• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* provide some functions which dump the trace buffer, in a nice way for people
2  * to read it, and understand what is going on
3  *
4  * Copyright 2004-2010 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/hardirq.h>
11 #include <linux/thread_info.h>
12 #include <linux/mm.h>
13 #include <linux/oom.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 #include <linux/module.h>
17 #include <linux/kallsyms.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <asm/dma.h>
22 #include <asm/trace.h>
23 #include <asm/fixed_code.h>
24 #include <asm/traps.h>
25 #include <asm/irq_handler.h>
26 #include <asm/pda.h>
27 
decode_address(char * buf,unsigned long address)28 void decode_address(char *buf, unsigned long address)
29 {
30 	struct task_struct *p;
31 	struct mm_struct *mm;
32 	unsigned long offset;
33 	struct rb_node *n;
34 
35 #ifdef CONFIG_KALLSYMS
36 	unsigned long symsize;
37 	const char *symname;
38 	char *modname;
39 	char *delim = ":";
40 	char namebuf[128];
41 #endif
42 
43 	buf += sprintf(buf, "<0x%08lx> ", address);
44 
45 #ifdef CONFIG_KALLSYMS
46 	/* look up the address and see if we are in kernel space */
47 	symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
48 
49 	if (symname) {
50 		/* yeah! kernel space! */
51 		if (!modname)
52 			modname = delim = "";
53 		sprintf(buf, "{ %s%s%s%s + 0x%lx }",
54 			delim, modname, delim, symname,
55 			(unsigned long)offset);
56 		return;
57 	}
58 #endif
59 
60 	if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
61 		/* Problem in fixed code section? */
62 		strcat(buf, "/* Maybe fixed code section */");
63 		return;
64 
65 	} else if (address < CONFIG_BOOT_LOAD) {
66 		/* Problem somewhere before the kernel start address */
67 		strcat(buf, "/* Maybe null pointer? */");
68 		return;
69 
70 	} else if (address >= COREMMR_BASE) {
71 		strcat(buf, "/* core mmrs */");
72 		return;
73 
74 	} else if (address >= SYSMMR_BASE) {
75 		strcat(buf, "/* system mmrs */");
76 		return;
77 
78 	} else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
79 		strcat(buf, "/* on-chip L1 ROM */");
80 		return;
81 
82 	} else if (address >= L1_SCRATCH_START && address < L1_SCRATCH_START + L1_SCRATCH_LENGTH) {
83 		strcat(buf, "/* on-chip scratchpad */");
84 		return;
85 
86 	} else if (address >= physical_mem_end && address < ASYNC_BANK0_BASE) {
87 		strcat(buf, "/* unconnected memory */");
88 		return;
89 
90 	} else if (address >= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE && address < BOOT_ROM_START) {
91 		strcat(buf, "/* reserved memory */");
92 		return;
93 
94 	} else if (address >= L1_DATA_A_START && address < L1_DATA_A_START + L1_DATA_A_LENGTH) {
95 		strcat(buf, "/* on-chip Data Bank A */");
96 		return;
97 
98 	} else if (address >= L1_DATA_B_START && address < L1_DATA_B_START + L1_DATA_B_LENGTH) {
99 		strcat(buf, "/* on-chip Data Bank B */");
100 		return;
101 	}
102 
103 	/*
104 	 * Don't walk any of the vmas if we are oopsing, it has been known
105 	 * to cause problems - corrupt vmas (kernel crashes) cause double faults
106 	 */
107 	if (oops_in_progress) {
108 		strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
109 		return;
110 	}
111 
112 	/* looks like we're off in user-land, so let's walk all the
113 	 * mappings of all our processes and see if we can't be a whee
114 	 * bit more specific
115 	 */
116 	read_lock(&tasklist_lock);
117 	for_each_process(p) {
118 		struct task_struct *t;
119 
120 		t = find_lock_task_mm(p);
121 		if (!t)
122 			continue;
123 
124 		mm = t->mm;
125 		if (!down_read_trylock(&mm->mmap_sem))
126 			goto __continue;
127 
128 		for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
129 			struct vm_area_struct *vma;
130 
131 			vma = rb_entry(n, struct vm_area_struct, vm_rb);
132 
133 			if (address >= vma->vm_start && address < vma->vm_end) {
134 				char _tmpbuf[256];
135 				char *name = t->comm;
136 				struct file *file = vma->vm_file;
137 
138 				if (file) {
139 					char *d_name = d_path(&file->f_path, _tmpbuf,
140 						      sizeof(_tmpbuf));
141 					if (!IS_ERR(d_name))
142 						name = d_name;
143 				}
144 
145 				/* FLAT does not have its text aligned to the start of
146 				 * the map while FDPIC ELF does ...
