• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29 
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32 
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT	\
35 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40 				 COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44 
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46 EXPORT_SYMBOL(cpu_hwcaps);
47 
48 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
49 	{						\
50 		.sign = SIGNED,				\
51 		.strict = STRICT,			\
52 		.type = TYPE,				\
53 		.shift = SHIFT,				\
54 		.width = WIDTH,				\
55 		.safe_val = SAFE_VAL,			\
56 	}
57 
58 /* Define a feature with signed values */
59 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
60 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61 
62 /* Define a feature with unsigned value */
63 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65 
66 #define ARM64_FTR_END					\
67 	{						\
68 		.width = 0,				\
69 	}
70 
71 /* meta feature for alternatives */
72 static bool __maybe_unused
73 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
74 
75 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
76 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
77 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
78 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
79 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
80 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
81 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
82 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
83 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
84 	ARM64_FTR_END,
85 };
86 
87 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
88 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
89 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
90 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
91 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
92 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
93 	/* Linux doesn't care about the EL3 */
94 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
95 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
96 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
97 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
98 	ARM64_FTR_END,
99 };
100 
101 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
102 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
103 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
104 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
105 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
106 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
107 	/* Linux shouldn't care about secure memory */
108 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
109 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
110 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
111 	/*
112 	 * Differing PARange is fine as long as all peripherals and memory are mapped
113 	 * within the minimum PARange of all CPUs
114 	 */
115 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
116 	ARM64_FTR_END,
117 };
118 
119 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
120 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
121 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
122 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
123 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
124 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
127 	ARM64_FTR_END,
128 };
129 
130 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
131 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
132 	ARM64_FTR_END,
133 };
134 
135 static struct arm64_ftr_bits ftr_ctr[] = {
136 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
137 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
138 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
139 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
140 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
141 	/*
142 	 * Linux can handle differing I-cache policies. Userspace JITs will
143 	 * make use of *minLine
144 	 */
145 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
146 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
147 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
148 	ARM64_FTR_END,
149 };
150 
151 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
152 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),	/* InnerShr */
153 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
154 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
155 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
156 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
157 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),	/* OuterShr */
158 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
159 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
160 	ARM64_FTR_END,
161 };
162 
163 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
164 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
165 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
166 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
167 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
168 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
169 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
170 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
171 	ARM64_FTR_END,
172 };
173 
174 static struct arm64_ftr_bits ftr_mvfr2[] = {
175 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
176 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
177 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
178 	ARM64_FTR_END,
179 };
180 
181 static struct arm64_ftr_bits ftr_dczid[] = {
182 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
183 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
184 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
185 	ARM64_FTR_END,
186 };
187 
188 
189 static struct arm64_ftr_bits ftr_id_isar5[] = {
190 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
192 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
197 	ARM64_FTR_END,
198 };
199 
200 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
201 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
202 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
203 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
204 	ARM64_FTR_END,
205 };
206 
207 static struct arm64_ftr_bits ftr_id_pfr0[] = {
208 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
209 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
210 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
211 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
212 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
213 	ARM64_FTR_END,
214 };
215 
216 /*
217  * Common ftr bits for a 32bit register with all hidden, strict
218  * attributes, with 4bit feature fields and a default safe value of
219  * 0. Covers the following 32bit registers:
220  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
221  */
222 static struct arm64_ftr_bits ftr_generic_32bits[] = {
223 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
224 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
225 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
226 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
227 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
228 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
229 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
230 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
231 	ARM64_FTR_END,
232 };
233 
234 static struct arm64_ftr_bits ftr_generic[] = {
235 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
236 	ARM64_FTR_END,
237 };
238 
239 static struct arm64_ftr_bits ftr_generic32[] = {
240 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
241 	ARM64_FTR_END,
242 };
243 
244 static struct arm64_ftr_bits ftr_aa64raz[] = {
245 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
246 	ARM64_FTR_END,
247 };
248 
249 #define ARM64_FTR_REG(id, table)		\
250 	{					\
251 		.sys_id = id,			\
252 		.name = #id,			\
253 		.ftr_bits = &((table)[0]),	\
254 	}
255 
256 static struct arm64_ftr_reg arm64_ftr_regs[] = {
257 
258 	/* Op1 = 0, CRn = 0, CRm = 1 */
259 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
260 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
261 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
262 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
263 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
264 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
265 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
266 
267 	/* Op1 = 0, CRn = 0, CRm = 2 */
268 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
269 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
270 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
271 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
272 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
273 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
274 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
275 
276 	/* Op1 = 0, CRn = 0, CRm = 3 */
277 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
278 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
279 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
280 
281 	/* Op1 = 0, CRn = 0, CRm = 4 */
282 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
283 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
284 
285 	/* Op1 = 0, CRn = 0, CRm = 5 */
286 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
287 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
288 
289 	/* Op1 = 0, CRn = 0, CRm = 6 */
290 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
291 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
292 
293 	/* Op1 = 0, CRn = 0, CRm = 7 */
294 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
295 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
296 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
297 
298 	/* Op1 = 3, CRn = 0, CRm = 0 */
299 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
300 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
301 
302 	/* Op1 = 3, CRn = 14, CRm = 0 */
303 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
304 };
305 
search_cmp_ftr_reg(const void * id,const void * regp)306 static int search_cmp_ftr_reg(const void *id, const void *regp)
307 {
308 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
309 }
310 
311 /*
312  * get_arm64_ftr_reg - Lookup a feature register entry using its
313  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
314  * ascending order of sys_id , we use binary search to find a matching
315  * entry.
