• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
46 
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55 
56 #ifdef CONFIG_PERFMON
57 /*
58  * perfmon context state
59  */
60 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64 
65 #define PFM_INVALID_ACTIVATION	(~0UL)
66 
67 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69 
70 /*
71  * depth of message queue
72  */
73 #define PFM_MAX_MSGS		32
74 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 
76 /*
77  * type of a PMU register (bitmask).
78  * bitmask structure:
79  * 	bit0   : register implemented
80  * 	bit1   : end marker
81  * 	bit2-3 : reserved
82  * 	bit4   : pmc has pmc.pm
83  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84  * 	bit6-7 : register type
85  * 	bit8-31: reserved
86  */
87 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88 #define PFM_REG_IMPL		0x1 /* register implemented */
89 #define PFM_REG_END		0x2 /* end marker */
90 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 
96 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 
99 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100 
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110 
111 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115 
116 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118 
119 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h)		(h)->ctx_task
122 
123 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
124 
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 
131 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR	0	/* requesting code range restriction */
135 #define PFM_DATA_RR	1	/* requestion data range restriction */
136 
137 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140 
141 #define RDEP(x)	(1UL<<(x))
142 
143 /*
144  * context protection macros
145  * in SMP:
146  * 	- we need to protect against CPU concurrency (spin_lock)
147  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148  * in UP:
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  *
151  * spin_lock_irqsave()/spin_unlock_irqrestore():
152  * 	in SMP: local_irq_disable + spin_lock
153  * 	in UP : local_irq_disable
154  *
155  * spin_lock()/spin_lock():
156  * 	in UP : removed automatically
157  * 	in SMP: protect against context accesses from other CPU. interrupts
158  * 	        are not masked. This is useful for the PMU interrupt handler
159  * 	        because we know we will not get PMU concurrency in that code.
160  */
161 #define PROTECT_CTX(c, f) \
162 	do {  \
163 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 		spin_lock_irqsave(&(c)->ctx_lock, f); \
165 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166 	} while(0)
167 
168 #define UNPROTECT_CTX(c, f) \
169 	do { \
170 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 	} while(0)
173 
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 	do {  \
176 		spin_lock_irqsave(&(c)->ctx_lock, f); \
177 	} while(0)
178 
179 
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 	do { \
182 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 	} while(0)
184 
185 
186 #define PROTECT_CTX_NOIRQ(c) \
187 	do {  \
188 		spin_lock(&(c)->ctx_lock); \
189 	} while(0)
190 
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 	do { \
193 		spin_unlock(&(c)->ctx_lock); \
194 	} while(0)
195 
196 
197 #ifdef CONFIG_SMP
198 
199 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202 
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) 	do {} while(0)
205 #define GET_ACTIVATION(t) 	do {} while(0)
206 #define INC_ACTIVATION(t) 	do {} while(0)
207 #endif /* CONFIG_SMP */
208 
209 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212 
213 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 
216 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 
218 /*
219  * cmp0 must be the value of pmc0
220  */
221 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222 
223 #define PFMFS_MAGIC 0xa0b4d889
224 
225 /*
226  * debugging
227  */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 	do { \
232 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 	} while (0)
234 
235 #define DPRINT_ovfl(a) \
236 	do { \
237 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 	} while (0)
239 #endif
240 
241 /*
242  * 64-bit software counter structure
243  *
244  * the next_reset_type is applied to the next call to pfm_reset_regs()
245  */
246 typedef struct {
247 	unsigned long	val;		/* virtual 64bit counter value */
248 	unsigned long	lval;		/* last reset value */
249 	unsigned long	long_reset;	/* reset value on sampling overflow */
250 	unsigned long	short_reset;    /* reset value on overflow */
251 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253 	unsigned long	seed;		/* seed for random-number generator */
254 	unsigned long	mask;		/* mask for random-number generator */
255 	unsigned int 	flags;		/* notify/do not notify */
256 	unsigned long	eventid;	/* overflow event identifier */
257 } pfm_counter_t;
258 
259 /*
260  * context flags
261  */
262 typedef struct {
263 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264 	unsigned int system:1;		/* do system wide monitoring */
265 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266 	unsigned int is_sampling:1;	/* true if using a custom format */
267 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270 	unsigned int no_msg:1;		/* no message sent on overflow */
271 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272 	unsigned int reserved:22;
273 } pfm_context_flags_t;
274 
275 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
276 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278 
279 
280 /*
281  * perfmon context: encapsulates all the state of a monitoring session
282  */
283 
284 typedef struct pfm_context {
285 	spinlock_t		ctx_lock;		/* context protection */
286 
287 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289 
290 	struct task_struct 	*ctx_task;		/* task to which context is attached */
291 
292 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293 
294 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295 
296 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299 
300 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303 
304 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305 
306 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310 
311 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 
313 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315 
316 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317 
318 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321 
322 	int			ctx_fd;			/* file descriptor used my this context */
323 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324 
325 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329 
330 	wait_queue_head_t 	ctx_msgq_wait;
331 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332 	int			ctx_msgq_head;
333 	int			ctx_msgq_tail;
334 	struct fasync_struct	*ctx_async_queue;
335 
336 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337 } pfm_context_t;
338 
339 /*
340  * magic number used to verify that structure is really
341  * a perfmon context
342  */
343 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344 
345 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346 
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v)	do {} while(0)
352 #define GET_LAST_CPU(ctx)	do {} while(0)
353 #endif
354 
355 
356 #define ctx_fl_block		ctx_flags.block
357 #define ctx_fl_system		ctx_flags.system
358 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling	ctx_flags.is_sampling
360 #define ctx_fl_excl_idle	ctx_flags.excl_idle
361 #define ctx_fl_going_zombie	ctx_flags.going_zombie
362 #define ctx_fl_trap_reason	ctx_flags.trap_reason
363 #define ctx_fl_no_msg		ctx_flags.no_msg
364 #define ctx_fl_can_restart	ctx_flags.can_restart
365 
366 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368 
369 /*
370  * global information about all sessions
371  * mostly used to synchronize between system wide and per-process
372  */
373 typedef struct {
374 	spinlock_t		pfs_lock;		   /* lock the structure */
375 
376 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382 
383 /*
384  * information about a PMC or PMD.
385  * dep_pmd[]: a bitmask of dependent PMD registers
386  * dep_pmc[]: a bitmask of dependent PMC registers
387  */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 	unsigned int		type;
391 	int			pm_pos;
392 	unsigned long		default_value;	/* power-on default value */
393 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394 	pfm_reg_check_t		read_check;
395 	pfm_reg_check_t		write_check;
396 	unsigned long		dep_pmd[4];
397 	unsigned long		dep_pmc[4];
398 } pfm_reg_desc_t;
399 
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 
403 /*
404  * This structure is initialized at boot time and contains
405  * a description of the PMU main characteristics.