147 				 */
148 
149 				/* before we can check flat/fdpic, we need to
150 				 * make sure current is valid
151 				 */
152 				if ((unsigned long)current >= FIXED_CODE_START &&
153 				    !((unsigned long)current & 0x3)) {
154 					if (current->mm &&
155 					    (address > current->mm->start_code) &&
156 					    (address < current->mm->end_code))
157 						offset = address - current->mm->start_code;
158 					else
159 						offset = (address - vma->vm_start) +
160 							 (vma->vm_pgoff << PAGE_SHIFT);
161 
162 					sprintf(buf, "[ %s + 0x%lx ]", name, offset);
163 				} else
164 					sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
165 						name, vma->vm_start, vma->vm_end);
166 
167 				up_read(&mm->mmap_sem);
168 				task_unlock(t);
169 
170 				if (buf[0] == '\0')
171 					sprintf(buf, "[ %s ] dynamic memory", name);
172 
173 				goto done;
174 			}
175 		}
176 
177 		up_read(&mm->mmap_sem);
178 __continue:
179 		task_unlock(t);
180 	}
181 
182 	/*
183 	 * we were unable to find this address anywhere,
184 	 * or some MMs were skipped because they were in use.
185 	 */
186 	sprintf(buf, "/* kernel dynamic memory */");
187 
188 done:
189 	read_unlock(&tasklist_lock);
190 }
191 
192 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
193 
194 /*
195  * Similar to get_user, do some address checking, then dereference
196  * Return true on success, false on bad address
197  */
get_mem16(unsigned short * val,unsigned short * address)198 bool get_mem16(unsigned short *val, unsigned short *address)
199 {
200 	unsigned long addr = (unsigned long)address;
201 
202 	/* Check for odd addresses */
203 	if (addr & 0x1)
204 		return false;
205 
206 	switch (bfin_mem_access_type(addr, 2)) {
207 	case BFIN_MEM_ACCESS_CORE:
208 	case BFIN_MEM_ACCESS_CORE_ONLY:
209 		*val = *address;
210 		return true;
211 	case BFIN_MEM_ACCESS_DMA:
212 		dma_memcpy(val, address, 2);
213 		return true;
214 	case BFIN_MEM_ACCESS_ITEST:
215 		isram_memcpy(val, address, 2);
216 		return true;
217 	default: /* invalid access */
218 		return false;
219 	}
220 }
221 
get_instruction(unsigned int * val,unsigned short * address)222 bool get_instruction(unsigned int *val, unsigned short *address)
223 {
224 	unsigned long addr = (unsigned long)address;
225 	unsigned short opcode0, opcode1;
226 
227 	/* Check for odd addresses */
228 	if (addr & 0x1)
229 		return false;
230 
231 	/* MMR region will never have instructions */
232 	if (addr >= SYSMMR_BASE)
233 		return false;
234 
235 	/* Scratchpad will never have instructions */
236 	if (addr >= L1_SCRATCH_START && addr < L1_SCRATCH_START + L1_SCRATCH_LENGTH)
237 		return false;
238 
239 	/* Data banks will never have instructions */
240 	if (addr >= BOOT_ROM_START + BOOT_ROM_LENGTH && addr < L1_CODE_START)
241 		return false;
242 
243 	if (!get_mem16(&opcode0, address))
244 		return false;
245 
246 	/* was this a 32-bit instruction? If so, get the next 16 bits */
247 	if ((opcode0 & 0xc000) == 0xc000) {
248 		if (!get_mem16(&opcode1, address + 1))
249 			return false;
250 		*val = (opcode0 << 16) + opcode1;
251 	} else
252 		*val = opcode0;
253 
254 	return true;
255 }
256 
257 #if defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
258 /*
259  * decode the instruction if we are printing out the trace, as it
260  * makes things easier to follow, without running it through objdump
261  * Decode the change of flow, and the common load/store instructions
262  * which are the main cause for faults, and discontinuities in the trace
263  * buffer.