316  *
317  * returns - Upon success,  matching ftr_reg entry for id.
318  *         - NULL on failure. It is upto the caller to decide
319  *	     the impact of a failure.
320  */
get_arm64_ftr_reg(u32 sys_id)321 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
322 {
323 	return bsearch((const void *)(unsigned long)sys_id,
324 			arm64_ftr_regs,
325 			ARRAY_SIZE(arm64_ftr_regs),
326 			sizeof(arm64_ftr_regs[0]),
327 			search_cmp_ftr_reg);
328 }
329 
arm64_ftr_set_value(struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)330 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
331 {
332 	u64 mask = arm64_ftr_mask(ftrp);
333 
334 	reg &= ~mask;
335 	reg |= (ftr_val << ftrp->shift) & mask;
336 	return reg;
337 }
338 
arm64_ftr_safe_value(struct arm64_ftr_bits * ftrp,s64 new,s64 cur)339 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
340 {
341 	s64 ret = 0;
342 
343 	switch (ftrp->type) {
344 	case FTR_EXACT:
345 		ret = ftrp->safe_val;
346 		break;
347 	case FTR_LOWER_SAFE:
348 		ret = new < cur ? new : cur;
349 		break;
350 	case FTR_HIGHER_SAFE:
351 		ret = new > cur ? new : cur;
352 		break;
353 	default:
354 		BUG();
355 	}
356 
357 	return ret;
358 }
359 
sort_cmp_ftr_regs(const void * a,const void * b)360 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
361 {
362 	return ((const struct arm64_ftr_reg *)a)->sys_id -
363 		 ((const struct arm64_ftr_reg *)b)->sys_id;
364 }
365 
swap_ftr_regs(void * a,void * b,int size)366 static void __init swap_ftr_regs(void *a, void *b, int size)
367 {
368 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
369 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
370 	*(struct arm64_ftr_reg *)b = tmp;
371 }
372 
sort_ftr_regs(void)373 static void __init sort_ftr_regs(void)
374 {
375 	/* Keep the array sorted so that we can do the binary search */
376 	sort(arm64_ftr_regs,
377 		ARRAY_SIZE(arm64_ftr_regs),
378 		sizeof(arm64_ftr_regs[0]),
379 		sort_cmp_ftr_regs,
380 		swap_ftr_regs);
381 }
382 
383 /*
384  * Initialise the CPU feature register from Boot CPU values.
385  * Also initiliases the strict_mask for the register.
