• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22 
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/perf_event.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31 #include <linux/uaccess.h>
32 
33 #include <asm/cputype.h>
34 #include <asm/irq.h>
35 #include <asm/irq_regs.h>
36 #include <asm/pmu.h>
37 #include <asm/stacktrace.h>
38 
39 /*
40  * ARMv8 supports a maximum of 32 events.
41  * The cycle counter is included in this total.
42  */
43 #define ARMPMU_MAX_HWEVENTS		32
44 
45 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
46 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
47 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
48 
49 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
50 
51 /* Set at runtime when we know what CPU type we are. */
52 static struct arm_pmu *cpu_pmu;
53 
54 int
armpmu_get_max_events(void)55 armpmu_get_max_events(void)
56 {
57 	int max_events = 0;
58 
59 	if (cpu_pmu != NULL)
60 		max_events = cpu_pmu->num_events;
61 
62 	return max_events;
63 }
64 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
65 
perf_num_counters(void)66 int perf_num_counters(void)
67 {
68 	return armpmu_get_max_events();
69 }
70 EXPORT_SYMBOL_GPL(perf_num_counters);
71 
72 #define HW_OP_UNSUPPORTED		0xFFFF
73 
74 #define C(_x) \
75 	PERF_COUNT_HW_CACHE_##_x
76 
77 #define CACHE_OP_UNSUPPORTED		0xFFFF
78 
79 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)80 armpmu_map_cache_event(const unsigned (*cache_map)
81 				      [PERF_COUNT_HW_CACHE_MAX]
82 				      [PERF_COUNT_HW_CACHE_OP_MAX]
83 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 		       u64 config)
85 {
86 	unsigned int cache_type, cache_op, cache_result, ret;
87 
88 	cache_type = (config >>  0) & 0xff;
89 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
90 		return -EINVAL;
91 
92 	cache_op = (config >>  8) & 0xff;
93 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
94 		return -EINVAL;
95 
96 	cache_result = (config >> 16) & 0xff;
97 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
98 		return -EINVAL;
99 
100 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
101 
102 	if (ret == CACHE_OP_UNSUPPORTED)
103 		return -ENOENT;
104 
105 	return ret;
106 }
107 
108 static int
armpmu_map_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)109 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
110 {
111 	int mapping;
112 
113 	if (config >= PERF_COUNT_HW_MAX)
114 		return -EINVAL;
115 
116 	mapping = (*event_map)[config];
117 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
118 }
119 
120 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)121 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
122 {
123 	return (int)(config & raw_event_mask);
124 }
125 
map_cpu_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)126 static int map_cpu_event(struct perf_event *event,
127 			 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
128 			 const unsigned (*cache_map)
129 					[PERF_COUNT_HW_CACHE_MAX]
130 					[PERF_COUNT_HW_CACHE_OP_MAX]
131 					[PERF_COUNT_HW_CACHE_RESULT_MAX],
132 			 u32 raw_event_mask)
133 {
134 	u64 config = event->attr.config;
135 
136 	switch (event->attr.type) {
137 	case PERF_TYPE_HARDWARE:
138 		return armpmu_map_event(event_map, config);
139 	case PERF_TYPE_HW_CACHE:
140 		return armpmu_map_cache_event(cache_map, config);
141 	case PERF_TYPE_RAW:
142 		return armpmu_map_raw_event(raw_event_mask, config);
143 	}
144 
145 	return -ENOENT;
146 }
147 
148 int
armpmu_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)149 armpmu_event_set_period(struct perf_event *event,
150 			struct hw_perf_event *hwc,
151 			int idx)
152 {
153 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
154 	s64 left = local64_read(&hwc->period_left);
155 	s64 period = hwc->sample_period;
156 	int ret = 0;
157 
158 	if (unlikely(left <= -period)) {
159 		left = period;
160 		local64_set(&hwc->period_left, left);
161 		hwc->last_period = period;
162 		ret = 1;
163 	}
164 
165 	if (unlikely(left <= 0)) {
166 		left += period;
167 		local64_set(&hwc->period_left, left);
168 		hwc->last_period = period;
169 		ret = 1;
170 	}
171 
172 	if (left > (s64)armpmu->max_period)
173 		left = armpmu->max_period;
174 
175 	local64_set(&hwc->prev_count, (u64)-left);
176 
177 	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
178 
179 	perf_event_update_userpage(event);
180 
181 	return ret;
182 }
183 
184 u64
armpmu_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)185 armpmu_event_update(struct perf_event *event,
186 		    struct hw_perf_event *hwc,
187 		    int idx)
188 {
189 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
190 	u64 delta, prev_raw_count, new_raw_count;
191 
192 again:
193 	prev_raw_count = local64_read(&hwc->prev_count);
194 	new_raw_count = armpmu->read_counter(idx);
195 
196 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
197 			     new_raw_count) != prev_raw_count)
198 		goto again;
199 
200 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
201 
202 	local64_add(delta, &event->count);
203 	local64_sub(delta, &hwc->period_left);
204 
205 	return new_raw_count;
206 }
207 
208 static void
armpmu_read(struct perf_event * event)209 armpmu_read(struct perf_event *event)
210 {
211 	struct hw_perf_event *hwc = &event->hw;
212 
213 	/* Don't read disabled counters! */
214 	if (hwc->idx < 0)
215 		return;
216 
217 	armpmu_event_update(event, hwc, hwc->idx);
218 }
219 
220 static void
armpmu_stop(struct perf_event * event,int flags)221 armpmu_stop(struct perf_event *event, int flags)
222 {
223 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
224 	struct hw_perf_event *hwc = &event->hw;
225 
226 	/*
227 	 * ARM pmu always has to update the counter, so ignore
228 	 * PERF_EF_UPDATE, see comments in armpmu_start().
229 	 */
230 	if (!(hwc->state & PERF_HES_STOPPED)) {
231 		armpmu->disable(hwc, hwc->idx);
232 		barrier(); /* why? */
233 		armpmu_event_update(event, hwc, hwc->idx);
234 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
235 	}
236 }
237 
238 static void
armpmu_start(struct perf_event * event,int flags)239 armpmu_start(struct perf_event *event, int flags)
240 {
241 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
242 	struct hw_perf_event *hwc = &event->hw;
243 
244 	/*
245 	 * ARM pmu always has to reprogram the period, so ignore
246 	 * PERF_EF_RELOAD, see the comment below.
