 fpscr,struct pt_regs * regs)252 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
253 {
254 	int si_code = 0;
255 
256 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
257 
258 	if (exceptions == VFP_EXCEPTION_ERROR) {
259 		vfp_panic("unhandled bounce", inst);
260 		vfp_raise_sigfpe(0, regs);
261 		return;
262 	}
263 
264 	/*
265 	 * If any of the status flags are set, update the FPSCR.
266 	 * Comparison instructions always return at least one of
267 	 * these flags set.
268 	 */
269 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
270 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
271 
272 	fpscr |= exceptions;
273 
274 	fmxr(FPSCR, fpscr);
275 
276 #define RAISE(stat,en,sig)				\
277 	if (exceptions & stat && fpscr & en)		\
278 		si_code = sig;
279 
280 	/*
281 	 * These are arranged in priority order, least to highest.
282 	 */
283 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
284 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
285 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
286 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
287 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
288 
289 	if (si_code)
290 		vfp_raise_sigfpe(si_code, regs);
291 }
292 
293 /*
294  * Emulate a VFP instruction.
295  */
vfp_emulate_instruction(u32 inst,u32 fpscr,struct pt_regs * regs)296 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
297 {
298 	u32 exceptions = VFP_EXCEPTION_ERROR;
299 
300 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
301 
302 	if (INST_CPRTDO(inst)) {
303 		if (!INST_CPRT(inst)) {
304 			/*
305 			 * CPDO
306 			 */
307 			if (vfp_single(inst)) {
308 				exceptions = vfp_single_cpdo(inst, fpscr);
309 			} else {
310 				exceptions = vfp_double_cpdo(inst, fpscr);
311 			}
312 		} else {
313 			/*
314 			 * A CPRT instruction can not appear in FPINST2, nor
315 			 * can it cause an exception.  Therefore, we do not
316 			 * have to emulate it.
317 			 */
318 		}
319 	} else {
320 		/*
321 		 * A CPDT instruction can not appear in FPINST2, nor can
322 		 * it cause an exception.  Therefore, we do not have to
323 		 * emulate it.
324 		 */
325 	}
326 	return exceptions & ~VFP_NAN_FLAG;
327 }
328 
329 /*
330  * Package up a bounce condition.
331  */
VFP_bounce(u32 trigger,u32 fpexc,struct pt_regs * regs)332 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
333 {
334 	u32 fpscr, orig_fpscr, fpsid, exceptions;
335 
336 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
337 
338 	/*
339 	 * At this point, FPEXC can have the following configuration:
340 	 *
341 	 *  EX DEX IXE
342 	 *  0   1   x   - synchronous exception
343 	 *  1   x   0   - asynchronous exception
344 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
345 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
346 	 *                implementation), undefined otherwise
347 	 *
348 	 * Clear various bits and enable access to the VFP so we can
349 	 * handle the bounce.
350 	 */
351 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
352 
353 	fpsid = fmrx(FPSID);
354 	orig_fpscr = fpscr = fmrx(FPSCR);
355 
356 	/*
357 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
358 	 */
359 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
360 	    && (fpscr & FPSCR_IXE)) {
361 		/*
362 		 * Synchronous exception, emulate the trigger instruction
363 		 */
364 		goto emulate;
365 	}
366 
367 	if (fpexc & FPEXC_EX) {
368 #ifndef CONFIG_CPU_FEROCEON
369 		/*
370 		 * Asynchronous exception. The instruction is read from FPINST
371 		 * and the interrupted instruction has to be restarted.
372 		 */
373 		trigger = fmrx(FPINST);
374 		regs->ARM_pc -= 4;
375 #endif
376 	} else if (!(fpexc & FPEXC_DEX)) {
377 		/*
378 		 * Illegal combination of bits. It can be caused by an
379 		 * unallocated VFP instruction but with FPSCR.IXE set and not
380 		 * on VFP subarch 1.
381 		 */
382 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
383 		goto exit;
384 	}
385 
386 	/*
387 	 * Modify fpscr to indicate the number of iterations remaining.
388 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
389 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
390 	 */
391 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
392 		u32 len;
393 
394 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
395 
396 		fpscr &= ~FPSCR_LENGTH_MASK;
397 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
398 	}
399 
400 	/*
401 	 * Handle the first FP instruction.  We used to take note of the
402 	 * FPEXC bounce reason, but this appears to be unreliable.