264  */
265 
266 #define ProgCtrl_opcode         0x0000
267 #define ProgCtrl_poprnd_bits    0
268 #define ProgCtrl_poprnd_mask    0xf
269 #define ProgCtrl_prgfunc_bits   4
270 #define ProgCtrl_prgfunc_mask   0xf
271 #define ProgCtrl_code_bits      8
272 #define ProgCtrl_code_mask      0xff
273 
decode_ProgCtrl_0(unsigned int opcode)274 static void decode_ProgCtrl_0(unsigned int opcode)
275 {
276 	int poprnd  = ((opcode >> ProgCtrl_poprnd_bits) & ProgCtrl_poprnd_mask);
277 	int prgfunc = ((opcode >> ProgCtrl_prgfunc_bits) & ProgCtrl_prgfunc_mask);
278 
279 	if (prgfunc == 0 && poprnd == 0)
280 		pr_cont("NOP");
281 	else if (prgfunc == 1 && poprnd == 0)
282 		pr_cont("RTS");
283 	else if (prgfunc == 1 && poprnd == 1)
284 		pr_cont("RTI");
285 	else if (prgfunc == 1 && poprnd == 2)
286 		pr_cont("RTX");
287 	else if (prgfunc == 1 && poprnd == 3)
288 		pr_cont("RTN");
289 	else if (prgfunc == 1 && poprnd == 4)
290 		pr_cont("RTE");
291 	else if (prgfunc == 2 && poprnd == 0)
292 		pr_cont("IDLE");
293 	else if (prgfunc == 2 && poprnd == 3)
294 		pr_cont("CSYNC");
295 	else if (prgfunc == 2 && poprnd == 4)
296 		pr_cont("SSYNC");
297 	else if (prgfunc == 2 && poprnd == 5)
298 		pr_cont("EMUEXCPT");
299 	else if (prgfunc == 3)
300 		pr_cont("CLI R%i", poprnd);
301 	else if (prgfunc == 4)
302 		pr_cont("STI R%i", poprnd);
303 	else if (prgfunc == 5)
304 		pr_cont("JUMP (P%i)", poprnd);
305 	else if (prgfunc == 6)
306 		pr_cont("CALL (P%i)", poprnd);
307 	else if (prgfunc == 7)
308 		pr_cont("CALL (PC + P%i)", poprnd);
309 	else if (prgfunc == 8)
310 		pr_cont("JUMP (PC + P%i", poprnd);
311 	else if (prgfunc == 9)
312 		pr_cont("RAISE %i", poprnd);
313 	else if (prgfunc == 10)
314 		pr_cont("EXCPT %i", poprnd);
315 	else
316 		pr_cont("0x%04x", opcode);
317 
318 }
319 
320 #define BRCC_opcode             0x1000
321 #define BRCC_offset_bits        0
322 #define BRCC_offset_mask        0x3ff
323 #define BRCC_B_bits             10
324 #define BRCC_B_mask             0x1
325 #define BRCC_T_bits             11
326 #define BRCC_T_mask             0x1
327 #define BRCC_code_bits          12
328 #define BRCC_code_mask          0xf
329 
decode_BRCC_0(unsigned int opcode)330 static void decode_BRCC_0(unsigned int opcode)
331 {
332 	int B = ((opcode >> BRCC_B_bits) & BRCC_B_mask);
333 	int T = ((opcode >> BRCC_T_bits) & BRCC_T_mask);
334 
335 	pr_cont("IF %sCC JUMP pcrel %s", T ? "" : "!", B ? "(BP)" : "");
336 }
337 
338 #define CALLa_opcode    0xe2000000
339 #define CALLa_addr_bits 0
340 #define CALLa_addr_mask 0xffffff
341 #define CALLa_S_bits    24
342 #define CALLa_S_mask    0x1
343 #define CALLa_code_bits 25
344 #define CALLa_code_mask 0x7f
345 
decode_CALLa_0(unsigned int opcode)346 static void decode_CALLa_0(unsigned int opcode)
347 {
348 	int S   = ((opcode >> (CALLa_S_bits - 16)) & CALLa_S_mask);
349 
350 	if (S)
351 		pr_cont("CALL pcrel");
352 	else
353 		pr_cont("JUMP.L");
354 }
355 
356 #define LoopSetup_opcode                0xe0800000
357 #define LoopSetup_eoffset_bits          0
358 #define LoopSetup_eoffset_mask          0x3ff
359 #define LoopSetup_dontcare_bits         10
360 #define LoopSetup_dontcare_mask         0x3
361 #define LoopSetup_reg_bits              12
362 #define LoopSetup_reg_mask              0xf
363 #define LoopSetup_soffset_bits          16
364 #define LoopSetup_soffset_mask          0xf
365 #define LoopSetup_c_bits                20
366 #define LoopSetup_c_mask                0x1
367 #define LoopSetup_rop_bits              21
368 #define LoopSetup_rop_mask              0x3
369 #define LoopSetup_code_bits             23
370 #define LoopSetup_code_mask             0x1ff
371 
decode_LoopSetup_0(unsigned int opcode)372 static void decode_LoopSetup_0(unsigned int opcode)
373 {
374 	int c   = ((opcode >> LoopSetup_c_bits)   & LoopSetup_c_mask);
375 	int reg = ((opcode >> LoopSetup_reg_bits) & LoopSetup_reg_mask);
376 	int rop = ((opcode >> LoopSetup_rop_bits) & LoopSetup_rop_mask);
377 
378 	pr_cont("LSETUP <> LC%i", c);
379 	if ((rop & 1) == 1)
380 		pr_cont("= P%i", reg);