386  */
init_cpu_ftr_reg(u32 sys_reg,u64 new)387 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
388 {
389 	u64 val = 0;
390 	u64 strict_mask = ~0x0ULL;
391 	struct arm64_ftr_bits *ftrp;
392 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
393 
394 	BUG_ON(!reg);
395 
396 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
397 		s64 ftr_new = arm64_ftr_value(ftrp, new);
398 
399 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
400 		if (!ftrp->strict)
401 			strict_mask &= ~arm64_ftr_mask(ftrp);
402 	}
403 	reg->sys_val = val;
404 	reg->strict_mask = strict_mask;
405 }
406 
init_cpu_features(struct cpuinfo_arm64 * info)407 void __init init_cpu_features(struct cpuinfo_arm64 *info)
408 {
409 	/* Before we start using the tables, make sure it is sorted */
410 	sort_ftr_regs();
411 
412 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
413 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
414 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
415 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
416 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
417 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
418 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
419 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
420 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
421 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
422 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
423 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
424 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
425 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
426 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
427 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
428 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
429 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
430 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
431 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
432 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
433 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
434 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
435 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
436 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
437 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
438 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
439 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
440 }
441 
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)442 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
443 {
444 	struct arm64_ftr_bits *ftrp;
445 
446 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
447 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
448 		s64 ftr_new = arm64_ftr_value(ftrp, new);
449 
450 		if (ftr_cur == ftr_new)
451 			continue;
452 		/* Find a safe value */
453 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
454 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
455 	}
456 
457 }
458 
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)459 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
460 {
461 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
462 
463 	BUG_ON(!regp);
464 	update_cpu_ftr_reg(regp, val);
465 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
466 		return 0;
467 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
468 			regp->name, boot, cpu, val);
469 	return 1;
470 }
471 
472 /*
473  * Update system wide CPU feature registers with the values from a
474  * non-boot CPU. Also performs SANITY checks to make sure that there
475  * aren't any insane variations from that of the boot CPU.
476  */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)477 void update_cpu_features(int cpu,
478 			 struct cpuinfo_arm64 *info,
479 			 struct cpuinfo_arm64 *boot)
480 {
481 	int taint = 0;
482 
483 	/*
484 	 * The kernel can handle differing I-cache policies, but otherwise
485 	 * caches should look identical. Userspace JITs will make use of
486 	 * *minLine.
487 	 */
488 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
489 				      info->reg_ctr, boot->reg_ctr);
490 
491 	/*
492 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
493 	 * could result in too much or too little memory being zeroed if a
494 	 * process is preempted and migrated between CPUs.
495 	 */
496 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
497 				      info->reg_dczid, boot->reg_dczid);
498 
499 	/* If different, timekeeping will be broken (especially with KVM) */
500 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
501 				      info->reg_cntfrq, boot->reg_cntfrq);
502 
503 	/*
504 	 * The kernel uses self-hosted debug features and expects CPUs to
505 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
506 	 * and BRPs to be identical.
507 	 * ID_AA64DFR1 is currently RES0.
508 	 */
509 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
510 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
511 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
512 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
513 	/*
514 	 * Even in big.LITTLE, processors should be identical instruction-set
515 	 * wise.
516 	 */
517 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
518 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
519 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
520 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
521 
522 	/*
523 	 * Differing PARange support is fine as long as all peripherals and
524 	 * memory are mapped within the minimum PARange of all CPUs.
525 	 * Linux should not care about secure memory.
526 	 */
527 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
528 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
529 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
530 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
531 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
532 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
533 
534 	/*
535 	 * EL3 is not our concern.
536 	 * ID_AA64PFR1 is currently RES0.
537 	 */
538 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
539 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
540 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
541 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
542 
543 	/*
544 	 * If we have AArch32, we care about 32-bit features for compat. These
545 	 * registers should be RES0 otherwise.
546 	 */
547 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
548 					info->reg_id_dfr0, boot->reg_id_dfr0);
549 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
550 					info->reg_id_isar0, boot->reg_id_isar0);
551 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
552 					info->reg_id_isar1, boot->reg_id_isar1);
553 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
554 					info->reg_id_isar2, boot->reg_id_isar2);
555 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
556 					info->reg_id_isar3, boot->reg_id_isar3);
557 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
558 					info->reg_id_isar4, boot->reg_id_isar4);
559 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
560 					info->reg_id_isar5, boot->reg_id_isar5);
561 
562 	/*
563 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
564 	 * ACTLR formats could differ across CPUs and therefore would have to
565 	 * be trapped for virtualization anyway.
566 	 */
567 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
568 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
569 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
570 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
571 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
572 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
573 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
574 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
575 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
576 					info->reg_id_pfr0, boot->reg_id_pfr0);
577 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
578 					info->reg_id_pfr1, boot->reg_id_pfr1);
579 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
580 					info->reg_mvfr0, boot->reg_mvfr0);
581 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
582 					info->reg_mvfr1, boot->reg_mvfr1);
583 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
584 					info->reg_mvfr2, boot->reg_mvfr2);
585 
586 	/*
587 	 * Mismatched CPU features are a recipe for disaster. Don't even
588 	 * pretend to support them.