406  *
407  * If the probe function is defined, detection is based
408  * on its return value:
409  * 	- 0 means recognized PMU
410  * 	- anything else means not supported
411  * When the probe function is not defined, then the pmu_family field
412  * is used and it must match the host CPU family such that:
413  * 	- cpu->family & config->pmu_family != 0
414  */
415 typedef struct {
416 	unsigned long  ovfl_val;	/* overflow value for counters */
417 
418 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420 
421 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425 
426 	char	      *pmu_name;	/* PMU family name */
427 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428 	unsigned int  flags;		/* pmu specific flags */
429 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432 	int           (*probe)(void);   /* customized probe routine */
433 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436  * PMU specific flags
437  */
438 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439 
440 /*
441  * debug register related type definitions
442  */
443 typedef struct {
444 	unsigned long ibr_mask:56;
445 	unsigned long ibr_plm:4;
446 	unsigned long ibr_ig:3;
447 	unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449 
450 typedef struct {
451 	unsigned long dbr_mask:56;
452 	unsigned long dbr_plm:4;
453 	unsigned long dbr_ig:2;
454 	unsigned long dbr_w:1;
455 	unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457 
458 typedef union {
459 	unsigned long  val;
460 	ibr_mask_reg_t ibr;
461 	dbr_mask_reg_t dbr;
462 } dbreg_t;
463 
464 
465 /*
466  * perfmon command descriptions
467  */
468 typedef struct {
469 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 	char		*cmd_name;
471 	int		cmd_flags;
472 	unsigned int	cmd_narg;
473 	size_t		cmd_argsize;
474 	int		(*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476 
477 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481 
482 
483 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 
489 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490 
491 typedef struct {
492 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498 	unsigned long pfm_smpl_handler_calls;
499 	unsigned long pfm_smpl_handler_cycles;
500 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502 
503 /*
504  * perfmon internal variables
505  */
506 static pfm_stats_t		pfm_stats[NR_CPUS];
507 static pfm_session_t		pfm_sessions;	/* global sessions information */
508 
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511 
512 static struct proc_dir_entry 	*perfmon_dir;
513 static pfm_uuid_t		pfm_null_uuid = {0,};
514 
515 static spinlock_t		pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517 
518 static pmu_config_t		*pmu_conf;
519 
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523 
524 static struct ctl_table pfm_ctl_table[] = {
525 	{
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= proc_dointvec,
531 	},
532 	{
533 		.procname	= "debug_ovfl",
534 		.data		= &pfm_sysctl.debug_ovfl,
535 		.maxlen		= sizeof(int),
536 		.mode		= 0666,
537 		.proc_handler	= proc_dointvec,
538 	},
539 	{
540 		.procname	= "fastctxsw",
541 		.data		= &pfm_sysctl.fastctxsw,
542 		.maxlen		= sizeof(int),
543 		.mode		= 0600,
544 		.proc_handler	= proc_dointvec,
545 	},
546 	{
547 		.procname	= "expert_mode",
548 		.data		= &pfm_sysctl.expert_mode,
549 		.maxlen		= sizeof(int),
550 		.mode		= 0600,
551 		.proc_handler	= proc_dointvec,
552 	},
553 	{}
554 };
555 static struct ctl_table pfm_sysctl_dir[] = {
556 	{
557 		.procname	= "perfmon",
558 		.mode		= 0555,
559 		.child		= pfm_ctl_table,
560 	},
561  	{}
562 };
563 static struct ctl_table pfm_sysctl_root[] = {
564 	{
565 		.procname	= "kernel",
566 		.mode		= 0555,
567 		.child		= pfm_sysctl_dir,
568 	},
569  	{}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572 
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 
575 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577 
578 static inline void
pfm_put_task(struct task_struct * task)579 pfm_put_task(struct task_struct *task)
580 {
581 	if (task != current) put_task_struct(task);
582 }
583 
584 static inline void
pfm_reserve_page(unsigned long a)585 pfm_reserve_page(unsigned long a)
586 {
587 	SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
pfm_unreserve_page(unsigned long a)590 pfm_unreserve_page(unsigned long a)
591 {
592 	ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594 
595 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 	spin_lock(&(x)->ctx_lock);
599 	return 0UL;
600 }
601 
602 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 	spin_unlock(&(x)->ctx_lock);
606 }
607 
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
610 
611 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 {
614 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 			PFMFS_MAGIC);
616 }
617 
618 static struct file_system_type pfm_fs_type = {
619 	.name     = "pfmfs",
620 	.mount    = pfmfs_mount,
621 	.kill_sb  = kill_anon_super,
622 };
623 MODULE_ALIAS_FS("pfmfs");
624 
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630 
631 
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
634 
635 /*
636  * forward declarations
637  */
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
641 
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644 
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
649 
650 static pmu_config_t *pmu_confs[]={
651 	&pmu_conf_mont,
652 	&pmu_conf_mck,
653 	&pmu_conf_ita,
654 	&pmu_conf_gen, /* must be last */
655 	NULL
656 };
657 
658 
659 static int pfm_end_notify_user(pfm_context_t *ctx);
660 
661 static inline void
pfm_clear_psr_pp(void)662 pfm_clear_psr_pp(void)
663 {
664 	ia64_rsm(IA64_PSR_PP);
665 	ia64_srlz_i();
666 }
667 
668 static inline void
pfm_set_psr_pp(void)669 pfm_set_psr_pp(void)
670 {
671 	ia64_ssm(IA64_PSR_PP);
672 	ia64_srlz_i();
673 }
674 
675 static inline void
pfm_clear_psr_up(void)676 pfm_clear_psr_up(void)
677 {
678 	ia64_rsm(IA64_PSR_UP);
679 	ia64_srlz_i();
680 }
681 
682 static inline void
pfm_set_psr_up(void)683 pfm_set_psr_up(void)
684 {
685 	ia64_ssm(IA64_PSR_UP);
686 	ia64_srlz_i();
687 }
688 
689 static inline unsigned long
pfm_get_psr(void)690 pfm_get_psr(void)
691 {
692 	unsigned long tmp;
693 	tmp = ia64_getreg(_IA64_REG_PSR);
694 	ia64_srlz_i();
695 	return tmp;
696 }
697 
698 static inline void
pfm_set_psr_l(unsigned long val)699 pfm_set_psr_l(unsigned long val)
700 {
701 	ia64_setreg(_IA64_REG_PSR_L, val);
702 	ia64_srlz_i();
703 }
704 
705 static inline void
pfm_freeze_pmu(void)706 pfm_freeze_pmu(void)
707 {
708 	ia64_set_pmc(0,1UL);
709 	ia64_srlz_d();
710 }
711 
712 static inline void
pfm_unfreeze_pmu(void)713 pfm_unfreeze_pmu(void)
714 {
715 	ia64_set_pmc(0,0UL);
716 	ia64_srlz_d();
717 }
718 
719 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721 {
722 	int i;
723 
724 	for (i=0; i < nibrs; i++) {
725 		ia64_set_ibr(i, ibrs[i]);
726 		ia64_dv_serialize_instruction();
727 	}
728 	ia64_srlz_i();
729 }
730 
731 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733 {
734 	int i;
735 
736 	for (i=0; i < ndbrs; i++) {
737 		ia64_set_dbr(i, dbrs[i]);
738 		ia64_dv_serialize_data();
739 	}
740 	ia64_srlz_d();
741 }
742 
743 /*
744  * PMD[i] must be a counter. no check is made
745  */
746 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
748 {
749 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750 }
751 
752 /*
753  * PMD[i] must be a counter. no check is made
754  */
755 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757 {
758 	unsigned long ovfl_val = pmu_conf->ovfl_val;
759 
760 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
761 	/*
762 	 * writing to unimplemented part is ignore, so we do not need to
763 	 * mask off top part
764 	 */
765 	ia64_set_pmd(i, val & ovfl_val);
766 }
767 
768 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)769 pfm_get_new_msg(pfm_context_t *ctx)
770 {
771 	int idx, next;
772 
773 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774 
775 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 	if (next == ctx->ctx_msgq_head) return NULL;
777 
778  	idx = 	ctx->ctx_msgq_tail;
779 	ctx->ctx_msgq_tail = next;
780 
781 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782 
783 	return ctx->ctx_msgq+idx;
784 }
785 
786 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)787 pfm_get_next_msg(pfm_context_t *ctx)
788 {
789 	pfm_msg_t *msg;
790 
791 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792 
793 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794 
795 	/*
796 	 * get oldest message
797 	 */
798 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799 
800 	/*
801 	 * and move forward
802 	 */
803 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804 
805 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806 
807 	return msg;
808 }
809 
810 static void
pfm_reset_msgq(pfm_context_t * ctx)811 pfm_reset_msgq(pfm_context_t *ctx)
812 {
813 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 	DPRINT(("ctx=%p msgq reset\n", ctx));
815 }
816 
817 static void *
pfm_rvmalloc(unsigned long size)818 pfm_rvmalloc(unsigned long size)
819 {
820 	void *mem;
821 	unsigned long addr;
822 
823 	size = PAGE_ALIGN(size);
824 	mem  = vzalloc(size);
825 	if (mem) {
826 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 		addr = (unsigned long)mem;
828 		while (size > 0) {
829 			pfm_reserve_page(addr);
830 			addr+=PAGE_SIZE;
831 			size-=PAGE_SIZE;
832 		}
833 	}
834 	return mem;
835 }
836 
837 static void
pfm_rvfree(void * mem,unsigned long size)838 pfm_rvfree(void *mem, unsigned long size)
839 {
840 	unsigned long addr;
841 
842 	if (mem) {
843 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 		addr = (unsigned long) mem;
845 		while ((long) size > 0) {
846 			pfm_unreserve_page(addr);
847 			addr+=PAGE_SIZE;
848 			size-=PAGE_SIZE;
849 		}
850 		vfree(mem);
851 	}
852 	return;
853 }
854 
855 static pfm_context_t *
pfm_context_alloc(int ctx_flags)856 pfm_context_alloc(int ctx_flags)
857 {
858 	pfm_context_t *ctx;
859 
860 	/*
861 	 * allocate context descriptor
862 	 * must be able to free with interrupts disabled
863 	 */
864 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 	if (ctx) {
866 		DPRINT(("alloc ctx @%p\n", ctx));
867 
868 		/*
869 		 * init context protection lock
870 		 */
871 		spin_lock_init(&ctx->ctx_lock);
872 
873 		/*
874 		 * context is unloaded
875 		 */
876 		ctx->ctx_state = PFM_CTX_UNLOADED;
877 
878 		/*
879 		 * initialization of context's flags
880 		 */
881 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 		/*
885 		 * will move to set properties
886 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 		 */
888 
889 		/*
890 		 * init restart semaphore to locked
891 		 */
892 		init_completion(&ctx->ctx_restart_done);
893 
894 		/*
895 		 * activation is used in SMP only
896 		 */
897 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 		SET_LAST_CPU(ctx, -1);
899 
900 		/*
901 		 * initialize notification message queue
902 		 */
903 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 		init_waitqueue_head(&ctx->ctx_msgq_wait);
905 		init_waitqueue_head(&ctx->ctx_zombieq);
906 
907 	}
908 	return ctx;
909 }
910 
911 static void
pfm_context_free(pfm_context_t * ctx)912 pfm_context_free(pfm_context_t *ctx)
913 {
914 	if (ctx) {
915 		DPRINT(("free ctx @%p\n", ctx));
916 		kfree(ctx);
917 	}
918 }
919 
920 static void
pfm_mask_monitoring(struct task_struct * task)921 pfm_mask_monitoring(struct task_struct *task)
922 {
923 	pfm_context_t *ctx = PFM_GET_CTX(task);
924 	unsigned long mask, val, ovfl_mask;
925 	int i;
926 
927 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928 
929 	ovfl_mask = pmu_conf->ovfl_val;
930 	/*
931 	 * monitoring can only be masked as a result of a valid
932 	 * counter overflow. In UP, it means that the PMU still
933 	 * has an owner. Note that the owner can be different
934 	 * from the current task. However the PMU state belongs
935 	 * to the owner.
936 	 * In SMP, a valid overflow only happens when task is
937 	 * current. Therefore if we come here, we know that
938 	 * the PMU state belongs to the current task, therefore
939 	 * we can access the live registers.