381 	if ((rop & 2) == 2)
382 		pr_cont(" >> 0x1");
383 }
384 
385 #define DspLDST_opcode          0x9c00
386 #define DspLDST_reg_bits        0
387 #define DspLDST_reg_mask        0x7
388 #define DspLDST_i_bits          3
389 #define DspLDST_i_mask          0x3
390 #define DspLDST_m_bits          5
391 #define DspLDST_m_mask          0x3
392 #define DspLDST_aop_bits        7
393 #define DspLDST_aop_mask        0x3
394 #define DspLDST_W_bits          9
395 #define DspLDST_W_mask          0x1
396 #define DspLDST_code_bits       10
397 #define DspLDST_code_mask       0x3f
398 
decode_dspLDST_0(unsigned int opcode)399 static void decode_dspLDST_0(unsigned int opcode)
400 {
401 	int i   = ((opcode >> DspLDST_i_bits) & DspLDST_i_mask);
402 	int m   = ((opcode >> DspLDST_m_bits) & DspLDST_m_mask);
403 	int W   = ((opcode >> DspLDST_W_bits) & DspLDST_W_mask);
404 	int aop = ((opcode >> DspLDST_aop_bits) & DspLDST_aop_mask);
405 	int reg = ((opcode >> DspLDST_reg_bits) & DspLDST_reg_mask);
406 
407 	if (W == 0) {
408 		pr_cont("R%i", reg);
409 		switch (m) {
410 		case 0:
411 			pr_cont(" = ");
412 			break;
413 		case 1:
414 			pr_cont(".L = ");
415 			break;
416 		case 2:
417 			pr_cont(".W = ");
418 			break;
419 		}
420 	}
421 
422 	pr_cont("[ I%i", i);
423 
424 	switch (aop) {
425 	case 0:
426 		pr_cont("++ ]");
427 		break;
428 	case 1:
429 		pr_cont("-- ]");
430 		break;
431 	}
432 
433 	if (W == 1) {
434 		pr_cont(" = R%i", reg);
435 		switch (m) {
436 		case 1:
437 			pr_cont(".L = ");
438 			break;
439 		case 2:
440 			pr_cont(".W = ");
441 			break;
442 		}
443 	}
444 }
445 
446 #define LDST_opcode             0x9000
447 #define LDST_reg_bits           0
448 #define LDST_reg_mask           0x7
449 #define LDST_ptr_bits           3
450 #define LDST_ptr_mask           0x7
451 #define LDST_Z_bits             6
452 #define LDST_Z_mask             0x1
453 #define LDST_aop_bits           7
454 #define LDST_aop_mask           0x3
455 #define LDST_W_bits             9
456 #define LDST_W_mask             0x1
457 #define LDST_sz_bits            10
458 #define LDST_sz_mask            0x3
459 #define LDST_code_bits          12
460 #define LDST_code_mask          0xf
461 
decode_LDST_0(unsigned int opcode)462 static void decode_LDST_0(unsigned int opcode)
463 {
464 	int Z   = ((opcode >> LDST_Z_bits) & LDST_Z_mask);
465 	int W   = ((opcode >> LDST_W_bits) & LDST_W_mask);
466 	int sz  = ((opcode >> LDST_sz_bits) & LDST_sz_mask);
467 	int aop = ((opcode >> LDST_aop_bits) & LDST_aop_mask);
468 	int reg = ((opcode >> LDST_reg_bits) & LDST_reg_mask);
469 	int ptr = ((opcode >> LDST_ptr_bits) & LDST_ptr_mask);
470 
471 	if (W == 0)
472 		pr_cont("%s%i = ", (sz == 0 && Z == 1) ? "P" : "R", reg);
473 
474 	switch (sz) {
475 	case 1:
476 		pr_cont("W");
477 		break;
478 	case 2:
479 		pr_cont("B");
480 		break;
481 	}
482 
483 	pr_cont("[P%i", ptr);
484 
485 	switch (aop) {
486 	case 0:
487 		pr_cont("++");
488 		break;
489 	case 1:
490 		pr_cont("--");
491 		break;
492 	}
493 	pr_cont("]");
494 
495 	if (W == 1)
496 		pr_cont(" = %s%i ", (sz == 0 && Z == 1) ? "P" : "R", reg);
497 
498 	if (sz) {
499 		if (Z)
500 			pr_cont(" (X)");
501 		else
502 			pr_cont(" (Z)");
503 	}
504 }
505 
506 #define LDSTii_opcode           0xa000
507 #define LDSTii_reg_bit          0
508 #define LDSTii_reg_mask         0x7
509 #define LDSTii_ptr_bit          3
510 #define LDSTii_ptr_mask         0x7
511 #define LDSTii_offset_bit       6
512 #define LDSTii_offset_mask      0xf
513 #define LDSTii_op_bit           10
514 #define LDSTii_op_mask          0x3
515 #define LDSTii_W_bit            12
516 #define LDSTii_W_mask           0x1
517 #define LDSTii_code_bit         13
518 #define LDSTii_code_mask        0x7
519 
decode_LDSTii_0(unsigned int opcode)520 static void decode_LDSTii_0(unsigned int opcode)
521 {
522 	int reg = ((opcode >> LDSTii_reg_bit) & LDSTii_reg_mask);
523 	int ptr = ((opcode >> LDSTii_ptr_bit) & LDSTii_ptr_mask);
524 	int offset = ((opcode >> LDSTii_offset_bit) & LDSTii_offset_mask);
525 	int op = ((opcode >> LDSTii_op_bit) & LDSTii_op_mask);
