1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20
21 #include <asm/page.h>
22 #include <asm/memory.h>
23
24 /*
25 * As we only have the TTBR0_EL2 register, we cannot express
26 * "negative" addresses. This makes it impossible to directly share
27 * mappings with the kernel.
28 *
29 * Instead, give the HYP mode its own VA region at a fixed offset from
30 * the kernel by just masking the top bits (which are all ones for a
31 * kernel address).
32 */
33 #define HYP_PAGE_OFFSET_SHIFT VA_BITS
34 #define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
35 #define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
36
37 /*
38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
39 * shared across all the page-tables. Conveniently, we use the last
40 * possible page, where no kernel mapping will ever exist.
41 */
42 #define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
43
44 /*
45 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
46 * levels in addition to the PGD and potentially the PUD which are
47 * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
48 * tables use one level of tables less than the kernel.
49 */
50 #ifdef CONFIG_ARM64_64K_PAGES
51 #define KVM_MMU_CACHE_MIN_PAGES 1
52 #else
53 #define KVM_MMU_CACHE_MIN_PAGES 2
54 #endif
55
56 #ifdef __ASSEMBLY__
57
58 /*
59 * Convert a kernel VA into a HYP VA.
60 * reg: VA to be converted.
61 */
62 .macro kern_hyp_va reg
63 and \reg, \reg, #HYP_PAGE_OFFSET_MASK
64 .endm
65
66 #else
67
68 #include <asm/pgalloc.h>
69 #include <asm/cachetype.h>
70 #include <asm/cacheflush.h>
71
72 #define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
73
74 /*
75 * We currently only support a 40bit IPA.
76 */
77 #define KVM_PHYS_SHIFT (40)
78 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
79 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
80
81 int create_hyp_mappings(void *from, void *to);
82 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
83 void free_boot_hyp_pgd(void);
84 void free_hyp_pgds(void);
85
86 void stage2_unmap_vm(struct kvm *kvm);
87 int kvm_alloc_stage2_pgd(struct kvm *kvm);
88 void kvm_free_stage2_pgd(struct kvm *kvm);
89 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
90 phys_addr_t pa, unsigned long size, bool writable);
91
92 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
93
94 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
95
96 phys_addr_t kvm_mmu_get_httbr(void);
97 phys_addr_t kvm_mmu_get_boot_httbr(void);
98 phys_addr_t kvm_get_idmap_vector(void);
99 int kvm_mmu_init(void);
100 void kvm_clear_hyp_idmap(void);
101
102 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
103 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
104
kvm_clean_pgd(pgd_t * pgd)105 static inline void kvm_clean_pgd(pgd_t *pgd) {}
kvm_clean_pmd(pmd_t * pmd)106 static inline void kvm_clean_pmd(pmd_t *pmd) {}
kvm_clean_pmd_entry(pmd_t * pmd)107 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
kvm_clean_pte(pte_t * pte)108 static inline void kvm_clean_pte(pte_t *pte) {}
kvm_clean_pte_entry(pte_t * pte)109 static inline void kvm_clean_pte_entry(pte_t *pte) {}
110
kvm_set_s2pte_writable(pte_t * pte)111 static inline void kvm_set_s2pte_writable(pte_t *pte)
112 {
113 pte_val(*pte) |= PTE_S2_RDWR;
114 }
115
kvm_set_s2pmd_writable(pmd_t * pmd)116 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
117 {
118 pmd_val(*pmd) |= PMD_S2_RDWR;
119 }
120
121 #define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
122 #define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
123 #define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)
124
125 /*
126 * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
127 * the entire IPA input range with a single pgd entry, and we would only need
128 * one pgd entry. Note that in this case, the pgd is actually not used by
129 * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
130 * structure for the kernel pgtable macros to work.