940 	 *
941 	 * So in both cases, the live register contains the owner's
942 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 	 *
944 	 * As a consequence to this call, the ctx->th_pmds[] array
945 	 * contains stale information which must be ignored
946 	 * when context is reloaded AND monitoring is active (see
947 	 * pfm_restart).
948 	 */
949 	mask = ctx->ctx_used_pmds[0];
950 	for (i = 0; mask; i++, mask>>=1) {
951 		/* skip non used pmds */
952 		if ((mask & 0x1) == 0) continue;
953 		val = ia64_get_pmd(i);
954 
955 		if (PMD_IS_COUNTING(i)) {
956 			/*
957 		 	 * we rebuild the full 64 bit value of the counter
958 		 	 */
959 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 		} else {
961 			ctx->ctx_pmds[i].val = val;
962 		}
963 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 			i,
965 			ctx->ctx_pmds[i].val,
966 			val & ovfl_mask));
967 	}
968 	/*
969 	 * mask monitoring by setting the privilege level to 0
970 	 * we cannot use psr.pp/psr.up for this, it is controlled by
971 	 * the user
972 	 *
973 	 * if task is current, modify actual registers, otherwise modify
974 	 * thread save state, i.e., what will be restored in pfm_load_regs()
975 	 */
976 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 		if ((mask & 0x1) == 0UL) continue;
979 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 		ctx->th_pmcs[i] &= ~0xfUL;
981 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 	}
983 	/*
984 	 * make all of this visible
985 	 */
986 	ia64_srlz_d();
987 }
988 
989 /*
990  * must always be done with task == current
991  *
992  * context must be in MASKED state when calling
993  */
994 static void
pfm_restore_monitoring(struct task_struct * task)995 pfm_restore_monitoring(struct task_struct *task)
996 {
997 	pfm_context_t *ctx = PFM_GET_CTX(task);
998 	unsigned long mask, ovfl_mask;
999 	unsigned long psr, val;
1000 	int i, is_system;
1001 
1002 	is_system = ctx->ctx_fl_system;
1003 	ovfl_mask = pmu_conf->ovfl_val;
1004 
1005 	if (task != current) {
1006 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 		return;
1008 	}
1009 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 		return;
1013 	}
1014 	psr = pfm_get_psr();
1015 	/*
1016 	 * monitoring is masked via the PMC.
1017 	 * As we restore their value, we do not want each counter to
1018 	 * restart right away. We stop monitoring using the PSR,
1019 	 * restore the PMC (and PMD) and then re-establish the psr
1020 	 * as it was. Note that there can be no pending overflow at
1021 	 * this point, because monitoring was MASKED.
1022 	 *
1023 	 * system-wide session are pinned and self-monitoring
1024 	 */
1025 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 		/* disable dcr pp */
1027 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 		pfm_clear_psr_pp();
1029 	} else {
1030 		pfm_clear_psr_up();
1031 	}
1032 	/*
1033 	 * first, we restore the PMD
1034 	 */
1035 	mask = ctx->ctx_used_pmds[0];
1036 	for (i = 0; mask; i++, mask>>=1) {
1037 		/* skip non used pmds */
1038 		if ((mask & 0x1) == 0) continue;
1039 
1040 		if (PMD_IS_COUNTING(i)) {
1041 			/*
1042 			 * we split the 64bit value according to
1043 			 * counter width
1044 			 */
1045 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 		} else {
1048 			val = ctx->ctx_pmds[i].val;
1049 		}
1050 		ia64_set_pmd(i, val);
1051 
1052 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 			i,
1054 			ctx->ctx_pmds[i].val,
1055 			val));
1056 	}
1057 	/*
1058 	 * restore the PMCs
1059 	 */
1060 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 		if ((mask & 0x1) == 0UL) continue;
1063 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 	}
1068 	ia64_srlz_d();
1069 
1070 	/*
1071 	 * must restore DBR/IBR because could be modified while masked
1072 	 * XXX: need to optimize
1073 	 */
1074 	if (ctx->ctx_fl_using_dbreg) {
1075 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 	}
1078 
1079 	/*
1080 	 * now restore PSR
1081 	 */
1082 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 		/* enable dcr pp */
1084 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 		ia64_srlz_i();
1086 	}
1087 	pfm_set_psr_l(psr);
1088 }
1089 
1090 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092 {
1093 	int i;
1094 
1095 	ia64_srlz_d();
1096 
1097 	for (i=0; mask; i++, mask>>=1) {
1098 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 	}
1100 }
1101 
1102 /*
1103  * reload from thread state (used for ctxw only)
1104  */
1105 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 	int i;
1109 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110 
1111 	for (i=0; mask; i++, mask>>=1) {
1112 		if ((mask & 0x1) == 0) continue;
1113 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 		ia64_set_pmd(i, val);
1115 	}
1116 	ia64_srlz_d();
1117 }
1118 
1119 /*
1120  * propagate PMD from context to thread-state
1121  */
1122 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124 {
1125 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 	unsigned long mask = ctx->ctx_all_pmds[0];
1127 	unsigned long val;
1128 	int i;
1129 
1130 	DPRINT(("mask=0x%lx\n", mask));
1131 
1132 	for (i=0; mask; i++, mask>>=1) {
1133 
1134 		val = ctx->ctx_pmds[i].val;
1135 
1136 		/*
1137 		 * We break up the 64 bit value into 2 pieces
1138 		 * the lower bits go to the machine state in the
1139 		 * thread (will be reloaded on ctxsw in).
1140 		 * The upper part stays in the soft-counter.
1141 		 */
1142 		if (PMD_IS_COUNTING(i)) {
1143 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 			 val &= ovfl_val;
1145 		}
1146 		ctx->th_pmds[i] = val;
1147 
1148 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 			i,
1150 			ctx->th_pmds[i],
1151 			ctx->ctx_pmds[i].val));
1152 	}
1153 }
1154 
1155 /*
1156  * propagate PMC from context to thread-state
1157  */
1158 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160 {
1161 	unsigned long mask = ctx->ctx_all_pmcs[0];
1162 	int i;
1163 
1164 	DPRINT(("mask=0x%lx\n", mask));
1165 
1166 	for (i=0; mask; i++, mask>>=1) {
1167 		/* masking 0 with ovfl_val yields 0 */
1168 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 	}
1171 }
1172 
1173 
1174 
1175 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177 {
1178 	int i;
1179 
1180 	for (i=0; mask; i++, mask>>=1) {
1181 		if ((mask & 0x1) == 0) continue;
1182 		ia64_set_pmc(i, pmcs[i]);
1183 	}
1184 	ia64_srlz_d();
1185 }
1186 
1187 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189 {
1190 	return memcmp(a, b, sizeof(pfm_uuid_t));
1191 }
1192 
1193 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195 {
1196 	int ret = 0;
1197 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 	return ret;
1199 }
1200 
1201 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203 {
1204 	int ret = 0;
1205 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 	return ret;
1207 }
1208 
1209 
1210 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 		     int cpu, void *arg)
1213 {
1214 	int ret = 0;
1215 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 	return ret;
1217 }
1218 
1219 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 		     int cpu, void *arg)
1222 {
1223 	int ret = 0;
1224 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 	return ret;
1226 }
1227 
1228 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230 {
1231 	int ret = 0;
1232 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 	return ret;
1234 }
1235 
1236 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238 {
1239 	int ret = 0;
1240 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 	return ret;
1242 }
1243 
1244 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246 {
1247 	struct list_head * pos;
1248 	pfm_buffer_fmt_t * entry;
1249 
1250 	list_for_each(pos, &pfm_buffer_fmt_list) {
1251 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 			return entry;
1254 	}
1255 	return NULL;
1256 }
1257 
1258 /*
1259  * find a buffer format based on its uuid
1260  */
1261 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263 {
1264 	pfm_buffer_fmt_t * fmt;
1265 	spin_lock(&pfm_buffer_fmt_lock);
1266 	fmt = __pfm_find_buffer_fmt(uuid);
1267 	spin_unlock(&pfm_buffer_fmt_lock);
1268 	return fmt;
1269 }
1270 
1271 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273 {
1274 	int ret = 0;
1275 
1276 	/* some sanity checks */
1277 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278 
1279 	/* we need at least a handler */
1280 	if (fmt->fmt_handler == NULL) return -EINVAL;
1281 
1282 	/*
1283 	 * XXX: need check validity of fmt_arg_size
1284 	 */
1285 
1286 	spin_lock(&pfm_buffer_fmt_lock);
1287 
1288 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 		ret = -EBUSY;
1291 		goto out;
1292 	}
1293 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295 
1296 out:
1297 	spin_unlock(&pfm_buffer_fmt_lock);
1298  	return ret;
1299 }
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301 
1302 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304 {
1305 	pfm_buffer_fmt_t *fmt;
1306 	int ret = 0;
1307 
1308 	spin_lock(&pfm_buffer_fmt_lock);
1309 
1310 	fmt = __pfm_find_buffer_fmt(uuid);
1311 	if (!fmt) {
1312 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 		ret = -EINVAL;
1314 		goto out;
1315 	}
1316 	list_del_init(&fmt->fmt_list);
1317 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318 
1319 out:
1320 	spin_unlock(&pfm_buffer_fmt_lock);
1321 	return ret;
1322 
1323 }
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325 
1326 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 	unsigned long flags;
1330 	/*
1331 	 * validity checks on cpu_mask have been done upstream
1332 	 */
1333 	LOCK_PFS(flags);
1334 
1335 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 		pfm_sessions.pfs_sys_sessions,