526 	int W = ((opcode >> LDSTii_W_bit) & LDSTii_W_mask);
527 
528 	if (W == 0) {
529 		pr_cont("%s%i = %s[P%i + %i]", op == 3 ? "R" : "P", reg,
530 			op == 1 || op == 2 ? "" : "W", ptr, offset);
531 		if (op == 2)
532 			pr_cont("(Z)");
533 		if (op == 3)
534 			pr_cont("(X)");
535 	} else {
536 		pr_cont("%s[P%i + %i] = %s%i", op == 0 ? "" : "W", ptr,
537 			offset, op == 3 ? "P" : "R", reg);
538 	}
539 }
540 
541 #define LDSTidxI_opcode         0xe4000000
542 #define LDSTidxI_offset_bits    0
543 #define LDSTidxI_offset_mask    0xffff
544 #define LDSTidxI_reg_bits       16
545 #define LDSTidxI_reg_mask       0x7
546 #define LDSTidxI_ptr_bits       19
547 #define LDSTidxI_ptr_mask       0x7
548 #define LDSTidxI_sz_bits        22
549 #define LDSTidxI_sz_mask        0x3
550 #define LDSTidxI_Z_bits         24
551 #define LDSTidxI_Z_mask         0x1
552 #define LDSTidxI_W_bits         25
553 #define LDSTidxI_W_mask         0x1
554 #define LDSTidxI_code_bits      26
555 #define LDSTidxI_code_mask      0x3f
556 
decode_LDSTidxI_0(unsigned int opcode)557 static void decode_LDSTidxI_0(unsigned int opcode)
558 {
559 	int Z      = ((opcode >> LDSTidxI_Z_bits)      & LDSTidxI_Z_mask);
560 	int W      = ((opcode >> LDSTidxI_W_bits)      & LDSTidxI_W_mask);
561 	int sz     = ((opcode >> LDSTidxI_sz_bits)     & LDSTidxI_sz_mask);
562 	int reg    = ((opcode >> LDSTidxI_reg_bits)    & LDSTidxI_reg_mask);
563 	int ptr    = ((opcode >> LDSTidxI_ptr_bits)    & LDSTidxI_ptr_mask);
564 	int offset = ((opcode >> LDSTidxI_offset_bits) & LDSTidxI_offset_mask);
565 
566 	if (W == 0)
567 		pr_cont("%s%i = ", sz == 0 && Z == 1 ? "P" : "R", reg);
568 
569 	if (sz == 1)
570 		pr_cont("W");
571 	if (sz == 2)
572 		pr_cont("B");
573 
574 	pr_cont("[P%i + %s0x%x]", ptr, offset & 0x20 ? "-" : "",
575 		(offset & 0x1f) << 2);
576 
577 	if (W == 0 && sz != 0) {
578 		if (Z)
579 			pr_cont("(X)");
580 		else
581 			pr_cont("(Z)");
582 	}
583 
584 	if (W == 1)
585 		pr_cont("= %s%i", (sz == 0 && Z == 1) ? "P" : "R", reg);
586 
587 }
588 
decode_opcode(unsigned int opcode)589 static void decode_opcode(unsigned int opcode)
590 {
591 #ifdef CONFIG_BUG
592 	if (opcode == BFIN_BUG_OPCODE)
593 		pr_cont("BUG");
594 	else
595 #endif
596 	if ((opcode & 0xffffff00) == ProgCtrl_opcode)
597 		decode_ProgCtrl_0(opcode);
598 	else if ((opcode & 0xfffff000) == BRCC_opcode)
599 		decode_BRCC_0(opcode);
600 	else if ((opcode & 0xfffff000) == 0x2000)
601 		pr_cont("JUMP.S");
602 	else if ((opcode & 0xfe000000) == CALLa_opcode)
603 		decode_CALLa_0(opcode);
604 	else if ((opcode & 0xff8000C0) == LoopSetup_opcode)
605 		decode_LoopSetup_0(opcode);
606 	else if ((opcode & 0xfffffc00) == DspLDST_opcode)
607 		decode_dspLDST_0(opcode);
608 	else if ((opcode & 0xfffff000) == LDST_opcode)
609 		decode_LDST_0(opcode);
610 	else if ((opcode & 0xffffe000) == LDSTii_opcode)
611 		decode_LDSTii_0(opcode);
612 	else if ((opcode & 0xfc000000) == LDSTidxI_opcode)
613 		decode_LDSTidxI_0(opcode);
614 	else if (opcode & 0xffff0000)
615 		pr_cont("0x%08x", opcode);
616 	else
617 		pr_cont("0x%04x", opcode);
618 }
619 
620 #define BIT_MULTI_INS 0x08000000
decode_instruction(unsigned short * address)621 static void decode_instruction(unsigned short *address)
622 {
623 	unsigned int opcode;
624 
625 	if (!get_instruction(&opcode, address))
626 		return;
627 
628 	decode_opcode(opcode);
629 
630 	/* If things are a 32-bit instruction, it has the possibility of being
631 	 * a multi-issue instruction (a 32-bit, and 2 16 bit instrucitions)
632 	 * This test collidates with the unlink instruction, so disallow that
633 	 */
634 	if ((opcode & 0xc0000000) == 0xc0000000 &&
635 	    (opcode & BIT_MULTI_INS) &&
636 	    (opcode & 0xe8000000) != 0xe8000000) {
637 		pr_cont(" || ");
638 		if (!get_instruction(&opcode, address + 2))
639 			return;
640 		decode_opcode(opcode);
641 		pr_cont(" || ");
642 		if (!get_instruction(&opcode, address + 3))
643 			return;
644 		decode_opcode(opcode);
645 	}
646 }
647 #endif
648 