247 	 */
248 	if (flags & PERF_EF_RELOAD)
249 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
250 
251 	hwc->state = 0;
252 	/*
253 	 * Set the period again. Some counters can't be stopped, so when we
254 	 * were stopped we simply disabled the IRQ source and the counter
255 	 * may have been left counting. If we don't do this step then we may
256 	 * get an interrupt too soon or *way* too late if the overflow has
257 	 * happened since disabling.
258 	 */
259 	armpmu_event_set_period(event, hwc, hwc->idx);
260 	armpmu->enable(hwc, hwc->idx);
261 }
262 
263 static void
armpmu_del(struct perf_event * event,int flags)264 armpmu_del(struct perf_event *event, int flags)
265 {
266 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
267 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
268 	struct hw_perf_event *hwc = &event->hw;
269 	int idx = hwc->idx;
270 
271 	WARN_ON(idx < 0);
272 
273 	armpmu_stop(event, PERF_EF_UPDATE);
274 	hw_events->events[idx] = NULL;
275 	clear_bit(idx, hw_events->used_mask);
276 
277 	perf_event_update_userpage(event);
278 }
279 
280 static int
armpmu_add(struct perf_event * event,int flags)281 armpmu_add(struct perf_event *event, int flags)
282 {
283 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
284 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
285 	struct hw_perf_event *hwc = &event->hw;
286 	int idx;
287 	int err = 0;
288 
289 	perf_pmu_disable(event->pmu);
290 
291 	/* If we don't have a space for the counter then finish early. */
292 	idx = armpmu->get_event_idx(hw_events, hwc);
293 	if (idx < 0) {
294 		err = idx;
295 		goto out;
296 	}
297 
298 	/*
299 	 * If there is an event in the counter we are going to use then make
300 	 * sure it is disabled.
301 	 */
302 	event->hw.idx = idx;
303 	armpmu->disable(hwc, idx);
304 	hw_events->events[idx] = event;
305 
306 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
307 	if (flags & PERF_EF_START)
308 		armpmu_start(event, PERF_EF_RELOAD);
309 
310 	/* Propagate our changes to the userspace mapping. */
311 	perf_event_update_userpage(event);
312 
313 out:
314 	perf_pmu_enable(event->pmu);
315 	return err;
316 }
317 
318 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)319 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
320 				struct perf_event *event)
321 {
322 	struct arm_pmu *armpmu;
323 	struct hw_perf_event fake_event = event->hw;
324 	struct pmu *leader_pmu = event->group_leader->pmu;
325 
326 	if (is_software_event(event))
327 		return 1;
328 
329 	/*
330 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
331 	 * core perf code won't check that the pmu->ctx == leader->ctx
332 	 * until after pmu->event_init(event).
333 	 */
334 	if (event->pmu != pmu)
335 		return 0;
336 
337 	if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
338 		return 1;
339 
340 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
341 		return 1;
342 
343 	armpmu = to_arm_pmu(event->pmu);
344 	return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
345 }
346 
347 static int
validate_group(struct perf_event * event)348 validate_group(struct perf_event *event)
349 {
350 	struct perf_event *sibling, *leader = event->group_leader;
351 	struct pmu_hw_events fake_pmu;
352 	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
353 
354 	/*
355 	 * Initialise the fake PMU. We only need to populate the
356 	 * used_mask for the purposes of validation.
357 	 */
358 	memset(fake_used_mask, 0, sizeof(fake_used_mask));
359 	fake_pmu.used_mask = fake_used_mask;
360 
361 	if (!validate_event(event->pmu, &fake_pmu, leader))
362 		return -EINVAL;
363 
364 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
365 		if (!validate_event(event->pmu, &fake_pmu, sibling))
366 			return -EINVAL;
367 	}
368 
369 	if (!validate_event(event->pmu, &fake_pmu, event))
370 		return -EINVAL;
371 
372 	return 0;
373 }
374 
375 static void
armpmu_disable_percpu_irq(void * data)376 armpmu_disable_percpu_irq(void *data)
377 {
378 	unsigned int irq = *(unsigned int *)data;
379 	disable_percpu_irq(irq);
380 }
381 
382 static void
armpmu_release_hardware(struct arm_pmu * armpmu)383 armpmu_release_hardware(struct arm_pmu *armpmu)
384 {
385 	int irq;
386 	unsigned int i, irqs;
387 	struct platform_device *pmu_device = armpmu->plat_device;
388 
389 	irqs = min(pmu_device->num_resources, num_possible_cpus());
390 	if (!irqs)
391 		return;
392 
393 	irq = platform_get_irq(pmu_device, 0);
394 	if (irq <= 0)
395 		return;
396 
397 	if (irq_is_percpu(irq)) {
398 		on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
399 		free_percpu_irq(irq, &cpu_hw_events);
400 	} else {
401 		for (i = 0; i < irqs; ++i) {
402 			if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
403 				continue;
404 			irq = platform_get_irq(pmu_device, i);
405 			if (irq > 0)
406 				free_irq(irq, armpmu);
407 		}
408 	}
409 }
410 
411 static void
armpmu_enable_percpu_irq(void * data)412 armpmu_enable_percpu_irq(void *data)
413 {
414 	unsigned int irq = *(unsigned int *)data;
415 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
416 }
417 
418 static int
armpmu_reserve_hardware(struct arm_pmu * armpmu)419 armpmu_reserve_hardware(struct arm_pmu *armpmu)
420 {
421 	int err, irq;
422 	unsigned int i, irqs;
423 	struct platform_device *pmu_device = armpmu->plat_device;
424 
425 	if (!pmu_device) {
426 		pr_err("no PMU device registered\n");
427 		return -ENODEV;
428 	}
429 
430 	irqs = min(pmu_device->num_resources, num_possible_cpus());
431 	if (!irqs) {
432 		pr_err("no irqs for PMUs defined\n");
433 		return -ENODEV;
434 	}
435 
436 	irq = platform_get_irq(pmu_device, 0);
437 	if (irq <= 0) {
438 		pr_err("failed to get valid irq for PMU device\n");
439 		return -ENODEV;
440 	}
441 
442 	if (irq_is_percpu(irq)) {
443 		err = request_percpu_irq(irq, armpmu->handle_irq,
444 				"arm-pmu", &cpu_hw_events);
445 
446 		if (err) {
447 			pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
448 					irq);
449 			armpmu_release_hardware(armpmu);
450 			return err;
451 		}
452 
453 		on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
454 	} else {
455 		for (i = 0; i < irqs; ++i) {
456 			err = 0;
457 			irq = platform_get_irq(pmu_device, i);
458 			if (irq <= 0)
459 				continue;
460 
461 			/*
462 			 * If we have a single PMU interrupt that we can't shift,
463 			 * assume that we're running on a uniprocessor machine and
464 			 * continue. Otherwise, continue without this interrupt.