1337 		pfm_sessions.pfs_task_sessions,
1338 		pfm_sessions.pfs_sys_use_dbregs,
1339 		is_syswide,
1340 		cpu));
1341 
1342 	if (is_syswide) {
1343 		/*
1344 		 * cannot mix system wide and per-task sessions
1345 		 */
1346 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 			  	pfm_sessions.pfs_task_sessions));
1349 			goto abort;
1350 		}
1351 
1352 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353 
1354 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355 
1356 		pfm_sessions.pfs_sys_session[cpu] = task;
1357 
1358 		pfm_sessions.pfs_sys_sessions++ ;
1359 
1360 	} else {
1361 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 		pfm_sessions.pfs_task_sessions++;
1363 	}
1364 
1365 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 		pfm_sessions.pfs_sys_sessions,
1367 		pfm_sessions.pfs_task_sessions,
1368 		pfm_sessions.pfs_sys_use_dbregs,
1369 		is_syswide,
1370 		cpu));
1371 
1372 	/*
1373 	 * Force idle() into poll mode
1374 	 */
1375 	cpu_idle_poll_ctrl(true);
1376 
1377 	UNLOCK_PFS(flags);
1378 
1379 	return 0;
1380 
1381 error_conflict:
1382 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 		cpu));
1385 abort:
1386 	UNLOCK_PFS(flags);
1387 
1388 	return -EBUSY;
1389 
1390 }
1391 
1392 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 	unsigned long flags;
1396 	/*
1397 	 * validity checks on cpu_mask have been done upstream
1398 	 */
1399 	LOCK_PFS(flags);
1400 
1401 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 		pfm_sessions.pfs_sys_sessions,
1403 		pfm_sessions.pfs_task_sessions,
1404 		pfm_sessions.pfs_sys_use_dbregs,
1405 		is_syswide,
1406 		cpu));
1407 
1408 
1409 	if (is_syswide) {
1410 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 		/*
1412 		 * would not work with perfmon+more than one bit in cpu_mask
1413 		 */
1414 		if (ctx && ctx->ctx_fl_using_dbreg) {
1415 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 			} else {
1418 				pfm_sessions.pfs_sys_use_dbregs--;
1419 			}
1420 		}
1421 		pfm_sessions.pfs_sys_sessions--;
1422 	} else {
1423 		pfm_sessions.pfs_task_sessions--;
1424 	}
1425 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 		pfm_sessions.pfs_sys_sessions,
1427 		pfm_sessions.pfs_task_sessions,
1428 		pfm_sessions.pfs_sys_use_dbregs,
1429 		is_syswide,
1430 		cpu));
1431 
1432 	/* Undo forced polling. Last session reenables pal_halt */
1433 	cpu_idle_poll_ctrl(false);
1434 
1435 	UNLOCK_PFS(flags);
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * removes virtual mapping of the sampling buffer.
1442  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443  * a PROTECT_CTX() section.
1444  */
1445 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447 {
1448 	struct task_struct *task = current;
1449 	int r;
1450 
1451 	/* sanity checks */
1452 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 		return -EINVAL;
1455 	}
1456 
1457 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 
1459 	/*
1460 	 * does the actual unmapping
1461 	 */
1462 	r = vm_munmap((unsigned long)vaddr, size);
1463 
1464 	if (r !=0) {
1465 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 	}
1467 
1468 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * free actual physical storage used by sampling buffer
1475  */
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1479 {
1480 	pfm_buffer_fmt_t *fmt;
1481 
1482 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 
1484 	/*
1485 	 * we won't use the buffer format anymore
1486 	 */
1487 	fmt = ctx->ctx_buf_fmt;
1488 
1489 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 		ctx->ctx_smpl_hdr,
1491 		ctx->ctx_smpl_size,
1492 		ctx->ctx_smpl_vaddr));
1493 
1494 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495 
1496 	/*
1497 	 * free the buffer
1498 	 */
1499 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500 
1501 	ctx->ctx_smpl_hdr  = NULL;
1502 	ctx->ctx_smpl_size = 0UL;
1503 
1504 	return 0;
1505 
1506 invalid_free:
1507 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 	return -EINVAL;
1509 }
1510 #endif
1511 
1512 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514 {
1515 	if (fmt == NULL) return;
1516 
1517 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518 
1519 }
1520 
1521 /*
1522  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523  * no real gain from having the whole whorehouse mounted. So we don't need
1524  * any operations on the root directory. However, we need a non-trivial
1525  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526  */
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1528 
1529 static int __init
init_pfm_fs(void)1530 init_pfm_fs(void)
1531 {
1532 	int err = register_filesystem(&pfm_fs_type);
1533 	if (!err) {
1534 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 		err = PTR_ERR(pfmfs_mnt);
1536 		if (IS_ERR(pfmfs_mnt))
1537 			unregister_filesystem(&pfm_fs_type);
1538 		else
1539 			err = 0;
1540 	}
1541 	return err;
1542 }
1543 
1544 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546 {
1547 	pfm_context_t *ctx;
1548 	pfm_msg_t *msg;
1549 	ssize_t ret;
1550 	unsigned long flags;
1551   	DECLARE_WAITQUEUE(wait, current);
1552 	if (PFM_IS_FILE(filp) == 0) {
1553 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 		return -EINVAL;
1555 	}
1556 
1557 	ctx = filp->private_data;
1558 	if (ctx == NULL) {
1559 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 		return -EINVAL;
1561 	}
1562 
1563 	/*
1564 	 * check even when there is no message
1565 	 */
1566 	if (size < sizeof(pfm_msg_t)) {
1567 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 		return -EINVAL;
1569 	}
1570 
1571 	PROTECT_CTX(ctx, flags);
1572 
1573   	/*
1574 	 * put ourselves on the wait queue
1575 	 */
1576   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577 
1578 
1579   	for(;;) {
1580 		/*
1581 		 * check wait queue
1582 		 */
1583 
1584   		set_current_state(TASK_INTERRUPTIBLE);
1585 
1586 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587 
1588 		ret = 0;
1589 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590 
1591 		UNPROTECT_CTX(ctx, flags);
1592 
1593 		/*
1594 		 * check non-blocking read
1595 		 */
1596       		ret = -EAGAIN;
1597 		if(filp->f_flags & O_NONBLOCK) break;
1598 
1599 		/*
1600 		 * check pending signals
1601 		 */
1602 		if(signal_pending(current)) {
1603 			ret = -EINTR;
1604 			break;
1605 		}
1606       		/*
1607 		 * no message, so wait
1608 		 */
1609       		schedule();
1610 
1611 		PROTECT_CTX(ctx, flags);
1612 	}
1613 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614   	set_current_state(TASK_RUNNING);
1615 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616 
1617 	if (ret < 0) goto abort;
1618 
1619 	ret = -EINVAL;
1620 	msg = pfm_get_next_msg(ctx);
1621 	if (msg == NULL) {
1622 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 		goto abort_locked;
1624 	}
1625 
1626 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627 
1628 	ret = -EFAULT;
1629   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630 
1631 abort_locked:
1632 	UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 	return ret;
1635 }
1636 
1637 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1638 pfm_write(struct file *file, const char __user *ubuf,
1639 			  size_t size, loff_t *ppos)
1640 {
1641 	DPRINT(("pfm_write called\n"));
1642 	return -EINVAL;
1643 }
1644 
1645 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1646 pfm_poll(struct file *filp, poll_table * wait)
1647 {
1648 	pfm_context_t *ctx;
1649 	unsigned long flags;
1650 	unsigned int mask = 0;
1651 
1652 	if (PFM_IS_FILE(filp) == 0) {
1653 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 		return 0;
1655 	}
1656 
1657 	ctx = filp->private_data;
1658 	if (ctx == NULL) {
1659 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 		return 0;
1661 	}
1662 
1663 
1664 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665 
1666 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667 
1668 	PROTECT_CTX(ctx, flags);
1669 
1670 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 		mask =  POLLIN | POLLRDNORM;
1672 
1673 	UNPROTECT_CTX(ctx, flags);
1674 
1675 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676 
1677 	return mask;
1678 }
1679 
1680 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 	DPRINT(("pfm_ioctl called\n"));
1684 	return -EINVAL;
1685 }
1686 
1687 /*
1688  * interrupt cannot be masked when coming here
1689  */
1690 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 {
1693 	int ret;
1694 
1695 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696 
1697 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 		task_pid_nr(current),
1699 		fd,
1700 		on,
1701 		ctx->ctx_async_queue, ret));
1702 
1703 	return ret;
1704 }
1705 
1706 static int
pfm_fasync(int fd,struct file * filp,int on)1707 pfm_fasync(int fd, struct file *filp, int on)
1708 {
1709 	pfm_context_t *ctx;
1710 	int ret;
1711 
1712 	if (PFM_IS_FILE(filp) == 0) {
1713 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 		return -EBADF;
1715 	}
1716 
1717 	ctx = filp->private_data;
1718 	if (ctx == NULL) {
1719 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 		return -EBADF;
1721 	}
1722 	/*
1723 	 * we cannot mask interrupts during this call because this may
1724 	 * may go to sleep if memory is not readily avalaible.
1725 	 *
1726 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 	 * done in caller. Serialization of this function is ensured by caller.
1728 	 */
1729 	ret = pfm_do_fasync(fd, filp, ctx, on);
1730 
1731 
1732 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 		fd,
1734 		on,
1735 		ctx->ctx_async_queue, ret));
1736 
1737 	return ret;
1738 }
1739 
1740 #ifdef CONFIG_SMP
1741 /*
1742  * this function is exclusively called from pfm_close().