dump_bfin_trace_buffer(void)649 void dump_bfin_trace_buffer(void)
650 {
651 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
652 	int tflags, i = 0, fault = 0;
653 	char buf[150];
654 	unsigned short *addr;
655 	unsigned int cpu = raw_smp_processor_id();
656 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
657 	int j, index;
658 #endif
659 
660 	trace_buffer_save(tflags);
661 
662 	pr_notice("Hardware Trace:\n");
663 
664 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
665 	pr_notice("WARNING: Expanded trace turned on - can not trace exceptions\n");
666 #endif
667 
668 	if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
669 		for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
670 			addr = (unsigned short *)bfin_read_TBUF();
671 			decode_address(buf, (unsigned long)addr);
672 			pr_notice("%4i Target : %s\n", i, buf);
673 			/* Normally, the faulting instruction doesn't go into
674 			 * the trace buffer, (since it doesn't commit), so
675 			 * we print out the fault address here
676 			 */
677 			if (!fault && addr == ((unsigned short *)evt_ivhw)) {
678 				addr = (unsigned short *)bfin_read_TBUF();
679 				decode_address(buf, (unsigned long)addr);
680 				pr_notice("      FAULT : %s ", buf);
681 				decode_instruction(addr);
682 				pr_cont("\n");
683 				fault = 1;
684 				continue;
685 			}
686 			if (!fault && addr == (unsigned short *)trap &&
687 				(cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE) > VEC_EXCPT15) {
688 				decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
689 				pr_notice("      FAULT : %s ", buf);
690 				decode_instruction((unsigned short *)cpu_pda[cpu].icplb_fault_addr);
691 				pr_cont("\n");
692 				fault = 1;
693 			}
694 			addr = (unsigned short *)bfin_read_TBUF();
695 			decode_address(buf, (unsigned long)addr);
696 			pr_notice("     Source : %s ", buf);
697 			decode_instruction(addr);
698 			pr_cont("\n");
699 		}
700 	}
701 
702 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
703 	if (trace_buff_offset)
704 		index = trace_buff_offset / 4;
705 	else
706 		index = EXPAND_LEN;
707 
708 	j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
709 	while (j) {
710 		decode_address(buf, software_trace_buff[index]);
711 		pr_notice("%4i Target : %s\n", i, buf);
712 		index -= 1;
713 		if (index < 0)
714 			index = EXPAND_LEN;
715 		decode_address(buf, software_trace_buff[index]);
716 		pr_notice("     Source : %s ", buf);
717 		decode_instruction((unsigned short *)software_trace_buff[index]);
718 		pr_cont("\n");
719 		index -= 1;
720 		if (index < 0)
721 			index = EXPAND_LEN;
722 		j--;
723 		i++;
724 	}
725 #endif
726 
727 	trace_buffer_restore(tflags);
728 #endif
729 }
730 EXPORT_SYMBOL(dump_bfin_trace_buffer);
731 
dump_bfin_process(struct pt_regs * fp)732 void dump_bfin_process(struct pt_regs *fp)
733 {
734 	/* We should be able to look at fp->ipend, but we don't push it on the
735 	 * stack all the time, so do this until we fix that */
736 	unsigned int context = bfin_read_IPEND();
737 
738 	if (oops_in_progress)
739 		pr_emerg("Kernel OOPS in progress\n");
740 
741 	if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
742 		pr_notice("HW Error context\n");
743 	else if (context & 0x0020)
744 		pr_notice("Deferred Exception context\n");
745 	else if (context & 0x3FC0)
746 		pr_notice("Interrupt context\n");
747 	else if (context & 0x4000)
748 		pr_notice("Deferred Interrupt context\n");
749 	else if (context & 0x8000)
750 		pr_notice("Kernel process context\n");
751 
752 	/* Because we are crashing, and pointers could be bad, we check things
753 	 * pretty closely before we use them
754 	 */
755 	if ((unsigned long)current >= FIXED_CODE_START &&
756 	    !((unsigned long)current & 0x3) && current->pid) {
757 		pr_notice("CURRENT PROCESS:\n");
758 		if (current->comm >= (char *)FIXED_CODE_START)
759 			pr_notice("COMM=%s PID=%d",
760 				current->comm, current->pid);
761 		else
762 			pr_notice("COMM= invalid");
763 
764 		pr_cont("  CPU=%d\n", current_thread_info()->cpu);
765 		if (!((unsigned long)current->mm & 0x3) &&