403 	 * Emulate the bounced instruction instead.
404 	 */
405 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
406 	if (exceptions)
407 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
408 
409 	/*
410 	 * If there isn't a second FP instruction, exit now. Note that
411 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
412 	 */
413 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
414 		goto exit;
415 
416 	/*
417 	 * The barrier() here prevents fpinst2 being read
418 	 * before the condition above.
419 	 */
420 	barrier();
421 	trigger = fmrx(FPINST2);
422 
423  emulate:
424 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
425 	if (exceptions)
426 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
427  exit:
428 	preempt_enable();
429 }
430 
vfp_enable(void * unused)431 static void vfp_enable(void *unused)
432 {
433 	u32 access;
434 
435 	BUG_ON(preemptible());
436 	access = get_copro_access();
437 
438 	/*
439 	 * Enable full access to VFP (cp10 and cp11)
440 	 */
441 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
442 }
443 
444 #ifdef CONFIG_CPU_PM
vfp_pm_suspend(void)445 static int vfp_pm_suspend(void)
446 {
447 	struct thread_info *ti = current_thread_info();
448 	u32 fpexc = fmrx(FPEXC);
449 
450 	/* if vfp is on, then save state for resumption */
451 	if (fpexc & FPEXC_EN) {
452 		pr_debug("%s: saving vfp state\n", __func__);
453 		vfp_save_state(&ti->vfpstate, fpexc);
454 
455 		/* disable, just in case */
456 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
457 	} else if (vfp_current_hw_state[ti->cpu]) {
458 #ifndef CONFIG_SMP
459 		fmxr(FPEXC, fpexc | FPEXC_EN);
460 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
461 		fmxr(FPEXC, fpexc);
462 #endif
463 	}
464 
465 	/* clear any information we had about last context state */
466 	vfp_current_hw_state[ti->cpu] = NULL;
467 
468 	return 0;
469 }
470 
vfp_pm_resume(void)471 static void vfp_pm_resume(void)
472 {
473 	/* ensure we have access to the vfp */
474 	vfp_enable(NULL);
475 
476 	/* and disable it to ensure the next usage restores the state */
477 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
478 }
479 
vfp_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)480 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
481 	void *v)
482 {
483 	switch (cmd) {
484 	case CPU_PM_ENTER:
485 		vfp_pm_suspend();
486 		break;
487 	case CPU_PM_ENTER_FAILED:
488 	case CPU_PM_EXIT:
489 		vfp_pm_resume();
490 		break;
491 	}
492 	return NOTIFY_OK;
493 }
494 
495 static struct notifier_block vfp_cpu_pm_notifier_block = {
496 	.notifier_call = vfp_cpu_pm_notifier,
497 };
498 
vfp_pm_init(void)499 static void vfp_pm_init(void)
500 {
501 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
502 }
503 
504 #else
vfp_pm_init(void)505 static inline void vfp_pm_init(void) { }
506 #endif /* CONFIG_CPU_PM */
507 
508 /*
509  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
510  * with the hardware state.
511  */
vfp_sync_hwstate(struct thread_info * thread)512 void vfp_sync_hwstate(struct thread_info *thread)
513 {
514 	unsigned int cpu = get_cpu();
515 
516 	if (vfp_state_in_hw(cpu, thread)) {
517 		u32 fpexc = fmrx(FPEXC);
518 
519 		/*
520 		 * Save the last VFP state on this CPU.
521 		 */
522 		fmxr(FPEXC, fpexc | FPEXC_EN);
523 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
524 		fmxr(FPEXC, fpexc);
525 	}
526 
527 	put_cpu();
528 }
529 
530 /* Ensure that the thread reloads the hardware VFP state on the next use. */
vfp_flush_hwstate(struct thread_info * thread)531 void vfp_flush_hwstate(struct thread_info *thread)
532 {
533 	unsigned int cpu = get_cpu();
534 
535 	vfp_force_reload(cpu, thread);
536 
537 	put_cpu();
538 }
539 
540 /*
541  * Save the current VFP state into the provided structures and prepare
542  * for entry into a new function (signal handler).