1743  * The context is not protected at that time, nor are interrupts
1744  * on the remote CPU. That's necessary to avoid deadlocks.
1745  */
1746 static void
pfm_syswide_force_stop(void * info)1747 pfm_syswide_force_stop(void *info)
1748 {
1749 	pfm_context_t   *ctx = (pfm_context_t *)info;
1750 	struct pt_regs *regs = task_pt_regs(current);
1751 	struct task_struct *owner;
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	if (ctx->ctx_cpu != smp_processor_id()) {
1756 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757 			ctx->ctx_cpu,
1758 			smp_processor_id());
1759 		return;
1760 	}
1761 	owner = GET_PMU_OWNER();
1762 	if (owner != ctx->ctx_task) {
1763 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 			smp_processor_id(),
1765 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 		return;
1767 	}
1768 	if (GET_PMU_CTX() != ctx) {
1769 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 			smp_processor_id(),
1771 			GET_PMU_CTX(), ctx);
1772 		return;
1773 	}
1774 
1775 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 	/*
1777 	 * the context is already protected in pfm_close(), we simply
1778 	 * need to mask interrupts to avoid a PMU interrupt race on
1779 	 * this CPU
1780 	 */
1781 	local_irq_save(flags);
1782 
1783 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 	if (ret) {
1785 		DPRINT(("context_unload returned %d\n", ret));
1786 	}
1787 
1788 	/*
1789 	 * unmask interrupts, PMU interrupts are now spurious here
1790 	 */
1791 	local_irq_restore(flags);
1792 }
1793 
1794 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 {
1797 	int ret;
1798 
1799 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802 }
1803 #endif /* CONFIG_SMP */
1804 
1805 /*
1806  * called for each close(). Partially free resources.
1807  * When caller is self-monitoring, the context is unloaded.
1808  */
1809 static int
pfm_flush(struct file * filp,fl_owner_t id)1810 pfm_flush(struct file *filp, fl_owner_t id)
1811 {
1812 	pfm_context_t *ctx;
1813 	struct task_struct *task;
1814 	struct pt_regs *regs;
1815 	unsigned long flags;
1816 	unsigned long smpl_buf_size = 0UL;
1817 	void *smpl_buf_vaddr = NULL;
1818 	int state, is_system;
1819 
1820 	if (PFM_IS_FILE(filp) == 0) {
1821 		DPRINT(("bad magic for\n"));
1822 		return -EBADF;
1823 	}
1824 
1825 	ctx = filp->private_data;
1826 	if (ctx == NULL) {
1827 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 		return -EBADF;
1829 	}
1830 
1831 	/*
1832 	 * remove our file from the async queue, if we use this mode.
1833 	 * This can be done without the context being protected. We come
1834 	 * here when the context has become unreachable by other tasks.
1835 	 *
1836 	 * We may still have active monitoring at this point and we may
1837 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 	 * operates with interrupts disabled and it cleans up the
1839 	 * queue. If the PMU handler is called prior to entering
1840 	 * fasync_helper() then it will send a signal. If it is
1841 	 * invoked after, it will find an empty queue and no
1842 	 * signal will be sent. In both case, we are safe
1843 	 */
1844 	PROTECT_CTX(ctx, flags);
1845 
1846 	state     = ctx->ctx_state;
1847 	is_system = ctx->ctx_fl_system;
1848 
1849 	task = PFM_CTX_TASK(ctx);
1850 	regs = task_pt_regs(task);
1851 
1852 	DPRINT(("ctx_state=%d is_current=%d\n",
1853 		state,
1854 		task == current ? 1 : 0));
1855 
1856 	/*
1857 	 * if state == UNLOADED, then task is NULL
1858 	 */
1859 
1860 	/*
1861 	 * we must stop and unload because we are losing access to the context.
1862 	 */
1863 	if (task == current) {
1864 #ifdef CONFIG_SMP
1865 		/*
1866 		 * the task IS the owner but it migrated to another CPU: that's bad
1867 		 * but we must handle this cleanly. Unfortunately, the kernel does
1868 		 * not provide a mechanism to block migration (while the context is loaded).
1869 		 *
1870 		 * We need to release the resource on the ORIGINAL cpu.
1871 		 */
1872 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873 
1874 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 			/*
1876 			 * keep context protected but unmask interrupt for IPI
1877 			 */
1878 			local_irq_restore(flags);
1879 
1880 			pfm_syswide_cleanup_other_cpu(ctx);
1881 
1882 			/*
1883 			 * restore interrupt masking
1884 			 */
1885 			local_irq_save(flags);
1886 
1887 			/*
1888 			 * context is unloaded at this point
1889 			 */
1890 		} else
1891 #endif /* CONFIG_SMP */
1892 		{
1893 
1894 			DPRINT(("forcing unload\n"));
1895 			/*
1896 		 	* stop and unload, returning with state UNLOADED
1897 		 	* and session unreserved.
1898 		 	*/
1899 			pfm_context_unload(ctx, NULL, 0, regs);
1900 
1901 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * remove virtual mapping, if any, for the calling task.
1907 	 * cannot reset ctx field until last user is calling close().
1908 	 *
1909 	 * ctx_smpl_vaddr must never be cleared because it is needed
1910 	 * by every task with access to the context
1911 	 *
1912 	 * When called from do_exit(), the mm context is gone already, therefore
1913 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914 	 * do anything here
1915 	 */
1916 	if (ctx->ctx_smpl_vaddr && current->mm) {
1917 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 		smpl_buf_size  = ctx->ctx_smpl_size;
1919 	}
1920 
1921 	UNPROTECT_CTX(ctx, flags);
1922 
1923 	/*
1924 	 * if there was a mapping, then we systematically remove it
1925 	 * at this point. Cannot be done inside critical section
1926 	 * because some VM function reenables interrupts.
1927 	 *
1928 	 */
1929 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930 
1931 	return 0;
1932 }
1933 /*
1934  * called either on explicit close() or from exit_files().
1935  * Only the LAST user of the file gets to this point, i.e., it is
1936  * called only ONCE.
1937  *
1938  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939  * (fput()),i.e, last task to access the file. Nobody else can access the
1940  * file at this point.
1941  *
1942  * When called from exit_files(), the VMA has been freed because exit_mm()
1943  * is executed before exit_files().
1944  *
1945  * When called from exit_files(), the current task is not yet ZOMBIE but we
1946  * flush the PMU state to the context.
1947  */
1948 static int
pfm_close(struct inode * inode,struct file * filp)1949 pfm_close(struct inode *inode, struct file *filp)
1950 {
1951 	pfm_context_t *ctx;
1952 	struct task_struct *task;
1953 	struct pt_regs *regs;
1954   	DECLARE_WAITQUEUE(wait, current);
1955 	unsigned long flags;
1956 	unsigned long smpl_buf_size = 0UL;
1957 	void *smpl_buf_addr = NULL;
1958 	int free_possible = 1;
1959 	int state, is_system;
1960 
1961 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962 
1963 	if (PFM_IS_FILE(filp) == 0) {
1964 		DPRINT(("bad magic\n"));
1965 		return -EBADF;
1966 	}
1967 
1968 	ctx = filp->private_data;
1969 	if (ctx == NULL) {
1970 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 		return -EBADF;
1972 	}
1973 
1974 	PROTECT_CTX(ctx, flags);
1975 
1976 	state     = ctx->ctx_state;
1977 	is_system = ctx->ctx_fl_system;
1978 
1979 	task = PFM_CTX_TASK(ctx);
1980 	regs = task_pt_regs(task);
1981 
1982 	DPRINT(("ctx_state=%d is_current=%d\n",
1983 		state,
1984 		task == current ? 1 : 0));
1985 
1986 	/*
1987 	 * if task == current, then pfm_flush() unloaded the context
1988 	 */
1989 	if (state == PFM_CTX_UNLOADED) goto doit;
1990 
1991 	/*
1992 	 * context is loaded/masked and task != current, we need to
1993 	 * either force an unload or go zombie
1994 	 */
1995 
1996 	/*
1997 	 * The task is currently blocked or will block after an overflow.
1998 	 * we must force it to wakeup to get out of the
1999 	 * MASKED state and transition to the unloaded state by itself.
2000 	 *
2001 	 * This situation is only possible for per-task mode
2002 	 */
2003 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004 
2005 		/*
2006 		 * set a "partial" zombie state to be checked
2007 		 * upon return from down() in pfm_handle_work().
2008 		 *
2009 		 * We cannot use the ZOMBIE state, because it is checked
2010 		 * by pfm_load_regs() which is called upon wakeup from down().
2011 		 * In such case, it would free the context and then we would
2012 		 * return to pfm_handle_work() which would access the
2013 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 		 * but visible to pfm_handle_work().
2015 		 *
2016 		 * For some window of time, we have a zombie context with
2017 		 * ctx_state = MASKED  and not ZOMBIE
2018 		 */
2019 		ctx->ctx_fl_going_zombie = 1;
2020 
2021 		/*
2022 		 * force task to wake up from MASKED state
2023 		 */
2024 		complete(&ctx->ctx_restart_done);
2025 
2026 		DPRINT(("waking up ctx_state=%d\n", state));
2027 
2028 		/*
2029 		 * put ourself to sleep waiting for the other
2030 		 * task to report completion
2031 		 *
2032 		 * the context is protected by mutex, therefore there
2033 		 * is no risk of being notified of completion before
2034 		 * begin actually on the waitq.