766 			(unsigned long)current->mm >= FIXED_CODE_START) {
767 			pr_notice("TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n",
768 				(void *)current->mm->start_code,
769 				(void *)current->mm->end_code,
770 				(void *)current->mm->start_data,
771 				(void *)current->mm->end_data);
772 			pr_notice(" BSS = 0x%p-0x%p  USER-STACK = 0x%p\n\n",
773 				(void *)current->mm->end_data,
774 				(void *)current->mm->brk,
775 				(void *)current->mm->start_stack);
776 		} else
777 			pr_notice("invalid mm\n");
778 	} else
779 		pr_notice("No Valid process in current context\n");
780 }
781 
dump_bfin_mem(struct pt_regs * fp)782 void dump_bfin_mem(struct pt_regs *fp)
783 {
784 	unsigned short *addr, *erraddr, val = 0, err = 0;
785 	char sti = 0, buf[6];
786 
787 	erraddr = (void *)fp->pc;
788 
789 	pr_notice("return address: [0x%p]; contents of:", erraddr);
790 
791 	for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
792 	     addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
793 	     addr++) {
794 		if (!((unsigned long)addr & 0xF))
795 			pr_notice("0x%p: ", addr);
796 
797 		if (!get_mem16(&val, addr)) {
798 				val = 0;
799 				sprintf(buf, "????");
800 		} else
801 			sprintf(buf, "%04x", val);
802 
803 		if (addr == erraddr) {
804 			pr_cont("[%s]", buf);
805 			err = val;
806 		} else
807 			pr_cont(" %s ", buf);
808 
809 		/* Do any previous instructions turn on interrupts? */
810 		if (addr <= erraddr &&				/* in the past */
811 		    ((val >= 0x0040 && val <= 0x0047) ||	/* STI instruction */
812 		      val == 0x017b))				/* [SP++] = RETI */
813 			sti = 1;
814 	}
815 
816 	pr_cont("\n");
817 
818 	/* Hardware error interrupts can be deferred */
819 	if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
820 	    oops_in_progress)){
821 		pr_notice("Looks like this was a deferred error - sorry\n");
822 #ifndef CONFIG_DEBUG_HWERR
823 		pr_notice("The remaining message may be meaningless\n");
824 		pr_notice("You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
825 #else
826 		/* If we are handling only one peripheral interrupt
827 		 * and current mm and pid are valid, and the last error
828 		 * was in that user space process's text area
829 		 * print it out - because that is where the problem exists
830 		 */
831 		if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
832 		     (current->pid && current->mm)) {
833 			/* And the last RETI points to the current userspace context */
834 			if ((fp + 1)->pc >= current->mm->start_code &&
835 			    (fp + 1)->pc <= current->mm->end_code) {
836 				pr_notice("It might be better to look around here :\n");
837 				pr_notice("-------------------------------------------\n");
838 				show_regs(fp + 1);
839 				pr_notice("-------------------------------------------\n");
840 			}
841 		}
842 #endif
843 	}
844 }
845 
show_regs(struct pt_regs * fp)846 void show_regs(struct pt_regs *fp)
847 {
848 	char buf[150];
849 	struct irqaction *action;
850 	unsigned int i;
851 	unsigned long flags = 0;
852 	unsigned int cpu = raw_smp_processor_id();
853 	unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
854 
855 	pr_notice("\n");
856 	show_regs_print_info(KERN_NOTICE);
857 
858 	if (CPUID != bfin_cpuid())
859 		pr_notice("Compiled for cpu family 0x%04x (Rev %d), "
860 			"but running on:0x%04x (Rev %d)\n",
861 			CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
862 
863 	pr_notice("ADSP-%s-0.%d",
864 		CPU, bfin_compiled_revid());
865 
866 	if (bfin_compiled_revid() !=  bfin_revid())
867 		pr_cont("(Detected 0.%d)", bfin_revid());
868 
869 	pr_cont(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
870 		get_cclk()/1000000, get_sclk()/1000000,
871 #ifdef CONFIG_MPU
872 		"mpu on"
873 #else
874 		"mpu off"
875 #endif
876 		);
877 
878 	pr_notice("%s", linux_banner);
879 
880 	pr_notice("\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
881 	pr_notice(" SEQSTAT: %08lx  IPEND: %04lx  IMASK: %04lx  SYSCFG: %04lx\n",
882 		(long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
883 	if (fp->ipend & EVT_IRPTEN)