465 			 */
466 			if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
467 				pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
468 						irq, i);
469 				continue;
470 			}
471 
472 			err = request_irq(irq, armpmu->handle_irq,
473 					IRQF_NOBALANCING,
474 					"arm-pmu", armpmu);
475 			if (err) {
476 				pr_err("unable to request IRQ%d for ARM PMU counters\n",
477 						irq);
478 				armpmu_release_hardware(armpmu);
479 				return err;
480 			}
481 
482 			cpumask_set_cpu(i, &armpmu->active_irqs);
483 		}
484 	}
485 
486 	return 0;
487 }
488 
489 static void
hw_perf_event_destroy(struct perf_event * event)490 hw_perf_event_destroy(struct perf_event *event)
491 {
492 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
493 	atomic_t *active_events	 = &armpmu->active_events;
494 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
495 
496 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
497 		armpmu_release_hardware(armpmu);
498 		mutex_unlock(pmu_reserve_mutex);
499 	}
500 }
501 
502 static int
event_requires_mode_exclusion(struct perf_event_attr * attr)503 event_requires_mode_exclusion(struct perf_event_attr *attr)
504 {
505 	return attr->exclude_idle || attr->exclude_user ||
506 	       attr->exclude_kernel || attr->exclude_hv;
507 }
508 
509 static int
__hw_perf_event_init(struct perf_event * event)510 __hw_perf_event_init(struct perf_event *event)
511 {
512 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
513 	struct hw_perf_event *hwc = &event->hw;
514 	int mapping, err;
515 
516 	mapping = armpmu->map_event(event);
517 
518 	if (mapping < 0) {
519 		pr_debug("event %x:%llx not supported\n", event->attr.type,
520 			 event->attr.config);
521 		return mapping;
522 	}
523 
524 	/*
525 	 * We don't assign an index until we actually place the event onto
526 	 * hardware. Use -1 to signify that we haven't decided where to put it
527 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
528 	 * clever allocation or constraints checking at this point.
529 	 */
530 	hwc->idx		= -1;
531 	hwc->config_base	= 0;
532 	hwc->config		= 0;
533 	hwc->event_base		= 0;
534 
535 	/*
536 	 * Check whether we need to exclude the counter from certain modes.
537 	 */
538 	if ((!armpmu->set_event_filter ||
539 	     armpmu->set_event_filter(hwc, &event->attr)) &&
540 	     event_requires_mode_exclusion(&event->attr)) {
541 		pr_debug("ARM performance counters do not support mode exclusion\n");
542 		return -EPERM;
543 	}
544 
545 	/*
546 	 * Store the event encoding into the config_base field.
547 	 */
548 	hwc->config_base	    |= (unsigned long)mapping;
549 
550 	if (!hwc->sample_period) {
551 		/*
552 		 * For non-sampling runs, limit the sample_period to half
553 		 * of the counter width. That way, the new counter value
554 		 * is far less likely to overtake the previous one unless
555 		 * you have some serious IRQ latency issues.
556 		 */
557 		hwc->sample_period  = armpmu->max_period >> 1;
558 		hwc->last_period    = hwc->sample_period;
559 		local64_set(&hwc->period_left, hwc->sample_period);
560 	}
561 
562 	err = 0;
563 	if (event->group_leader != event) {
564 		err = validate_group(event);
565 		if (err)
566 			return -EINVAL;
567 	}
568 
569 	return err;
570 }
571 
armpmu_event_init(struct perf_event * event)572 static int armpmu_event_init(struct perf_event *event)
573 {
574 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
575 	int err = 0;
576 	atomic_t *active_events = &armpmu->active_events;
577 
578 	if (armpmu->map_event(event) == -ENOENT)
579 		return -ENOENT;
580 
581 	event->destroy = hw_perf_event_destroy;
582 
583 	if (!atomic_inc_not_zero(active_events)) {
584 		mutex_lock(&armpmu->reserve_mutex);
585 		if (atomic_read(active_events) == 0)
586 			err = armpmu_reserve_hardware(armpmu);
587 
588 		if (!err)
589 			atomic_inc(active_events);
590 		mutex_unlock(&armpmu->reserve_mutex);
591 	}
592 
593 	if (err)
594 		return err;
595 
596 	err = __hw_perf_event_init(event);
597 	if (err)
598 		hw_perf_event_destroy(event);
599 
600 	return err;
601 }
602 
armpmu_enable(struct pmu * pmu)603 static void armpmu_enable(struct pmu *pmu)
604 {
605 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
606 	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
607 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
608 
609 	if (enabled)
610 		armpmu->start();
611 }
612 
armpmu_disable(struct pmu * pmu)613 static void armpmu_disable(struct pmu *pmu)
614 {
615 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
616 	armpmu->stop();
617 }
618 
armpmu_init(struct arm_pmu * armpmu)619 static void __init armpmu_init(struct arm_pmu *armpmu)
620 {
621 	atomic_set(&armpmu->active_events, 0);
622 	mutex_init(&armpmu->reserve_mutex);
623 
624 	armpmu->pmu = (struct pmu) {
625 		.pmu_enable	= armpmu_enable,
626 		.pmu_disable	= armpmu_disable,
627 		.event_init	= armpmu_event_init,
628 		.add		= armpmu_add,
629 		.del		= armpmu_del,
630 		.start		= armpmu_start,
631 		.stop		= armpmu_stop,
632 		.read		= armpmu_read,
633 	};
634 }
635 
armpmu_register(struct arm_pmu * armpmu,char * name,int type)636 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
637 {
638 	armpmu_init(armpmu);
639 	return perf_pmu_register(&armpmu->pmu, name, type);
640 }
641 
642 /*
643  * ARMv8 PMUv3 Performance Events handling code.