2035 		 */
2036   		set_current_state(TASK_INTERRUPTIBLE);
2037   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038 
2039 		UNPROTECT_CTX(ctx, flags);
2040 
2041 		/*
2042 		 * XXX: check for signals :
2043 		 * 	- ok for explicit close
2044 		 * 	- not ok when coming from exit_files()
2045 		 */
2046       		schedule();
2047 
2048 
2049 		PROTECT_CTX(ctx, flags);
2050 
2051 
2052 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053   		set_current_state(TASK_RUNNING);
2054 
2055 		/*
2056 		 * context is unloaded at this point
2057 		 */
2058 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 	}
2060 	else if (task != current) {
2061 #ifdef CONFIG_SMP
2062 		/*
2063 	 	 * switch context to zombie state
2064 	 	 */
2065 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066 
2067 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 		/*
2069 		 * cannot free the context on the spot. deferred until
2070 		 * the task notices the ZOMBIE state
2071 		 */
2072 		free_possible = 0;
2073 #else
2074 		pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2076 	}
2077 
2078 doit:
2079 	/* reload state, may have changed during  opening of critical section */
2080 	state = ctx->ctx_state;
2081 
2082 	/*
2083 	 * the context is still attached to a task (possibly current)
2084 	 * we cannot destroy it right now
2085 	 */
2086 
2087 	/*
2088 	 * we must free the sampling buffer right here because
2089 	 * we cannot rely on it being cleaned up later by the
2090 	 * monitored task. It is not possible to free vmalloc'ed
2091 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 	 * now. should there be subsequent PMU overflow originally
2093 	 * meant for sampling, the will be converted to spurious
2094 	 * and that's fine because the monitoring tools is gone anyway.
2095 	 */
2096 	if (ctx->ctx_smpl_hdr) {
2097 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 		smpl_buf_size = ctx->ctx_smpl_size;
2099 		/* no more sampling */
2100 		ctx->ctx_smpl_hdr = NULL;
2101 		ctx->ctx_fl_is_sampling = 0;
2102 	}
2103 
2104 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 		state,
2106 		free_possible,
2107 		smpl_buf_addr,
2108 		smpl_buf_size));
2109 
2110 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111 
2112 	/*
2113 	 * UNLOADED that the session has already been unreserved.
2114 	 */
2115 	if (state == PFM_CTX_ZOMBIE) {
2116 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 	}
2118 
2119 	/*
2120 	 * disconnect file descriptor from context must be done
2121 	 * before we unlock.
2122 	 */
2123 	filp->private_data = NULL;
2124 
2125 	/*
2126 	 * if we free on the spot, the context is now completely unreachable
2127 	 * from the callers side. The monitored task side is also cut, so we
2128 	 * can freely cut.
2129 	 *
2130 	 * If we have a deferred free, only the caller side is disconnected.
2131 	 */
2132 	UNPROTECT_CTX(ctx, flags);
2133 
2134 	/*
2135 	 * All memory free operations (especially for vmalloc'ed memory)
2136 	 * MUST be done with interrupts ENABLED.
2137 	 */
2138 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139 
2140 	/*
2141 	 * return the memory used by the context
2142 	 */
2143 	if (free_possible) pfm_context_free(ctx);
2144 
2145 	return 0;
2146 }
2147 
2148 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2149 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150 {
2151 	DPRINT(("pfm_no_open called\n"));
2152 	return -ENXIO;
2153 }
2154 
2155 
2156 
2157 static const struct file_operations pfm_file_ops = {
2158 	.llseek		= no_llseek,
2159 	.read		= pfm_read,
2160 	.write		= pfm_write,
2161 	.poll		= pfm_poll,
2162 	.unlocked_ioctl = pfm_ioctl,
2163 	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2164 	.fasync		= pfm_fasync,
2165 	.release	= pfm_close,
2166 	.flush		= pfm_flush
2167 };
2168 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2169 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2170 {
2171 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2172 			     dentry->d_inode->i_ino);
2173 }
2174 
2175 static const struct dentry_operations pfmfs_dentry_operations = {
2176 	.d_delete = always_delete_dentry,
2177 	.d_dname = pfmfs_dname,
2178 };
2179 
2180 
2181 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2182 pfm_alloc_file(pfm_context_t *ctx)
2183 {
2184 	struct file *file;
2185 	struct inode *inode;
2186 	struct path path;
2187 	struct qstr this = { .name = "" };
2188 
2189 	/*
2190 	 * allocate a new inode
2191 	 */
2192 	inode = new_inode(pfmfs_mnt->mnt_sb);
2193 	if (!inode)
2194 		return ERR_PTR(-ENOMEM);
2195 
2196 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2197 
2198 	inode->i_mode = S_IFCHR|S_IRUGO;
2199 	inode->i_uid  = current_fsuid();
2200 	inode->i_gid  = current_fsgid();
2201 
2202 	/*
2203 	 * allocate a new dcache entry
2204 	 */
2205 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2206 	if (!path.dentry) {
2207 		iput(inode);
2208 		return ERR_PTR(-ENOMEM);
2209 	}
2210 	path.mnt = mntget(pfmfs_mnt);
2211 
2212 	d_add(path.dentry, inode);
2213 
2214 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2215 	if (IS_ERR(file)) {
2216 		path_put(&path);
2217 		return file;
2218 	}
2219 
2220 	file->f_flags = O_RDONLY;
2221 	file->private_data = ctx;
2222 
2223 	return file;
2224 }
2225 
2226 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2227 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2228 {
2229 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2230 
2231 	while (size > 0) {
2232 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2233 
2234 
2235 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236 			return -ENOMEM;
2237 
2238 		addr  += PAGE_SIZE;
2239 		buf   += PAGE_SIZE;
2240 		size  -= PAGE_SIZE;
2241 	}
2242 	return 0;
2243 }
2244 
2245 /*
2246  * allocate a sampling buffer and remaps it into the user address space of the task
2247  */
2248 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2249 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2250 {
2251 	struct mm_struct *mm = task->mm;
2252 	struct vm_area_struct *vma = NULL;
2253 	unsigned long size;
2254 	void *smpl_buf;
2255 
2256 
2257 	/*
2258 	 * the fixed header + requested size and align to page boundary
2259 	 */
2260 	size = PAGE_ALIGN(rsize);
2261 
2262 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2263 
2264 	/*
2265 	 * check requested size to avoid Denial-of-service attacks
2266 	 * XXX: may have to refine this test
2267 	 * Check against address space limit.
2268 	 *
2269 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270 	 * 	return -ENOMEM;
2271 	 */
2272 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2273 		return -ENOMEM;
2274 
2275 	/*
2276 	 * We do the easy to undo allocations first.
2277  	 *
2278 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2279 	 */
2280 	smpl_buf = pfm_rvmalloc(size);
2281 	if (smpl_buf == NULL) {
2282 		DPRINT(("Can't allocate sampling buffer\n"));
2283 		return -ENOMEM;
2284 	}
2285 
2286 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2287 
2288 	/* allocate vma */
2289 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2290 	if (!vma) {
2291 		DPRINT(("Cannot allocate vma\n"));
2292 		goto error_kmem;
2293 	}
2294 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2295 
2296 	/*
2297 	 * partially initialize the vma for the sampling buffer
2298 	 */
2299 	vma->vm_mm	     = mm;
2300 	vma->vm_file	     = get_file(filp);
2301 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2302 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2303 
2304 	/*
2305 	 * Now we have everything we need and we can initialize
2306 	 * and connect all the data structures
2307 	 */
2308 
2309 	ctx->ctx_smpl_hdr   = smpl_buf;
2310 	ctx->ctx_smpl_size  = size; /* aligned size */
2311 
2312 	/*
2313 	 * Let's do the difficult operations next.
2314 	 *
2315 	 * now we atomically find some area in the address space and
2316 	 * remap the buffer in it.