543  */
vfp_preserve_user_clear_hwstate(struct user_vfp __user * ufp,struct user_vfp_exc __user * ufp_exc)544 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
545 				    struct user_vfp_exc __user *ufp_exc)
546 {
547 	struct thread_info *thread = current_thread_info();
548 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
549 	int err = 0;
550 
551 	/* Ensure that the saved hwstate is up-to-date. */
552 	vfp_sync_hwstate(thread);
553 
554 	/*
555 	 * Copy the floating point registers. There can be unused
556 	 * registers see asm/hwcap.h for details.
557 	 */
558 	err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
559 			      sizeof(hwstate->fpregs));
560 	/*
561 	 * Copy the status and control register.
562 	 */
563 	__put_user_error(hwstate->fpscr, &ufp->fpscr, err);
564 
565 	/*
566 	 * Copy the exception registers.
567 	 */
568 	__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
569 	__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
570 	__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
571 
572 	if (err)
573 		return -EFAULT;
574 
575 	/* Ensure that VFP is disabled. */
576 	vfp_flush_hwstate(thread);
577 
578 	/*
579 	 * As per the PCS, clear the length and stride bits for function
580 	 * entry.
581 	 */
582 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583 	return 0;
584 }
585 
586 /* Sanitise and restore the current VFP state from the provided structures. */
vfp_restore_user_hwstate(struct user_vfp __user * ufp,struct user_vfp_exc __user * ufp_exc)587 int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
588 			     struct user_vfp_exc __user *ufp_exc)
589 {
590 	struct thread_info *thread = current_thread_info();
591 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
592 	unsigned long fpexc;
593 	int err = 0;
594 
595 	/* Disable VFP to avoid corrupting the new thread state. */
596 	vfp_flush_hwstate(thread);
597 
598 	/*
599 	 * Copy the floating point registers. There can be unused
600 	 * registers see asm/hwcap.h for details.
601 	 */
602 	err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
603 				sizeof(hwstate->fpregs));
604 	/*
605 	 * Copy the status and control register.
606 	 */
607 	__get_user_error(hwstate->fpscr, &ufp->fpscr, err);
608 
609 	/*
610 	 * Sanitise and restore the exception registers.
611 	 */
612 	__get_user_error(fpexc, &ufp_exc->fpexc, err);
613 
614 	/* Ensure the VFP is enabled. */
615 	fpexc |= FPEXC_EN;
616 
617 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
618 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
619 	hwstate->fpexc = fpexc;
620 
621 	__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
622 	__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
623 
624 	return err ? -EFAULT : 0;
625 }
626 
627 /*
628  * VFP hardware can lose all context when a CPU goes offline.
629  * As we will be running in SMP mode with CPU hotplug, we will save the
630  * hardware state at every thread switch.  We clear our held state when
631  * a CPU has been killed, indicating that the VFP hardware doesn't contain
632  * a threads VFP state.  When a CPU starts up, we re-enable access to the
633  * VFP hardware.
634  *
635  * Both CPU_DYING and CPU_STARTING are called on the CPU which
636  * is being offlined/onlined.
637  */
vfp_hotplug(struct notifier_block * b,unsigned long action,void * hcpu)638 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
639 	void *hcpu)
640 {
641 	if (action == CPU_DYING || action == CPU_DYING_FROZEN)
642 		vfp_current_hw_state[(long)hcpu] = NULL;
643 	else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
644 		vfp_enable(NULL);
645 	return NOTIFY_OK;
646 }
647 
vfp_kmode_exception(void)648 void vfp_kmode_exception(void)
649 {
650 	/*
651 	 * If we reach this point, a floating point exception has been raised
652 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
653 	 * time, it means a VFP instruction has been issued that requires
654 	 * software assistance to complete, something which is not currently
655 	 * supported in kernel mode.
656 	 * If the NEON/VFP unit was disabled, and the location pointed to below
657 	 * is properly preceded by a call to kernel_neon_begin(), something has
658 	 * caused the task to be scheduled out and back in again. In this case,
659 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
660 	 * be helpful in localizing the problem.