644  * Common event types.
645  */
646 enum armv8_pmuv3_perf_types {
647 	/* Required events. */
648 	ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR			= 0x00,
649 	ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL			= 0x03,
650 	ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS			= 0x04,
651 	ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED			= 0x10,
652 	ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES			= 0x11,
653 	ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED			= 0x12,
654 
655 	/* At least one of the following is required. */
656 	ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED			= 0x08,
657 	ARMV8_PMUV3_PERFCTR_OP_SPEC				= 0x1B,
658 
659 	/* Common architectural events. */
660 	ARMV8_PMUV3_PERFCTR_MEM_READ				= 0x06,
661 	ARMV8_PMUV3_PERFCTR_MEM_WRITE				= 0x07,
662 	ARMV8_PMUV3_PERFCTR_EXC_TAKEN				= 0x09,
663 	ARMV8_PMUV3_PERFCTR_EXC_EXECUTED			= 0x0A,
664 	ARMV8_PMUV3_PERFCTR_CID_WRITE				= 0x0B,
665 	ARMV8_PMUV3_PERFCTR_PC_WRITE				= 0x0C,
666 	ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH			= 0x0D,
667 	ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN			= 0x0E,
668 	ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS		= 0x0F,
669 	ARMV8_PMUV3_PERFCTR_TTBR_WRITE				= 0x1C,
670 
671 	/* Common microarchitectural events. */
672 	ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL			= 0x01,
673 	ARMV8_PMUV3_PERFCTR_ITLB_REFILL				= 0x02,
674 	ARMV8_PMUV3_PERFCTR_DTLB_REFILL				= 0x05,
675 	ARMV8_PMUV3_PERFCTR_MEM_ACCESS				= 0x13,
676 	ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS			= 0x14,
677 	ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB			= 0x15,
678 	ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS			= 0x16,
679 	ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL			= 0x17,
680 	ARMV8_PMUV3_PERFCTR_L2_CACHE_WB				= 0x18,
681 	ARMV8_PMUV3_PERFCTR_BUS_ACCESS				= 0x19,
682 	ARMV8_PMUV3_PERFCTR_MEM_ERROR				= 0x1A,
683 	ARMV8_PMUV3_PERFCTR_BUS_CYCLES				= 0x1D,
684 };
685 
686 /* PMUv3 HW events mapping. */
687 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
688 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
689 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
690 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
691 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
692 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= HW_OP_UNSUPPORTED,
693 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
694 	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
695 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= HW_OP_UNSUPPORTED,
696 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= HW_OP_UNSUPPORTED,
697 };
698 
699 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
700 						[PERF_COUNT_HW_CACHE_OP_MAX]
701 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
702 	[C(L1D)] = {
703 		[C(OP_READ)] = {
704 			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
705 			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
706 		},
707 		[C(OP_WRITE)] = {
708 			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
709 			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
710 		},
711 		[C(OP_PREFETCH)] = {
712 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
713 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
714 		},
715 	},
716 	[C(L1I)] = {
717 		[C(OP_READ)] = {
718 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
719 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
720 		},
721 		[C(OP_WRITE)] = {
722 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
723 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
724 		},
725 		[C(OP_PREFETCH)] = {
726 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
727 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
728 		},
729 	},
730 	[C(LL)] = {
731 		[C(OP_READ)] = {
732 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
733 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
734 		},
735 		[C(OP_WRITE)] = {
736 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
737 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
738 		},
739 		[C(OP_PREFETCH)] = {
740 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
741 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
742 		},
743 	},
744 	[C(DTLB)] = {
745 		[C(OP_READ)] = {
746 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
747 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
748 		},
749 		[C(OP_WRITE)] = {
750 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
751 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
752 		},
753 		[C(OP_PREFETCH)] = {
754 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
755 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
756 		},
757 	},
758 	[C(ITLB)] = {
759 		[C(OP_READ)] = {
760 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
761 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
762 		},
763 		[C(OP_WRITE)] = {
764 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
765 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
766 		},
767 		[C(OP_PREFETCH)] = {
768 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
769 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
770 		},
771 	},
772 	[C(BPU)] = {
773 		[C(OP_READ)] = {
774 			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
775 			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
776 		},
777 		[C(OP_WRITE)] = {
778 			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
779 			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
780 		},
781 		[C(OP_PREFETCH)] = {
782 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
783 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
784 		},
785 	},
786 	[C(NODE)] = {
787 		[C(OP_READ)] = {
788 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
789 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
790 		},
791 		[C(OP_WRITE)] = {
792 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
793 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
794 		},
795 		[C(OP_PREFETCH)] = {
796 			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
797 			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
798 		},
799 	},
800 };
801 
802 /*
803  * Perf Events' indices
804  */
805 #define	ARMV8_IDX_CYCLE_COUNTER	0
806 #define	ARMV8_IDX_COUNTER0	1
807 #define	ARMV8_IDX_COUNTER_LAST	(ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
808 
809 #define	ARMV8_MAX_COUNTERS	32
810 #define	ARMV8_COUNTER_MASK	(ARMV8_MAX_COUNTERS - 1)
811 
812 /*
813  * ARMv8 low level PMU access
814  */
815 