2317 	 */
2318 	down_write(&task->mm->mmap_sem);
2319 
2320 	/* find some free area in address space, must have mmap sem held */
2321 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2322 	if (IS_ERR_VALUE(vma->vm_start)) {
2323 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2324 		up_write(&task->mm->mmap_sem);
2325 		goto error;
2326 	}
2327 	vma->vm_end = vma->vm_start + size;
2328 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2329 
2330 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2331 
2332 	/* can only be applied to current task, need to have the mm semaphore held when called */
2333 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2334 		DPRINT(("Can't remap buffer\n"));
2335 		up_write(&task->mm->mmap_sem);
2336 		goto error;
2337 	}
2338 
2339 	/*
2340 	 * now insert the vma in the vm list for the process, must be
2341 	 * done with mmap lock held
2342 	 */
2343 	insert_vm_struct(mm, vma);
2344 
2345 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2346 							vma_pages(vma));
2347 	up_write(&task->mm->mmap_sem);
2348 
2349 	/*
2350 	 * keep track of user level virtual address
2351 	 */
2352 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2353 	*(unsigned long *)user_vaddr = vma->vm_start;
2354 
2355 	return 0;
2356 
2357 error:
2358 	kmem_cache_free(vm_area_cachep, vma);
2359 error_kmem:
2360 	pfm_rvfree(smpl_buf, size);
2361 
2362 	return -ENOMEM;
2363 }
2364 
2365 /*
2366  * XXX: do something better here
2367  */
2368 static int
pfm_bad_permissions(struct task_struct * task)2369 pfm_bad_permissions(struct task_struct *task)
2370 {
2371 	const struct cred *tcred;
2372 	kuid_t uid = current_uid();
2373 	kgid_t gid = current_gid();
2374 	int ret;
2375 
2376 	rcu_read_lock();
2377 	tcred = __task_cred(task);
2378 
2379 	/* inspired by ptrace_attach() */
2380 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381 		from_kuid(&init_user_ns, uid),
2382 		from_kgid(&init_user_ns, gid),
2383 		from_kuid(&init_user_ns, tcred->euid),
2384 		from_kuid(&init_user_ns, tcred->suid),
2385 		from_kuid(&init_user_ns, tcred->uid),
2386 		from_kgid(&init_user_ns, tcred->egid),
2387 		from_kgid(&init_user_ns, tcred->sgid)));
2388 
2389 	ret = ((!uid_eq(uid, tcred->euid))
2390 	       || (!uid_eq(uid, tcred->suid))
2391 	       || (!uid_eq(uid, tcred->uid))
2392 	       || (!gid_eq(gid, tcred->egid))
2393 	       || (!gid_eq(gid, tcred->sgid))
2394 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2395 
2396 	rcu_read_unlock();
2397 	return ret;
2398 }
2399 
2400 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2401 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2402 {
2403 	int ctx_flags;
2404 
2405 	/* valid signal */
2406 
2407 	ctx_flags = pfx->ctx_flags;
2408 
2409 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2410 
2411 		/*
2412 		 * cannot block in this mode
2413 		 */
2414 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416 			return -EINVAL;
2417 		}
2418 	} else {
2419 	}
2420 	/* probably more to add here */
2421 
2422 	return 0;
2423 }
2424 
2425 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2426 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2427 		     unsigned int cpu, pfarg_context_t *arg)
2428 {
2429 	pfm_buffer_fmt_t *fmt = NULL;
2430 	unsigned long size = 0UL;
2431 	void *uaddr = NULL;
2432 	void *fmt_arg = NULL;
2433 	int ret = 0;
2434 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2435 
2436 	/* invoke and lock buffer format, if found */
2437 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438 	if (fmt == NULL) {
2439 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2440 		return -EINVAL;
2441 	}
2442 
2443 	/*
2444 	 * buffer argument MUST be contiguous to pfarg_context_t
2445 	 */
2446 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2447 
2448 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2449 
2450 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2451 
2452 	if (ret) goto error;
2453 
2454 	/* link buffer format and context */
2455 	ctx->ctx_buf_fmt = fmt;
2456 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2457 
2458 	/*
2459 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2460 	 */
2461 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2462 	if (ret) goto error;
2463 
2464 	if (size) {
2465 		/*
2466 		 * buffer is always remapped into the caller's address space
2467 		 */
2468 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2469 		if (ret) goto error;
2470 
2471 		/* keep track of user address of buffer */
2472 		arg->ctx_smpl_vaddr = uaddr;
2473 	}
2474 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2475 
2476 error:
2477 	return ret;
2478 }
2479 
2480 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2481 pfm_reset_pmu_state(pfm_context_t *ctx)
2482 {
2483 	int i;
2484 
2485 	/*
2486 	 * install reset values for PMC.
2487 	 */
2488 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2489 		if (PMC_IS_IMPL(i) == 0) continue;
2490 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2491 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2492 	}
2493 	/*
2494 	 * PMD registers are set to 0UL when the context in memset()
2495 	 */
2496 
2497 	/*
2498 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2499 	 * when they are not actively used by the task. In UP, the incoming process
2500 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2501 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2502 	 * process because they may change what is being measured.
2503 	 * Therefore, we must systematically reinstall the entire
2504 	 * PMC state. In SMP, the same thing is possible on the
2505 	 * same CPU but also on between 2 CPUs.
2506 	 *
2507 	 * The problem with PMD is information leaking especially
2508 	 * to user level when psr.sp=0
2509 	 *
2510 	 * There is unfortunately no easy way to avoid this problem
2511 	 * on either UP or SMP. This definitively slows down the
2512 	 * pfm_load_regs() function.
2513 	 */
2514 
2515 	 /*
2516 	  * bitmask of all PMCs accessible to this context
2517 	  *
2518 	  * PMC0 is treated differently.
2519 	  */
2520 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2521 
2522 	/*
2523 	 * bitmask of all PMDs that are accessible to this context
2524 	 */
2525 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2526 
2527 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2528 
2529 	/*
2530 	 * useful in case of re-enable after disable
2531 	 */
2532 	ctx->ctx_used_ibrs[0] = 0UL;
2533 	ctx->ctx_used_dbrs[0] = 0UL;
2534 }
2535 
2536 static int
pfm_ctx_getsize(void * arg,size_t * sz)2537 pfm_ctx_getsize(void *arg, size_t *sz)
2538 {
2539 	pfarg_context_t *req = (pfarg_context_t *)arg;
2540 	pfm_buffer_fmt_t *fmt;
2541 
2542 	*sz = 0;
2543 
2544 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2545 
2546 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547 	if (fmt == NULL) {
2548 		DPRINT(("cannot find buffer format\n"));
2549 		return -EINVAL;
2550 	}
2551 	/* get just enough to copy in user parameters */
2552 	*sz = fmt->fmt_arg_size;
2553 	DPRINT(("arg_size=%lu\n", *sz));
2554 
2555 	return 0;
2556 }
2557 
2558 
2559 
2560 /*
2561  * cannot attach if :
2562  * 	- kernel task
2563  * 	- task not owned by caller
2564  * 	- task incompatible with context mode
2565  */
2566 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2567 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2568 {
2569 	/*
2570 	 * no kernel task or task not owner by caller
2571 	 */
2572 	if (task->mm == NULL) {
2573 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2574 		return -EPERM;
2575 	}
2576 	if (pfm_bad_permissions(task)) {
2577 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2578 		return -EPERM;
2579 	}
2580 	/*
2581 	 * cannot block in self-monitoring mode
2582 	 */
2583 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2584 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (task->exit_state == EXIT_ZOMBIE) {
2589 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2590 		return -EBUSY;
2591 	}
2592 
2593 	/*
2594 	 * always ok for self
2595 	 */
2596 	if (task == current) return 0;
2597 
2598 	if (!task_is_stopped_or_traced(task)) {
2599 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2600 		return -EBUSY;
2601 	}
2602 	/*
2603 	 * make sure the task is off any CPU
2604 	 */
2605 	wait_task_inactive(task, 0);
2606 
2607 	/* more to come... */
2608 
2609 	return 0;
2610 }
2611 
2612 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2613 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2614 {
2615 	struct task_struct *p = current;
2616 	int ret;
2617 
2618 	/* XXX: need to add more checks here */
2619 	if (pid < 2) return -EPERM;
2620 
2621 	if (pid != task_pid_vnr(current)) {
2622 
2623 		read_lock(&tasklist_lock);
2624 
2625 		p = find_task_by_vpid(pid);
2626 
2627 		/* make sure task cannot go away while we operate on it */
2628 		if (p) get_task_struct(p);
2629 
2630 		read_unlock(&tasklist_lock);
2631 
2632 		if (p == NULL) return -ESRCH;
2633 	}
2634 
2635 	ret = pfm_task_incompatible(ctx, p);
2636 	if (ret == 0) {
2637 		*task = p;
2638 	} else if (p != current) {
2639 		pfm_put_task(p);
2640 	}
2641 	return ret;
2642 }
2643 
2644 
2645 
2646 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2647 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2648 {
2649 	pfarg_context_t *req = (pfarg_context_t *)arg;
2650 	struct file *filp;
2651 	struct path path;
2652 	int ctx_flags;
2653 	int fd;
2654 	int ret;
2655 
2656 	/* let's check the arguments first */
2657 	ret = pfarg_is_sane(current, req);
2658 	if (ret < 0)
2659 		return ret;
2660 
2661 	ctx_flags = req->ctx_flags;
2662 
2663 	ret = -ENOMEM;
2664 
2665 	fd = get_unused_fd();
2666 	if (fd < 0)
2667 		return fd;
2668 
2669 	ctx = pfm_context_alloc(ctx_flags);
2670 	if (!ctx)
2671 		goto error;
2672 
2673 	filp = pfm_alloc_file(ctx);
2674 	if (IS_ERR(filp)) {
2675 		ret = PTR_ERR(filp);
2676 		goto error_file;
2677 	}
2678 
2679 	req->ctx_fd = ctx->ctx_fd = fd;
2680 
2681 	/*
2682 	 * does the user want to sample?
