• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/cris/arch-v32/kernel/time.c
3  *
4  *  Copyright (C) 2003-2010 Axis Communications AB
5  *
6  */
7 
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
19 #include <asm/io.h>
20 #include <asm/delay.h>
21 #include <asm/irq.h>
22 #include <asm/irq_regs.h>
23 
24 #include <hwregs/reg_map.h>
25 #include <hwregs/reg_rdwr.h>
26 #include <hwregs/timer_defs.h>
27 #include <hwregs/intr_vect_defs.h>
28 #ifdef CONFIG_CRIS_MACH_ARTPEC3
29 #include <hwregs/clkgen_defs.h>
30 #endif
31 
32 /* Watchdog defines */
33 #define ETRAX_WD_KEY_MASK	0x7F /* key is 7 bit */
34 #define ETRAX_WD_HZ		763 /* watchdog counts at 763 Hz */
35 /* Number of 763 counts before watchdog bites */
36 #define ETRAX_WD_CNT		((2*ETRAX_WD_HZ)/HZ + 1)
37 
38 /* Register the continuos readonly timer available in FS and ARTPEC-3.  */
read_cont_rotime(struct clocksource * cs)39 static cycle_t read_cont_rotime(struct clocksource *cs)
40 {
41 	return (u32)REG_RD(timer, regi_timer0, r_time);
42 }
43 
44 static struct clocksource cont_rotime = {
45 	.name   = "crisv32_rotime",
46 	.rating = 300,
47 	.read   = read_cont_rotime,
48 	.mask   = CLOCKSOURCE_MASK(32),
49 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
50 };
51 
etrax_init_cont_rotime(void)52 static int __init etrax_init_cont_rotime(void)
53 {
54 	clocksource_register_khz(&cont_rotime, 100000);
55 	return 0;
56 }
57 arch_initcall(etrax_init_cont_rotime);
58 
59 
60 unsigned long timer_regs[NR_CPUS] =
61 {
62 	regi_timer0,
63 #ifdef CONFIG_SMP
64 	regi_timer2
65 #endif
66 };
67 
68 extern int set_rtc_mmss(unsigned long nowtime);
69 
70 #ifdef CONFIG_CPU_FREQ
71 static int
72 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
73 			void *data);
74 
75 static struct notifier_block cris_time_freq_notifier_block = {
76 	.notifier_call = cris_time_freq_notifier,
77 };
78 #endif
79 
get_ns_in_jiffie(void)80 unsigned long get_ns_in_jiffie(void)
81 {
82 	reg_timer_r_tmr0_data data;
83 	unsigned long ns;
84 
85 	data = REG_RD(timer, regi_timer0, r_tmr0_data);
86 	ns = (TIMER0_DIV - data) * 10;
87 	return ns;
88 }
89 
90 
91 /* From timer MDS describing the hardware watchdog:
92  * 4.3.1 Watchdog Operation
93  * The watchdog timer is an 8-bit timer with a configurable start value.
94  * Once started the watchdog counts downwards with a frequency of 763 Hz
95  * (100/131072 MHz). When the watchdog counts down to 1, it generates an
96  * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
97  * chip.
98  */
99 /* This gives us 1.3 ms to do something useful when the NMI comes */
100 
101 /* Right now, starting the watchdog is the same as resetting it */
102 #define start_watchdog reset_watchdog
103 
104 #if defined(CONFIG_ETRAX_WATCHDOG)
105 static short int watchdog_key = 42;  /* arbitrary 7 bit number */
106 #endif
107 
108 /* Number of pages to consider "out of memory". It is normal that the memory
109  * is used though, so set this really low. */
110 #define WATCHDOG_MIN_FREE_PAGES 8
111 
reset_watchdog(void)112 void reset_watchdog(void)
113 {
114 #if defined(CONFIG_ETRAX_WATCHDOG)
115 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
116 
117 	/* Only keep watchdog happy as long as we have memory left! */
118 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
119 		/* Reset the watchdog with the inverse of the old key */
120 		/* Invert key, which is 7 bits */
121 		watchdog_key ^= ETRAX_WD_KEY_MASK;
122 		wd_ctrl.cnt = ETRAX_WD_CNT;
123 		wd_ctrl.cmd = regk_timer_start;
124 		wd_ctrl.key = watchdog_key;
125 		REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
126 	}
127 #endif
128 }
129 
130 /* stop the watchdog - we still need the correct key */
131 
stop_watchdog(void)132 void stop_watchdog(void)
133 {
134 #if defined(CONFIG_ETRAX_WATCHDOG)
135 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
136 	watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
137 	wd_ctrl.cnt = ETRAX_WD_CNT;
138 	wd_ctrl.cmd = regk_timer_stop;
139 	wd_ctrl.key = watchdog_key;
140 	REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
141 #endif
142 }
143 
144 extern void show_registers(struct pt_regs *regs);
145 
handle_watchdog_bite(struct pt_regs * regs)146 void handle_watchdog_bite(struct pt_regs *regs)
147 {
148 #if defined(CONFIG_ETRAX_WATCHDOG)
149 	extern int cause_of_death;
150 
151 	oops_in_progress = 1;
152 	printk(KERN_WARNING "Watchdog bite\n");
153 
154 	/* Check if forced restart or unexpected watchdog */
155 	if (cause_of_death == 0xbedead) {
156 #ifdef CONFIG_CRIS_MACH_ARTPEC3
157 		/* There is a bug in Artpec-3 (voodoo TR 78) that requires
158 		 * us to go to lower frequency for the reset to be reliable
159 		 */
160 		reg_clkgen_rw_clk_ctrl ctrl =
161 			REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
162 		ctrl.pll = 0;
163 		REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
164 #endif
165 		while(1);
166 	}
167 
168 	/* Unexpected watchdog, stop the watchdog and dump registers. */
169 	stop_watchdog();
170 	printk(KERN_WARNING "Oops: bitten by watchdog\n");
171 	show_registers(regs);
172 	oops_in_progress = 0;
173 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
174 	reset_watchdog();
175 #endif
176 	while(1) /* nothing */;
177 #endif
178 }
179 
180 /*
181  * timer_interrupt() needs to keep up the real-time clock,
182  * as well as call the "xtime_update()" routine every clocktick.