816 /*
817  * Perf Event to low level counters mapping
818  */
819 #define	ARMV8_IDX_TO_COUNTER(x)	\
820 	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
821 
822 /*
823  * Per-CPU PMCR: config reg
824  */
825 #define ARMV8_PMCR_E		(1 << 0) /* Enable all counters */
826 #define ARMV8_PMCR_P		(1 << 1) /* Reset all counters */
827 #define ARMV8_PMCR_C		(1 << 2) /* Cycle counter reset */
828 #define ARMV8_PMCR_D		(1 << 3) /* CCNT counts every 64th cpu cycle */
829 #define ARMV8_PMCR_X		(1 << 4) /* Export to ETM */
830 #define ARMV8_PMCR_DP		(1 << 5) /* Disable CCNT if non-invasive debug*/
831 #define	ARMV8_PMCR_N_SHIFT	11	 /* Number of counters supported */
832 #define	ARMV8_PMCR_N_MASK	0x1f
833 #define	ARMV8_PMCR_MASK		0x3f	 /* Mask for writable bits */
834 
835 /*
836  * PMOVSR: counters overflow flag status reg
837  */
838 #define	ARMV8_OVSR_MASK		0xffffffff	/* Mask for writable bits */
839 #define	ARMV8_OVERFLOWED_MASK	ARMV8_OVSR_MASK
840 
841 /*
842  * PMXEVTYPER: Event selection reg
843  */
844 #define	ARMV8_EVTYPE_MASK	0xc80003ff	/* Mask for writable bits */
845 #define	ARMV8_EVTYPE_EVENT	0x3ff		/* Mask for EVENT bits */
846 
847 /*
848  * Event filters for PMUv3
849  */
850 #define	ARMV8_EXCLUDE_EL1	(1 << 31)
851 #define	ARMV8_EXCLUDE_EL0	(1 << 30)
852 #define	ARMV8_INCLUDE_EL2	(1 << 27)
853 
armv8pmu_pmcr_read(void)854 static inline u32 armv8pmu_pmcr_read(void)
855 {
856 	u32 val;
857 	asm volatile("mrs %0, pmcr_el0" : "=r" (val));
858 	return val;
859 }
860 
armv8pmu_pmcr_write(u32 val)861 static inline void armv8pmu_pmcr_write(u32 val)
862 {
863 	val &= ARMV8_PMCR_MASK;
864 	isb();
865 	asm volatile("msr pmcr_el0, %0" :: "r" (val));
866 }
867 
armv8pmu_has_overflowed(u32 pmovsr)868 static inline int armv8pmu_has_overflowed(u32 pmovsr)
869 {
870 	return pmovsr & ARMV8_OVERFLOWED_MASK;
871 }
872 
armv8pmu_counter_valid(int idx)873 static inline int armv8pmu_counter_valid(int idx)
874 {
875 	return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
876 }
877 
armv8pmu_counter_has_overflowed(u32 pmnc,int idx)878 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
879 {
880 	int ret = 0;
881 	u32 counter;
882 
883 	if (!armv8pmu_counter_valid(idx)) {
884 		pr_err("CPU%u checking wrong counter %d overflow status\n",
885 			smp_processor_id(), idx);
886 	} else {
887 		counter = ARMV8_IDX_TO_COUNTER(idx);
888 		ret = pmnc & BIT(counter);
889 	}
890 
891 	return ret;
892 }
893 
armv8pmu_select_counter(int idx)894 static inline int armv8pmu_select_counter(int idx)
895 {
896 	u32 counter;
897 
898 	if (!armv8pmu_counter_valid(idx)) {
899 		pr_err("CPU%u selecting wrong PMNC counter %d\n",
900 			smp_processor_id(), idx);
901 		return -EINVAL;
902 	}
903 
904 	counter = ARMV8_IDX_TO_COUNTER(idx);
905 	asm volatile("msr pmselr_el0, %0" :: "r" (counter));
906 	isb();
907 
908 	return idx;
909 }
910 
armv8pmu_read_counter(int idx)911 static inline u32 armv8pmu_read_counter(int idx)
912 {
913 	u32 value = 0;
914 
915 	if (!armv8pmu_counter_valid(idx))
916 		pr_err("CPU%u reading wrong counter %d\n",
917 			smp_processor_id(), idx);
918 	else if (idx == ARMV8_IDX_CYCLE_COUNTER)
919 		asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
920 	else if (armv8pmu_select_counter(idx) == idx)
921 		asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
922 
923 	return value;
924 }
925 
armv8pmu_write_counter(int idx,u32 value)926 static inline void armv8pmu_write_counter(int idx, u32 value)
927 {
928 	if (!armv8pmu_counter_valid(idx))
929 		pr_err("CPU%u writing wrong counter %d\n",
930 			smp_processor_id(), idx);
931 	else if (idx == ARMV8_IDX_CYCLE_COUNTER)
932 		asm volatile("msr pmccntr_el0, %0" :: "r" (value));
933 	else if (armv8pmu_select_counter(idx) == idx)
934 		asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
935 }
936 
armv8pmu_write_evtype(int idx,u32 val)937 static inline void armv8pmu_write_evtype(int idx, u32 val)
938 {
939 	if (armv8pmu_select_counter(idx) == idx) {
940 		val &= ARMV8_EVTYPE_MASK;
941 		asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
942 	}
943 }
944 
armv8pmu_enable_counter(int idx)945 static inline int armv8pmu_enable_counter(int idx)
946 {
947 	u32 counter;
948 
949 	if (!armv8pmu_counter_valid(idx)) {
950 		pr_err("CPU%u enabling wrong PMNC counter %d\n",
951 			smp_processor_id(), idx);
952 		return -EINVAL;
953 	}
954 
955 	counter = ARMV8_IDX_TO_COUNTER(idx);
956 	asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
957 	return idx;
958 }
959 
armv8pmu_disable_counter(int idx)960 static inline int armv8pmu_disable_counter(int idx)
961 {
962 	u32 counter;
963 
964 	if (!armv8pmu_counter_valid(idx)) {
965 		pr_err("CPU%u disabling wrong PMNC counter %d\n",
966 			smp_processor_id(), idx);
967 		return -EINVAL;
968 	}
969 
970 	counter = ARMV8_IDX_TO_COUNTER(idx);
971 	asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
972 	return idx;
973 }
974 
armv8pmu_enable_intens(int idx)975 static inline int armv8pmu_enable_intens(int idx)
976 {
977 	u32 counter;
978 
979 	if (!armv8pmu_counter_valid(idx)) {
980 		pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
981 			smp_processor_id(), idx);
982 		return -EINVAL;
983 	}
984 
985 	counter = ARMV8_IDX_TO_COUNTER(idx);
986 	asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
987 	return idx;
988 }
989 
armv8pmu_disable_intens(int idx)990 static inline int armv8pmu_disable_intens(int idx)
991 {
992 	u32 counter;
993 
994 	if (!armv8pmu_counter_valid(idx)) {
995 		pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
996 			smp_processor_id(), idx);
997 		return -EINVAL;
998 	}
999 
1000 	counter = ARMV8_IDX_TO_COUNTER(idx);
1001 	asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
1002 	isb();
1003 	/* Clear the overflow flag in case an interrupt is pending. */
1004 	asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
1005 	isb();
1006 	return idx;
1007 }
1008 
armv8pmu_getreset_flags(void)1009 static inline u32 armv8pmu_getreset_flags(void)
1010 {
1011 	u32 value;
1012 
1013 	/* Read */
1014 	asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
1015 
1016 	/* Write to clear flags */
1017 	value &= ARMV8_OVSR_MASK;
1018 	asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
1019 
1020 	return value;
1021 }
1022 
armv8pmu_enable_event(struct hw_perf_event * hwc,int idx)1023 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
1024 {
1025 	unsigned long flags;
1026 	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1027 
1028 	/*
1029 	 * Enable counter and interrupt, and set the counter to count
1030 	 * the event that we're interested in.