589 	 */
590 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
591 			"Unsupported CPU feature variation.\n");
592 }
593 
read_system_reg(u32 id)594 u64 read_system_reg(u32 id)
595 {
596 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
597 
598 	/* We shouldn't get a request for an unsupported register */
599 	BUG_ON(!regp);
600 	return regp->sys_val;
601 }
602 
603 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)604 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
605 {
606 	int val = cpuid_feature_extract_field(reg, entry->field_pos);
607 
608 	return val >= entry->min_field_value;
609 }
610 
611 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry)612 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
613 {
614 	u64 val;
615 
616 	val = read_system_reg(entry->sys_reg);
617 	return feature_matches(val, entry);
618 }
619 
620 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
621 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
622 
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry)623 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry)
624 {
625 	/* Forced on command line? */
626 	if (__kpti_forced) {
627 		pr_info_once("kernel page table isolation forced %s by command line option\n",
628 			     __kpti_forced > 0 ? "ON" : "OFF");
629 		return __kpti_forced > 0;
630 	}
631 
632 	/* Useful for KASLR robustness */
633 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
634 		return true;
635 
636 	return false;
637 }
638 
parse_kpti(char * str)639 static int __init parse_kpti(char *str)
640 {
641 	bool enabled;
642 	int ret = strtobool(str, &enabled);
643 
644 	if (ret)
645 		return ret;
646 
647 	__kpti_forced = enabled ? 1 : -1;
648 	return 0;
649 }
650 __setup("kpti=", parse_kpti);
651 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
652 
653 static const struct arm64_cpu_capabilities arm64_features[] = {
654 	{
655 		.desc = "GIC system register CPU interface",
656 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
657 		.matches = has_cpuid_feature,
658 		.sys_reg = SYS_ID_AA64PFR0_EL1,
659 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
660 		.min_field_value = 1,
661 	},
662 #ifdef CONFIG_ARM64_PAN
663 	{
664 		.desc = "Privileged Access Never",
665 		.capability = ARM64_HAS_PAN,
666 		.matches = has_cpuid_feature,
667 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
668 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
669 		.min_field_value = 1,
670 		.enable = cpu_enable_pan,
671 	},
672 #endif /* CONFIG_ARM64_PAN */
673 #ifdef CONFIG_ARM64_UAO
674 	{
675 		.desc = "User Access Override",
676 		.capability = ARM64_HAS_UAO,
677 		.matches = has_cpuid_feature,
678 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
679 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
680 		.min_field_value = 1,
681 		.enable = cpu_enable_uao,
682 	},
683 #endif /* CONFIG_ARM64_UAO */
684 #ifdef CONFIG_ARM64_PAN
685 	{
686 		.capability = ARM64_ALT_PAN_NOT_UAO,
687 		.matches = cpufeature_pan_not_uao,
688 	},
689 #endif /* CONFIG_ARM64_PAN */
690 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
691 	{
692 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
693 		.matches = unmap_kernel_at_el0,
694 	},
695 #endif
696 	{},
697 };
698 
699 #define HWCAP_CAP(reg, field, min_value, type, cap)		\
700 	{							\
701 		.desc = #cap,					\
702 		.matches = has_cpuid_feature,			\
703 		.sys_reg = reg,					\
704 		.field_pos = field,				\
705 		.min_field_value = min_value,			\
706 		.hwcap_type = type,				\
707 		.hwcap = cap,					\
708 	}
709 
710 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
711 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
712 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
713 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
714 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
715 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
716 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
717 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
718 #ifdef CONFIG_COMPAT
719 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
720 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
721 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
722 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
723 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
724 #endif
725 	{},
726 };
727 
cap_set_hwcap(const struct arm64_cpu_capabilities * cap)728 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
729 {
730 	switch (cap->hwcap_type) {
731 	case CAP_HWCAP:
732 		elf_hwcap |= cap->hwcap;
733 		break;
734 #ifdef CONFIG_COMPAT
735 	case CAP_COMPAT_HWCAP:
736 		compat_elf_hwcap |= (u32)cap->hwcap;
737 		break;