884 		pr_notice("  Global Interrupts Disabled (IPEND[4])\n");
885 	if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
886 			EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
887 		pr_notice("  Peripheral interrupts masked off\n");
888 	if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
889 		pr_notice("  Kernel interrupts masked off\n");
890 	if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
891 		pr_notice("  HWERRCAUSE: 0x%lx\n",
892 			(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
893 #ifdef EBIU_ERRMST
894 		/* If the error was from the EBIU, print it out */
895 		if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
896 			pr_notice("  EBIU Error Reason  : 0x%04x\n",
897 				bfin_read_EBIU_ERRMST());
898 			pr_notice("  EBIU Error Address : 0x%08x\n",
899 				bfin_read_EBIU_ERRADD());
900 		}
901 #endif
902 	}
903 	pr_notice("  EXCAUSE   : 0x%lx\n",
904 		fp->seqstat & SEQSTAT_EXCAUSE);
905 	for (i = 2; i <= 15 ; i++) {
906 		if (fp->ipend & (1 << i)) {
907 			if (i != 4) {
908 				decode_address(buf, bfin_read32(EVT0 + 4*i));
909 				pr_notice("  physical IVG%i asserted : %s\n", i, buf);
910 			} else
911 				pr_notice("  interrupts disabled\n");
912 		}
913 	}
914 
915 	/* if no interrupts are going off, don't print this out */
916 	if (fp->ipend & ~0x3F) {
917 		for (i = 0; i < (NR_IRQS - 1); i++) {
918 			struct irq_desc *desc = irq_to_desc(i);
919 			if (!in_atomic)
920 				raw_spin_lock_irqsave(&desc->lock, flags);
921 
922 			action = desc->action;
923 			if (!action)
924 				goto unlock;
925 
926 			decode_address(buf, (unsigned int)action->handler);
927 			pr_notice("  logical irq %3d mapped  : %s", i, buf);
928 			for (action = action->next; action; action = action->next) {
929 				decode_address(buf, (unsigned int)action->handler);
930 				pr_cont(", %s", buf);
931 			}
932 			pr_cont("\n");
933 unlock:
934 			if (!in_atomic)
935 				raw_spin_unlock_irqrestore(&desc->lock, flags);
936 		}
937 	}
938 
939 	decode_address(buf, fp->rete);
940 	pr_notice(" RETE: %s\n", buf);
941 	decode_address(buf, fp->retn);
942 	pr_notice(" RETN: %s\n", buf);
943 	decode_address(buf, fp->retx);
944 	pr_notice(" RETX: %s\n", buf);
945 	decode_address(buf, fp->rets);
946 	pr_notice(" RETS: %s\n", buf);
947 	decode_address(buf, fp->pc);
948 	pr_notice(" PC  : %s\n", buf);
949 
950 	if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
951 	    (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
952 		decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
953 		pr_notice("DCPLB_FAULT_ADDR: %s\n", buf);
954 		decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
955 		pr_notice("ICPLB_FAULT_ADDR: %s\n", buf);
956 	}
957 
958 	pr_notice("PROCESSOR STATE:\n");
959 	pr_notice(" R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
960 		fp->r0, fp->r1, fp->r2, fp->r3);
961 	pr_notice(" R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
962 		fp->r4, fp->r5, fp->r6, fp->r7);
963 	pr_notice(" P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
964 		fp->p0, fp->p1, fp->p2, fp->p3);
965 	pr_notice(" P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
966 		fp->p4, fp->p5, fp->fp, (long)fp);
967 	pr_notice(" LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
968 		fp->lb0, fp->lt0, fp->lc0);
969 	pr_notice(" LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
970 		fp->lb1, fp->lt1, fp->lc1);
971 	pr_notice(" B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
972 		fp->b0, fp->l0, fp->m0, fp->i0);
973 	pr_notice(" B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
974 		fp->b1, fp->l1, fp->m1, fp->i1);
975 	pr_notice(" B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
976 		fp->b2, fp->l2, fp->m2, fp->i2);
977 	pr_notice(" B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
978 		fp->b3, fp->l3, fp->m3, fp->i3);
979 	pr_notice("A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
980 		fp->a0w, fp->a0x, fp->a1w, fp->a1x);
981 
982 	pr_notice("USP : %08lx  ASTAT: %08lx\n",
983 		rdusp(), fp->astat);
984 
985 	pr_notice("\n");
986 }
987