1031 	 */
1032 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1033 
1034 	/*
1035 	 * Disable counter
1036 	 */
1037 	armv8pmu_disable_counter(idx);
1038 
1039 	/*
1040 	 * Set event (if destined for PMNx counters).
1041 	 */
1042 	armv8pmu_write_evtype(idx, hwc->config_base);
1043 
1044 	/*
1045 	 * Enable interrupt for this counter
1046 	 */
1047 	armv8pmu_enable_intens(idx);
1048 
1049 	/*
1050 	 * Enable counter
1051 	 */
1052 	armv8pmu_enable_counter(idx);
1053 
1054 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1055 }
1056 
armv8pmu_disable_event(struct hw_perf_event * hwc,int idx)1057 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1058 {
1059 	unsigned long flags;
1060 	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1061 
1062 	/*
1063 	 * Disable counter and interrupt
1064 	 */
1065 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1066 
1067 	/*
1068 	 * Disable counter
1069 	 */
1070 	armv8pmu_disable_counter(idx);
1071 
1072 	/*
1073 	 * Disable interrupt for this counter
1074 	 */
1075 	armv8pmu_disable_intens(idx);
1076 
1077 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1078 }
1079 
armv8pmu_handle_irq(int irq_num,void * dev)1080 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1081 {
1082 	u32 pmovsr;
1083 	struct perf_sample_data data;
1084 	struct pmu_hw_events *cpuc;
1085 	struct pt_regs *regs;
1086 	int idx;
1087 
1088 	/*
1089 	 * Get and reset the IRQ flags
1090 	 */
1091 	pmovsr = armv8pmu_getreset_flags();
1092 
1093 	/*
1094 	 * Did an overflow occur?
1095 	 */
1096 	if (!armv8pmu_has_overflowed(pmovsr))
1097 		return IRQ_NONE;
1098 
1099 	/*
1100 	 * Handle the counter(s) overflow(s)
1101 	 */
1102 	regs = get_irq_regs();
1103 
1104 	cpuc = this_cpu_ptr(&cpu_hw_events);
1105 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1106 		struct perf_event *event = cpuc->events[idx];
1107 		struct hw_perf_event *hwc;
1108 
1109 		/* Ignore if we don't have an event. */
1110 		if (!event)
1111 			continue;
1112 
1113 		/*
1114 		 * We have a single interrupt for all counters. Check that
1115 		 * each counter has overflowed before we process it.
1116 		 */
1117 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1118 			continue;
1119 
1120 		hwc = &event->hw;
1121 		armpmu_event_update(event, hwc, idx);
1122 		perf_sample_data_init(&data, 0, hwc->last_period);
1123 		if (!armpmu_event_set_period(event, hwc, idx))
1124 			continue;
1125 
1126 		if (perf_event_overflow(event, &data, regs))
1127 			cpu_pmu->disable(hwc, idx);
1128 	}
1129 
1130 	/*
1131 	 * Handle the pending perf events.
1132 	 *
1133 	 * Note: this call *must* be run with interrupts disabled. For
1134 	 * platforms that can have the PMU interrupts raised as an NMI, this
1135 	 * will not work.
1136 	 */
1137 	irq_work_run();
1138 
1139 	return IRQ_HANDLED;
1140 }
1141 
armv8pmu_start(void)1142 static void armv8pmu_start(void)
1143 {
1144 	unsigned long flags;
1145 	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1146 
1147 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1148 	/* Enable all counters */
1149 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1150 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1151 }
1152 
armv8pmu_stop(void)1153 static void armv8pmu_stop(void)
1154 {
1155 	unsigned long flags;
1156 	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1157 
1158 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1159 	/* Disable all counters */
1160 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1161 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1162 }
1163 
armv8pmu_get_event_idx(struct pmu_hw_events * cpuc,struct hw_perf_event * event)1164 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1165 				  struct hw_perf_event *event)
1166 {
1167 	int idx;
1168 	unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1169 
1170 	/* Always place a cycle counter into the cycle counter. */
1171 	if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1172 		if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1173 			return -EAGAIN;
1174 
1175 		return ARMV8_IDX_CYCLE_COUNTER;
1176 	}
1177 
1178 	/*
1179 	 * For anything other than a cycle counter, try and use
1180 	 * the events counters
1181 	 */
1182 	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1183 		if (!test_and_set_bit(idx, cpuc->used_mask))
1184 			return idx;
1185 	}
1186 
1187 	/* The counters are all in use. */
1188 	return -EAGAIN;
1189 }
1190 
1191 /*
1192  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1193  */
armv8pmu_set_event_filter(struct hw_perf_event * event,struct perf_event_attr * attr)1194 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1195 				     struct perf_event_attr *attr)
1196 {
1197 	unsigned long config_base = 0;
1198 
1199 	if (attr->exclude_idle)
1200 		return -EPERM;
1201 	if (attr->exclude_user)
1202 		config_base |= ARMV8_EXCLUDE_EL0;
1203 	if (attr->exclude_kernel)
1204 		config_base |= ARMV8_EXCLUDE_EL1;
1205 	if (!attr->exclude_hv)
1206 		config_base |= ARMV8_INCLUDE_EL2;
1207 
1208 	/*
1209 	 * Install the filter into config_base as this is used to
1210 	 * construct the event type.