738 	case CAP_COMPAT_HWCAP2:
739 		compat_elf_hwcap2 |= (u32)cap->hwcap;
740 		break;
741 #endif
742 	default:
743 		WARN_ON(1);
744 		break;
745 	}
746 }
747 
748 /* Check if we have a particular HWCAP enabled */
cpus_have_hwcap(const struct arm64_cpu_capabilities * cap)749 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
750 {
751 	bool rc;
752 
753 	switch (cap->hwcap_type) {
754 	case CAP_HWCAP:
755 		rc = (elf_hwcap & cap->hwcap) != 0;
756 		break;
757 #ifdef CONFIG_COMPAT
758 	case CAP_COMPAT_HWCAP:
759 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
760 		break;
761 	case CAP_COMPAT_HWCAP2:
762 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
763 		break;
764 #endif
765 	default:
766 		WARN_ON(1);
767 		rc = false;
768 	}
769 
770 	return rc;
771 }
772 
setup_cpu_hwcaps(void)773 static void __init setup_cpu_hwcaps(void)
774 {
775 	int i;
776 	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
777 
778 	for (i = 0; hwcaps[i].matches; i++)
779 		if (hwcaps[i].matches(&hwcaps[i]))
780 			cap_set_hwcap(&hwcaps[i]);
781 }
782 
update_cpu_capabilities(const struct arm64_cpu_capabilities * caps,const char * info)783 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
784 			    const char *info)
785 {
786 	int i;
787 
788 	for (i = 0; caps[i].matches; i++) {
789 		if (!caps[i].matches(&caps[i]))
790 			continue;
791 
792 		if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
793 			pr_info("%s %s\n", info, caps[i].desc);
794 		cpus_set_cap(caps[i].capability);
795 	}
796 }
797 
798 /*
799  * Run through the enabled capabilities and enable() it on all active
800  * CPUs
801  */
802 static void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities * caps)803 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
804 {
805 	int i;
806 
807 	for (i = 0; caps[i].matches; i++)
808 		if (caps[i].enable && cpus_have_cap(caps[i].capability))
809 			on_each_cpu(caps[i].enable, NULL, true);
810 }
811 
812 #ifdef CONFIG_HOTPLUG_CPU
813 
814 /*
815  * Flag to indicate if we have computed the system wide
816  * capabilities based on the boot time active CPUs. This
817  * will be used to determine if a new booting CPU should
818  * go through the verification process to make sure that it
819  * supports the system capabilities, without using a hotplug
820  * notifier.
821  */
822 static bool sys_caps_initialised;
823 
set_sys_caps_initialised(void)824 static inline void set_sys_caps_initialised(void)
825 {
826 	sys_caps_initialised = true;
827 }
828 
829 /*
830  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
831  */
__raw_read_system_reg(u32 sys_id)832 static u64 __raw_read_system_reg(u32 sys_id)
833 {
834 	switch (sys_id) {
835 	case SYS_ID_PFR0_EL1:		return read_cpuid(SYS_ID_PFR0_EL1);
836 	case SYS_ID_PFR1_EL1:		return read_cpuid(SYS_ID_PFR1_EL1);
837 	case SYS_ID_DFR0_EL1:		return read_cpuid(SYS_ID_DFR0_EL1);
838 	case SYS_ID_MMFR0_EL1:		return read_cpuid(SYS_ID_MMFR0_EL1);
839 	case SYS_ID_MMFR1_EL1:		return read_cpuid(SYS_ID_MMFR1_EL1);
840 	case SYS_ID_MMFR2_EL1:		return read_cpuid(SYS_ID_MMFR2_EL1);
841 	case SYS_ID_MMFR3_EL1:		return read_cpuid(SYS_ID_MMFR3_EL1);
842 	case SYS_ID_ISAR0_EL1:		return read_cpuid(SYS_ID_ISAR0_EL1);
843 	case SYS_ID_ISAR1_EL1:		return read_cpuid(SYS_ID_ISAR1_EL1);
844 	case SYS_ID_ISAR2_EL1:		return read_cpuid(SYS_ID_ISAR2_EL1);
845 	case SYS_ID_ISAR3_EL1:		return read_cpuid(SYS_ID_ISAR3_EL1);
846 	case SYS_ID_ISAR4_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
847 	case SYS_ID_ISAR5_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
848 	case SYS_MVFR0_EL1:		return read_cpuid(SYS_MVFR0_EL1);
849 	case SYS_MVFR1_EL1:		return read_cpuid(SYS_MVFR1_EL1);
850 	case SYS_MVFR2_EL1:		return read_cpuid(SYS_MVFR2_EL1);
851 
852 	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
853 	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
854 	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
855 	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
856 	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(SYS_ID_AA64MMFR0_EL1);
857 	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(SYS_ID_AA64MMFR1_EL1);
858 	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(SYS_ID_AA64MMFR2_EL1);
859 	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(SYS_ID_AA64ISAR0_EL1);
860 	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(SYS_ID_AA64ISAR1_EL1);
861 
862 	case SYS_CNTFRQ_EL0:		return read_cpuid(SYS_CNTFRQ_EL0);
863 	case SYS_CTR_EL0:		return read_cpuid(SYS_CTR_EL0);
864 	case SYS_DCZID_EL0:		return read_cpuid(SYS_DCZID_EL0);
865 	default:
866 		BUG();
867 		return 0;
868 	}
869 }
870 
871 /*
872  * Park the CPU which doesn't have the capability as advertised
873  * by the system.