183  */
184 extern void cris_do_profile(struct pt_regs *regs);
185 
timer_interrupt(int irq,void * dev_id)186 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
187 {
188 	struct pt_regs *regs = get_irq_regs();
189 	int cpu = smp_processor_id();
190 	reg_timer_r_masked_intr masked_intr;
191 	reg_timer_rw_ack_intr ack_intr = { 0 };
192 
193 	/* Check if the timer interrupt is for us (a tmr0 int) */
194 	masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
195 	if (!masked_intr.tmr0)
196 		return IRQ_NONE;
197 
198 	/* Acknowledge the timer irq. */
199 	ack_intr.tmr0 = 1;
200 	REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
201 
202 	/* Reset watchdog otherwise it resets us! */
203 	reset_watchdog();
204 
205         /* Update statistics. */
206 	update_process_times(user_mode(regs));
207 
208 	cris_do_profile(regs); /* Save profiling information */
209 
210 	/* The master CPU is responsible for the time keeping. */
211 	if (cpu != 0)
212 		return IRQ_HANDLED;
213 
214 	/* Call the real timer interrupt handler */
215 	xtime_update(1);
216         return IRQ_HANDLED;
217 }
218 
219 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
220 static struct irqaction irq_timer = {
221 	.handler = timer_interrupt,
222 	.flags = IRQF_SHARED,
223 	.name = "timer"
224 };
225 
cris_timer_init(void)226 void __init cris_timer_init(void)
227 {
228 	int cpu = smp_processor_id();
229 	reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
230 	reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
231 	reg_timer_rw_intr_mask timer_intr_mask;
232 
233 	/* Setup the etrax timers.
234 	 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
235 	 * We use timer0, so timer1 is free.
236 	 * The trig timer is used by the fasttimer API if enabled.
237 	 */
238 
239 	tmr0_ctrl.op = regk_timer_ld;
240 	tmr0_ctrl.freq = regk_timer_f100;
241 	REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
242 	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
243 	tmr0_ctrl.op = regk_timer_run;
244 	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
245 
246 	/* Enable the timer irq. */
247 	timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
248 	timer_intr_mask.tmr0 = 1;
249 	REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
250 }
251 
time_init(void)252 void __init time_init(void)
253 {
254 	reg_intr_vect_rw_mask intr_mask;
255 
256 	/* Probe for the RTC and read it if it exists.
257 	 * Before the RTC can be probed the loops_per_usec variable needs
258 	 * to be initialized to make usleep work. A better value for
259 	 * loops_per_usec is calculated by the kernel later once the
260 	 * clock has started.
261 	 */
262 	loops_per_usec = 50;
263 
264 	/* Start CPU local timer. */
265 	cris_timer_init();
266 
267 	/* Enable the timer irq in global config. */
268 	intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
269 	intr_mask.timer0 = 1;
270 	REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
271 
272 	/* Now actually register the timer irq handler that calls
273 	 * timer_interrupt(). */
274 	setup_irq(TIMER0_INTR_VECT, &irq_timer);
275 
276 	/* Enable watchdog if we should use one. */
277 
278 #if defined(CONFIG_ETRAX_WATCHDOG)
279 	printk(KERN_INFO "Enabling watchdog...\n");
280 	start_watchdog();
281 
282 	/* If we use the hardware watchdog, we want to trap it as an NMI
283 	 * and dump registers before it resets us.  For this to happen, we
284 	 * must set the "m" NMI enable flag (which once set, is unset only
285 	 * when an NMI is taken). */
286 	{
287 		unsigned long flags;
288 		local_save_flags(flags);
289 		flags |= (1<<30); /* NMI M flag is at bit 30 */
290 		local_irq_restore(flags);
291 	}
292 #endif
293 
294 #ifdef CONFIG_CPU_FREQ
295 	cpufreq_register_notifier(&cris_time_freq_notifier_block,
296 		CPUFREQ_TRANSITION_NOTIFIER);
297 #endif
298 }
299 
300 #ifdef CONFIG_CPU_FREQ
301 static int
cris_time_freq_notifier(struct notifier_block * nb,unsigned long val,void * data)302 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
303 			void *data)
304 {
305 	struct cpufreq_freqs *freqs = data;
306 	if (val == CPUFREQ_POSTCHANGE) {
307 		reg_timer_r_tmr0_data data;
308 		reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
309 		do {
310 			data = REG_RD(timer, timer_regs[freqs->cpu],
311 				r_tmr0_data);
312 		} while (data > 20);
313 		REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
314 	}
315 	return 0;
316 }
317 #endif
318