1211 	 */
1212 	event->config_base = config_base;
1213 
1214 	return 0;
1215 }
1216 
armv8pmu_reset(void * info)1217 static void armv8pmu_reset(void *info)
1218 {
1219 	u32 idx, nb_cnt = cpu_pmu->num_events;
1220 
1221 	/* The counter and interrupt enable registers are unknown at reset. */
1222 	for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1223 		armv8pmu_disable_event(NULL, idx);
1224 
1225 	/* Initialize & Reset PMNC: C and P bits. */
1226 	armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1227 
1228 	/* Disable access from userspace. */
1229 	asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1230 }
1231 
armv8_pmuv3_map_event(struct perf_event * event)1232 static int armv8_pmuv3_map_event(struct perf_event *event)
1233 {
1234 	return map_cpu_event(event, &armv8_pmuv3_perf_map,
1235 				&armv8_pmuv3_perf_cache_map,
1236 				ARMV8_EVTYPE_EVENT);
1237 }
1238 
1239 static struct arm_pmu armv8pmu = {
1240 	.handle_irq		= armv8pmu_handle_irq,
1241 	.enable			= armv8pmu_enable_event,
1242 	.disable		= armv8pmu_disable_event,
1243 	.read_counter		= armv8pmu_read_counter,
1244 	.write_counter		= armv8pmu_write_counter,
1245 	.get_event_idx		= armv8pmu_get_event_idx,
1246 	.start			= armv8pmu_start,
1247 	.stop			= armv8pmu_stop,
1248 	.reset			= armv8pmu_reset,
1249 	.max_period		= (1LLU << 32) - 1,
1250 };
1251 
armv8pmu_read_num_pmnc_events(void)1252 static u32 __init armv8pmu_read_num_pmnc_events(void)
1253 {
1254 	u32 nb_cnt;
1255 
1256 	/* Read the nb of CNTx counters supported from PMNC */
1257 	nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1258 
1259 	/* Add the CPU cycles counter and return */
1260 	return nb_cnt + 1;
1261 }
1262 
armv8_pmuv3_pmu_init(void)1263 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1264 {
1265 	armv8pmu.name			= "arm/armv8-pmuv3";
1266 	armv8pmu.map_event		= armv8_pmuv3_map_event;
1267 	armv8pmu.num_events		= armv8pmu_read_num_pmnc_events();
1268 	armv8pmu.set_event_filter	= armv8pmu_set_event_filter;
1269 	return &armv8pmu;
1270 }
1271 
1272 /*
1273  * Ensure the PMU has sane values out of reset.
1274  * This requires SMP to be available, so exists as a separate initcall.
1275  */
1276 static int __init
cpu_pmu_reset(void)1277 cpu_pmu_reset(void)
1278 {
1279 	if (cpu_pmu && cpu_pmu->reset)
1280 		return on_each_cpu(cpu_pmu->reset, NULL, 1);
1281 	return 0;
1282 }
1283 arch_initcall(cpu_pmu_reset);
1284 
1285 /*
1286  * PMU platform driver and devicetree bindings.
1287  */
1288 static const struct of_device_id armpmu_of_device_ids[] = {
1289 	{.compatible = "arm,armv8-pmuv3"},
1290 	{},
1291 };
1292 
armpmu_device_probe(struct platform_device * pdev)1293 static int armpmu_device_probe(struct platform_device *pdev)
1294 {
1295 	if (!cpu_pmu)
1296 		return -ENODEV;
1297 
1298 	cpu_pmu->plat_device = pdev;
1299 	return 0;
1300 }
1301 
1302 static struct platform_driver armpmu_driver = {
1303 	.driver		= {
1304 		.name	= "arm-pmu",
1305 		.of_match_table = armpmu_of_device_ids,
1306 	},
1307 	.probe		= armpmu_device_probe,
1308 };
1309 
register_pmu_driver(void)1310 static int __init register_pmu_driver(void)
1311 {
1312 	return platform_driver_register(&armpmu_driver);
1313 }
1314 device_initcall(register_pmu_driver);
1315 
armpmu_get_cpu_events(void)1316 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1317 {
1318 	return this_cpu_ptr(&cpu_hw_events);
1319 }
1320 
cpu_pmu_init(struct arm_pmu * armpmu)1321 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1322 {
1323 	int cpu;
1324 	for_each_possible_cpu(cpu) {
1325 		struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1326 		events->events = per_cpu(hw_events, cpu);
1327 		events->used_mask = per_cpu(used_mask, cpu);
1328 		raw_spin_lock_init(&events->pmu_lock);
1329 	}
1330 	armpmu->get_hw_events = armpmu_get_cpu_events;
1331 }
1332 
init_hw_perf_events(void)1333 static int __init init_hw_perf_events(void)
1334 {
1335 	u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1336 
1337 	switch (cpuid_feature_extract_field(dfr, ID_AA64DFR0_PMUVER_SHIFT)) {
1338 	case 0x1:	/* PMUv3 */
1339 		cpu_pmu = armv8_pmuv3_pmu_init();
1340 		break;
1341 	}
1342 
1343 	if (cpu_pmu) {
1344 		pr_info("enabled with %s PMU driver, %d counters available\n",
1345 			cpu_pmu->name, cpu_pmu->num_events);
1346 		cpu_pmu_init(cpu_pmu);
1347 		armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1348 	} else {
1349 		pr_info("no hardware support available\n");
1350 	}
1351 
1352 	return 0;
1353 }
1354 early_initcall(init_hw_perf_events);
1355 
1356 /*
1357  * Callchain handling code.