874  */
fail_incapable_cpu(char * cap_type,const struct arm64_cpu_capabilities * cap)875 static void fail_incapable_cpu(char *cap_type,
876 				 const struct arm64_cpu_capabilities *cap)
877 {
878 	int cpu = smp_processor_id();
879 
880 	pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
881 	/* Mark this CPU absent */
882 	set_cpu_present(cpu, 0);
883 
884 	/* Check if we can park ourselves */
885 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
886 		cpu_ops[cpu]->cpu_die(cpu);
887 	asm(
888 	"1:	wfe\n"
889 	"	wfi\n"
890 	"	b	1b");
891 }
892 
893 /*
894  * Run through the enabled system capabilities and enable() it on this CPU.
895  * The capabilities were decided based on the available CPUs at the boot time.
896  * Any new CPU should match the system wide status of the capability. If the
897  * new CPU doesn't have a capability which the system now has enabled, we
898  * cannot do anything to fix it up and could cause unexpected failures. So
899  * we park the CPU.
900  */
verify_local_cpu_capabilities(void)901 void verify_local_cpu_capabilities(void)
902 {
903 	int i;
904 	const struct arm64_cpu_capabilities *caps;
905 
906 	/*
907 	 * If we haven't computed the system capabilities, there is nothing
908 	 * to verify.
909 	 */
910 	if (!sys_caps_initialised)
911 		return;
912 
913 	caps = arm64_features;
914 	for (i = 0; caps[i].matches; i++) {
915 		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
916 			continue;
917 		/*
918 		 * If the new CPU misses an advertised feature, we cannot proceed
919 		 * further, park the cpu.
920 		 */
921 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
922 			fail_incapable_cpu("arm64_features", &caps[i]);
923 		if (caps[i].enable)
924 			caps[i].enable(NULL);
925 	}
926 
927 	for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
928 		if (!cpus_have_hwcap(&caps[i]))
929 			continue;
930 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
931 			fail_incapable_cpu("arm64_hwcaps", &caps[i]);
932 	}
933 }
934 
935 #else	/* !CONFIG_HOTPLUG_CPU */
936 
set_sys_caps_initialised(void)937 static inline void set_sys_caps_initialised(void)
938 {
939 }
940 
941 #endif	/* CONFIG_HOTPLUG_CPU */
942 
setup_feature_capabilities(void)943 static void __init setup_feature_capabilities(void)
944 {
945 	update_cpu_capabilities(arm64_features, "detected feature:");
946 	enable_cpu_capabilities(arm64_features);
947 }
948 
setup_cpu_features(void)949 void __init setup_cpu_features(void)
950 {
951 	u32 cwg;
952 	int cls;
953 
954 	/* Set the CPU feature capabilies */
955 	setup_feature_capabilities();
956 	setup_cpu_hwcaps();
957 
958 	/* Advertise that we have computed the system capabilities */
959 	set_sys_caps_initialised();
960 
961 	/*
962 	 * Check for sane CTR_EL0.CWG value.
963 	 */
964 	cwg = cache_type_cwg();
965 	cls = cache_line_size();
966 	if (!cwg)
967 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
968 			cls);
969 	if (L1_CACHE_BYTES < cls)
970 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
971 			L1_CACHE_BYTES, cls);
972 }
973 
974 static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities * entry)975 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
976 {
977 	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
978 }
979