661 	 */
662 	if (fmrx(FPEXC) & FPEXC_EN)
663 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
664 	else
665 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
666 }
667 
668 #ifdef CONFIG_KERNEL_MODE_NEON
669 
670 /*
671  * Kernel-side NEON support functions
672  */
kernel_neon_begin(void)673 void kernel_neon_begin(void)
674 {
675 	struct thread_info *thread = current_thread_info();
676 	unsigned int cpu;
677 	u32 fpexc;
678 
679 	/*
680 	 * Kernel mode NEON is only allowed outside of interrupt context
681 	 * with preemption disabled. This will make sure that the kernel
682 	 * mode NEON register contents never need to be preserved.
683 	 */
684 	BUG_ON(in_interrupt());
685 	cpu = get_cpu();
686 
687 	fpexc = fmrx(FPEXC) | FPEXC_EN;
688 	fmxr(FPEXC, fpexc);
689 
690 	/*
691 	 * Save the userland NEON/VFP state. Under UP,
692 	 * the owner could be a task other than 'current'
693 	 */
694 	if (vfp_state_in_hw(cpu, thread))
695 		vfp_save_state(&thread->vfpstate, fpexc);
696 #ifndef CONFIG_SMP
697 	else if (vfp_current_hw_state[cpu] != NULL)
698 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
699 #endif
700 	vfp_current_hw_state[cpu] = NULL;
701 }
702 EXPORT_SYMBOL(kernel_neon_begin);
703 
kernel_neon_end(void)704 void kernel_neon_end(void)
705 {
706 	/* Disable the NEON/VFP unit. */
707 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
708 	put_cpu();
709 }
710 EXPORT_SYMBOL(kernel_neon_end);
711 
712 #endif /* CONFIG_KERNEL_MODE_NEON */
713 
714 /*
715  * VFP support code initialisation.
716  */
vfp_init(void)717 static int __init vfp_init(void)
718 {
719 	unsigned int vfpsid;
720 	unsigned int cpu_arch = cpu_architecture();
721 
722 	if (cpu_arch >= CPU_ARCH_ARMv6)
723 		on_each_cpu(vfp_enable, NULL, 1);
724 
725 	/*
726 	 * First check that there is a VFP that we can use.
727 	 * The handler is already setup to just log calls, so
728 	 * we just need to read the VFPSID register.
729 	 */
730 	vfp_vector = vfp_testing_entry;
731 	barrier();
732 	vfpsid = fmrx(FPSID);
733 	barrier();
734 	vfp_vector = vfp_null_entry;
735 
736 	pr_info("VFP support v0.3: ");
737 	if (VFP_arch)
738 		pr_cont("not present\n");
739 	else if (vfpsid & FPSID_NODOUBLE) {
740 		pr_cont("no double precision support\n");
741 	} else {
742 		hotcpu_notifier(vfp_hotplug, 0);
743 
744 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
745 		pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
746 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
747 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
748 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
749 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
750 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
751 
752 		vfp_vector = vfp_support_entry;
753 
754 		thread_register_notifier(&vfp_notifier_block);
755 		vfp_pm_init();
756 
757 		/*
758 		 * We detected VFP, and the support code is
759 		 * in place; report VFP support to userspace.
760 		 */
761 		elf_hwcap |= HWCAP_VFP;
762 #ifdef CONFIG_VFPv3
763 		if (VFP_arch >= 2) {
764 			elf_hwcap |= HWCAP_VFPv3;
765 
766 			/*
767 			 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
768 			 * this configuration only have 16 x 64bit
769 			 * registers.
770 			 */
771 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
772 				elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */
773 			else
774 				elf_hwcap |= HWCAP_VFPD32;
775 		}
776 #endif
777 		/*
778 		 * Check for the presence of the Advanced SIMD
779 		 * load/store instructions, integer and single
780 		 * precision floating point operations. Only check
781 		 * for NEON if the hardware has the MVFR registers.
782 		 */
783 		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
784 #ifdef CONFIG_NEON
785 			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
786 				elf_hwcap |= HWCAP_NEON;
787 #endif
788 #ifdef CONFIG_VFPv3
789 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
790 				elf_hwcap |= HWCAP_VFPv4;
791 #endif
792 		}
793 	}
794 	return 0;
795 }
796 
797 core_initcall(vfp_init);
798