1358  */
1359 struct frame_tail {
1360 	struct frame_tail	__user *fp;
1361 	unsigned long		lr;
1362 } __attribute__((packed));
1363 
1364 /*
1365  * Get the return address for a single stackframe and return a pointer to the
1366  * next frame tail.
1367  */
1368 static struct frame_tail __user *
user_backtrace(struct frame_tail __user * tail,struct perf_callchain_entry * entry)1369 user_backtrace(struct frame_tail __user *tail,
1370 	       struct perf_callchain_entry *entry)
1371 {
1372 	struct frame_tail buftail;
1373 	unsigned long err;
1374 
1375 	/* Also check accessibility of one struct frame_tail beyond */
1376 	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1377 		return NULL;
1378 
1379 	pagefault_disable();
1380 	err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1381 	pagefault_enable();
1382 
1383 	if (err)
1384 		return NULL;
1385 
1386 	perf_callchain_store(entry, buftail.lr);
1387 
1388 	/*
1389 	 * Frame pointers should strictly progress back up the stack
1390 	 * (towards higher addresses).
1391 	 */
1392 	if (tail >= buftail.fp)
1393 		return NULL;
1394 
1395 	return buftail.fp;
1396 }
1397 
1398 #ifdef CONFIG_COMPAT
1399 /*
1400  * The registers we're interested in are at the end of the variable
1401  * length saved register structure. The fp points at the end of this
1402  * structure so the address of this struct is:
1403  * (struct compat_frame_tail *)(xxx->fp)-1
1404  *
1405  * This code has been adapted from the ARM OProfile support.
1406  */
1407 struct compat_frame_tail {
1408 	compat_uptr_t	fp; /* a (struct compat_frame_tail *) in compat mode */
1409 	u32		sp;
1410 	u32		lr;
1411 } __attribute__((packed));
1412 
1413 static struct compat_frame_tail __user *
compat_user_backtrace(struct compat_frame_tail __user * tail,struct perf_callchain_entry * entry)1414 compat_user_backtrace(struct compat_frame_tail __user *tail,
1415 		      struct perf_callchain_entry *entry)
1416 {
1417 	struct compat_frame_tail buftail;
1418 	unsigned long err;
1419 
1420 	/* Also check accessibility of one struct frame_tail beyond */
1421 	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1422 		return NULL;
1423 
1424 	pagefault_disable();
1425 	err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1426 	pagefault_enable();
1427 
1428 	if (err)
1429 		return NULL;
1430 
1431 	perf_callchain_store(entry, buftail.lr);
1432 
1433 	/*
1434 	 * Frame pointers should strictly progress back up the stack
1435 	 * (towards higher addresses).
1436 	 */
1437 	if (tail + 1 >= (struct compat_frame_tail __user *)
1438 			compat_ptr(buftail.fp))
1439 		return NULL;
1440 
1441 	return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1;
1442 }
1443 #endif /* CONFIG_COMPAT */
1444 
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)1445 void perf_callchain_user(struct perf_callchain_entry *entry,
1446 			 struct pt_regs *regs)
1447 {
1448 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1449 		/* We don't support guest os callchain now */
1450 		return;
1451 	}
1452 
1453 	perf_callchain_store(entry, regs->pc);
1454 
1455 	if (!compat_user_mode(regs)) {
1456 		/* AARCH64 mode */
1457 		struct frame_tail __user *tail;
1458 
1459 		tail = (struct frame_tail __user *)regs->regs[29];
1460 
1461 		while (entry->nr < PERF_MAX_STACK_DEPTH &&
1462 		       tail && !((unsigned long)tail & 0xf))
1463 			tail = user_backtrace(tail, entry);
1464 	} else {
1465 #ifdef CONFIG_COMPAT
1466 		/* AARCH32 compat mode */
1467 		struct compat_frame_tail __user *tail;
1468 
1469 		tail = (struct compat_frame_tail __user *)regs->compat_fp - 1;
1470 
1471 		while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1472 			tail && !((unsigned long)tail & 0x3))
1473 			tail = compat_user_backtrace(tail, entry);
1474 #endif
1475 	}
1476 }
1477 
1478 /*
1479  * Gets called by walk_stackframe() for every stackframe. This will be called
1480  * whist unwinding the stackframe and is like a subroutine return so we use
1481  * the PC.
1482  */
callchain_trace(struct stackframe * frame,void * data)1483 static int callchain_trace(struct stackframe *frame, void *data)
1484 {
1485 	struct perf_callchain_entry *entry = data;
1486 	perf_callchain_store(entry, frame->pc);
1487 	return 0;
1488 }
1489 
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1490 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1491 			   struct pt_regs *regs)
1492 {
1493 	struct stackframe frame;
1494 
1495 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1496 		/* We don't support guest os callchain now */
1497 		return;
1498 	}
1499 
1500 	frame.fp = regs->regs[29];
1501 	frame.sp = regs->sp;
1502 	frame.pc = regs->pc;
1503 
1504 	walk_stackframe(&frame, callchain_trace, entry);
1505 }
1506 
perf_instruction_pointer(struct pt_regs * regs)1507 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1508 {
1509 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1510 		return perf_guest_cbs->get_guest_ip();
1511 
1512 	return instruction_pointer(regs);
1513 }
1514 
perf_misc_flags(struct pt_regs * regs)1515 unsigned long perf_misc_flags(struct pt_regs *regs)
1516 {
1517 	int misc = 0;
1518 
1519 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1520 		if (perf_guest_cbs->is_user_mode())
1521 			misc |= PERF_RECORD_MISC_GUEST_USER;
1522 		else
1523 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1524 	} else {
1525 		if (user_mode(regs))
1526 			misc |= PERF_RECORD_MISC_USER;
1527 		else
1528 			misc |= PERF_RECORD_MISC_KERNEL;
1529 	}
1530 
1531 	return misc;
1532 }
1533