131 */
132 #if PGDIR_SHIFT > KVM_PHYS_SHIFT
133 #define PTRS_PER_S2_PGD_SHIFT 0
134 #else
135 #define PTRS_PER_S2_PGD_SHIFT (KVM_PHYS_SHIFT - PGDIR_SHIFT)
136 #endif
137 #define PTRS_PER_S2_PGD (1 << PTRS_PER_S2_PGD_SHIFT)
138 #define S2_PGD_ORDER get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
139
140 #define kvm_pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
141
142 /*
143 * If we are concatenating first level stage-2 page tables, we would have less
144 * than or equal to 16 pointers in the fake PGD, because that's what the
145 * architecture allows. In this case, (4 - CONFIG_PGTABLE_LEVELS)
146 * represents the first level for the host, and we add 1 to go to the next
147 * level (which uses contatenation) for the stage-2 tables.
148 */
149 #if PTRS_PER_S2_PGD <= 16
150 #define KVM_PREALLOC_LEVEL (4 - CONFIG_PGTABLE_LEVELS + 1)
151 #else
152 #define KVM_PREALLOC_LEVEL (0)
153 #endif
154
kvm_get_hwpgd(struct kvm * kvm)155 static inline void *kvm_get_hwpgd(struct kvm *kvm)
156 {
157 pgd_t *pgd = kvm->arch.pgd;
158 pud_t *pud;
159
160 if (KVM_PREALLOC_LEVEL == 0)
161 return pgd;
162
163 pud = pud_offset(pgd, 0);
164 if (KVM_PREALLOC_LEVEL == 1)
165 return pud;
166
167 BUG_ON(KVM_PREALLOC_LEVEL != 2);
168 return pmd_offset(pud, 0);
169 }
170
kvm_get_hwpgd_size(void)171 static inline unsigned int kvm_get_hwpgd_size(void)
172 {
173 if (KVM_PREALLOC_LEVEL > 0)
174 return PTRS_PER_S2_PGD * PAGE_SIZE;
175 return PTRS_PER_S2_PGD * sizeof(pgd_t);
176 }
177
kvm_page_empty(void * ptr)178 static inline bool kvm_page_empty(void *ptr)
179 {
180 struct page *ptr_page = virt_to_page(ptr);
181 return page_count(ptr_page) == 1;
182 }
183
184 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
185
186 #ifdef __PAGETABLE_PMD_FOLDED
187 #define kvm_pmd_table_empty(kvm, pmdp) (0)
188 #else
189 #define kvm_pmd_table_empty(kvm, pmdp) \
190 (kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
191 #endif
192
193 #ifdef __PAGETABLE_PUD_FOLDED
194 #define kvm_pud_table_empty(kvm, pudp) (0)
195 #else
196 #define kvm_pud_table_empty(kvm, pudp) \
197 (kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
198 #endif
199
200
201 struct kvm;
202
203 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
204
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)205 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
206 {
207 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
208 }
209
__coherent_cache_guest_page(struct kvm_vcpu * vcpu,pfn_t pfn,unsigned long size,bool ipa_uncached)210 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
211 unsigned long size,
212 bool ipa_uncached)
213 {
214 void *va = page_address(pfn_to_page(pfn));
215
216 if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
217 kvm_flush_dcache_to_poc(va, size);
218
219 if (!icache_is_aliasing()) { /* PIPT */
220 flush_icache_range((unsigned long)va,
221 (unsigned long)va + size);
222 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
223 /* any kind of VIPT cache */
224 __flush_icache_all();
225 }
226 }
227
__kvm_flush_dcache_pte(pte_t pte)228 static inline void __kvm_flush_dcache_pte(pte_t pte)
229 {
230 struct page *page = pte_page(pte);
231 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
232 }
233
__kvm_flush_dcache_pmd(pmd_t pmd)234 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
235 {
236 struct page *page = pmd_page(pmd);
237 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
238 }
239
__kvm_flush_dcache_pud(pud_t pud)240 static inline void __kvm_flush_dcache_pud(pud_t pud)
241 {
242 struct page *page = pud_page(pud);
243 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
244 }
245
246 #define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
247
248 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
249 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
250
251 #endif /* __ASSEMBLY__ */
252 #endif /* __ARM64_KVM_MMU_H__ */
253