2683 	 */
2684 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2685 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2686 		if (ret)
2687 			goto buffer_error;
2688 	}
2689 
2690 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2691 		ctx,
2692 		ctx_flags,
2693 		ctx->ctx_fl_system,
2694 		ctx->ctx_fl_block,
2695 		ctx->ctx_fl_excl_idle,
2696 		ctx->ctx_fl_no_msg,
2697 		ctx->ctx_fd));
2698 
2699 	/*
2700 	 * initialize soft PMU state
2701 	 */
2702 	pfm_reset_pmu_state(ctx);
2703 
2704 	fd_install(fd, filp);
2705 
2706 	return 0;
2707 
2708 buffer_error:
2709 	path = filp->f_path;
2710 	put_filp(filp);
2711 	path_put(&path);
2712 
2713 	if (ctx->ctx_buf_fmt) {
2714 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2715 	}
2716 error_file:
2717 	pfm_context_free(ctx);
2718 
2719 error:
2720 	put_unused_fd(fd);
2721 	return ret;
2722 }
2723 
2724 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2725 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2726 {
2727 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2728 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2729 	extern unsigned long carta_random32 (unsigned long seed);
2730 
2731 	if (reg->flags & PFM_REGFL_RANDOM) {
2732 		new_seed = carta_random32(old_seed);
2733 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2734 		if ((mask >> 32) != 0)
2735 			/* construct a full 64-bit random value: */
2736 			new_seed |= carta_random32(old_seed >> 32) << 32;
2737 		reg->seed = new_seed;
2738 	}
2739 	reg->lval = val;
2740 	return val;
2741 }
2742 
2743 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2744 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2745 {
2746 	unsigned long mask = ovfl_regs[0];
2747 	unsigned long reset_others = 0UL;
2748 	unsigned long val;
2749 	int i;
2750 
2751 	/*
2752 	 * now restore reset value on sampling overflowed counters
2753 	 */
2754 	mask >>= PMU_FIRST_COUNTER;
2755 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2756 
2757 		if ((mask & 0x1UL) == 0UL) continue;
2758 
2759 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2760 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2761 
2762 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2763 	}
2764 
2765 	/*
2766 	 * Now take care of resetting the other registers
2767 	 */
2768 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2769 
2770 		if ((reset_others & 0x1) == 0) continue;
2771 
2772 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2773 
2774 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775 			  is_long_reset ? "long" : "short", i, val));
2776 	}
2777 }
2778 
2779 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2780 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2781 {
2782 	unsigned long mask = ovfl_regs[0];
2783 	unsigned long reset_others = 0UL;
2784 	unsigned long val;
2785 	int i;
2786 
2787 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2788 
2789 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2790 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2791 		return;
2792 	}
2793 
2794 	/*
2795 	 * now restore reset value on sampling overflowed counters
2796 	 */
2797 	mask >>= PMU_FIRST_COUNTER;
2798 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2799 
2800 		if ((mask & 0x1UL) == 0UL) continue;
2801 
2802 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2803 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2804 
2805 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2806 
2807 		pfm_write_soft_counter(ctx, i, val);
2808 	}
2809 
2810 	/*
2811 	 * Now take care of resetting the other registers
2812 	 */
2813 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2814 
2815 		if ((reset_others & 0x1) == 0) continue;
2816 
2817 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2818 
2819 		if (PMD_IS_COUNTING(i)) {
2820 			pfm_write_soft_counter(ctx, i, val);
2821 		} else {
2822 			ia64_set_pmd(i, val);
2823 		}
2824 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825 			  is_long_reset ? "long" : "short", i, val));
2826 	}
2827 	ia64_srlz_d();
2828 }
2829 
2830 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2831 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2832 {
2833 	struct task_struct *task;
2834 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2835 	unsigned long value, pmc_pm;
2836 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2837 	unsigned int cnum, reg_flags, flags, pmc_type;
2838 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2839 	int is_monitor, is_counting, state;
2840 	int ret = -EINVAL;
2841 	pfm_reg_check_t	wr_func;
2842 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2843 
2844 	state     = ctx->ctx_state;
2845 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2846 	is_system = ctx->ctx_fl_system;
2847 	task      = ctx->ctx_task;
2848 	impl_pmds = pmu_conf->impl_pmds[0];
2849 
2850 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2851 
2852 	if (is_loaded) {
2853 		/*
2854 		 * In system wide and when the context is loaded, access can only happen
2855 		 * when the caller is running on the CPU being monitored by the session.
2856 		 * It does not have to be the owner (ctx_task) of the context per se.
2857 		 */
2858 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2859 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2860 			return -EBUSY;
2861 		}
2862 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2863 	}
2864 	expert_mode = pfm_sysctl.expert_mode;
2865 
2866 	for (i = 0; i < count; i++, req++) {
2867 
2868 		cnum       = req->reg_num;
2869 		reg_flags  = req->reg_flags;
2870 		value      = req->reg_value;
2871 		smpl_pmds  = req->reg_smpl_pmds[0];
2872 		reset_pmds = req->reg_reset_pmds[0];
2873 		flags      = 0;
2874 
2875 
2876 		if (cnum >= PMU_MAX_PMCS) {
2877 			DPRINT(("pmc%u is invalid\n", cnum));
2878 			goto error;
2879 		}
2880 
2881 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2882 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2883 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2884 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2885 
2886 		/*
2887 		 * we reject all non implemented PMC as well
2888 		 * as attempts to modify PMC[0-3] which are used
2889 		 * as status registers by the PMU
2890 		 */
2891 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2892 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2893 			goto error;
2894 		}
2895 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2896 		/*
2897 		 * If the PMC is a monitor, then if the value is not the default:
2898 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2899 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2900 		 */
2901 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2902 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2903 				cnum,
2904 				pmc_pm,
2905 				is_system));
2906 			goto error;
2907 		}
2908 
2909 		if (is_counting) {
2910 			/*
2911 		 	 * enforce generation of overflow interrupt. Necessary on all
2912 		 	 * CPUs.
2913 		 	 */
2914 			value |= 1 << PMU_PMC_OI;
2915 
2916 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2917 				flags |= PFM_REGFL_OVFL_NOTIFY;
2918 			}
2919 
2920 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2921 
2922 			/* verify validity of smpl_pmds */
2923 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2924 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2925 				goto error;
2926 			}
2927 
2928 			/* verify validity of reset_pmds */
2929 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2930 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2931 				goto error;
2932 			}
2933 		} else {
2934 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2935 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2936 				goto error;
2937 			}
2938 			/* eventid on non-counting monitors are ignored */
2939 		}
2940 
2941 		/*
2942 		 * execute write checker, if any
2943 		 */
2944 		if (likely(expert_mode == 0 && wr_func)) {
2945 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2946 			if (ret) goto error;
2947 			ret = -EINVAL;
2948 		}
2949 
2950 		/*
2951 		 * no error on this register
2952 		 */
2953 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2954 
2955 		/*
2956 		 * Now we commit the changes to the software state
2957 		 */
2958 
2959 		/*
2960 		 * update overflow information
2961 		 */
2962 		if (is_counting) {
2963 			/*
2964 		 	 * full flag update each time a register is programmed
2965 		 	 */
2966 			ctx->ctx_pmds[cnum].flags = flags;
2967 
2968 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2969 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2970 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2971 
2972 			/*
2973 			 * Mark all PMDS to be accessed as used.
2974 			 *
2975 			 * We do not keep track of PMC because we have to
2976 			 * systematically restore ALL of them.
2977 			 *
2978 			 * We do not update the used_monitors mask, because
2979 			 * if we have not programmed them, then will be in
2980 			 * a quiescent state, therefore we will not need to
2981 			 * mask/restore then when context is MASKED.
2982 			 */
2983 			CTX_USED_PMD(ctx, reset_pmds);
2984 			CTX_USED_PMD(ctx, smpl_pmds);
2985 			/*
2986 		 	 * make sure we do not try to reset on
2987 		 	 * restart because we have established new values
2988 		 	 */
2989 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2990 		}
2991 		/*
2992 		 * Needed in case the user does not initialize the equivalent
2993 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994 		 * possible leak here.
2995 		 */
2996 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2997 
2998 		/*
2999 		 * keep track of the monitor PMC that we are using.
3000 		 * we save the value of the pmc in ctx_pmcs[] and if
3001 		 * the monitoring is not stopped for the context we also
3002 		 * place it in the saved state area so that it will be
3003 		 * picked up later by the context switch code.
3004 		 *
3005 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3006 		 *
3007 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3008 		 * monitoring needs to be stopped.
3009 		 */
3010 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3011 
3012 		/*
3013 		 * update context state
3014 		 */
3015 		ctx->ctx_pmcs[cnum] = value;
3016 
3017 		if (is_loaded) {
3018 			/*
3019 			 * write thread state
3020 			 */
3021 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3022 
3023 			/*
3024 			 * write hardware register if we can
3025 			 */
3026 			if (can_access_pmu) {
3027 				ia64_set_pmc(cnum, value);
3028 			}
3029 #ifdef CONFIG_SMP
3030 			else {
3031 				/*
3032 				 * per-task SMP only here
3033 				 *
3034 			 	 * we are guaranteed that the task is not running on the other CPU,
3035 			 	 * we indicate that this PMD will need to be reloaded if the task
3036 			 	 * is rescheduled on the CPU it ran last on.
3037 			 	 */
3038 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3039 			}
3040 #endif
3041 		}
3042 
3043 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3044 			  cnum,
3045 			  value,
3046 			  is_loaded,
3047 			  can_access_pmu,
3048 			  flags,
3049 			  ctx->ctx_all_pmcs[0],
3050 			  ctx->ctx_used_pmds[0],
3051 			  ctx->ctx_pmds[cnum].eventid,
3052 			  smpl_pmds,
3053 			  reset_pmds,
3054 			  ctx->ctx_reload_pmcs[0],
3055 			  ctx->ctx_used_monitors[0],
3056 			  ctx->ctx_ovfl_regs[0]));
3057 	}
3058 
3059 	/*
3060 	 * make sure the changes are visible
3061 	 */
3062 	if (can_access_pmu) ia64_srlz_d();
3063 
3064 	return 0;
3065 error:
3066 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3067 	return ret;
3068 }
3069 
3070 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3071 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3072 {
3073 	struct task_struct *task;
3074 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3075 	unsigned long value, hw_value, ovfl_mask;
3076 	unsigned int cnum;
3077 	int i, can_access_pmu = 0, state;
3078 	int is_counting, is_loaded, is_system, expert_mode;
3079 	int ret = -EINVAL;
3080 	pfm_reg_check_t wr_func;
3081 
3082 
3083 	state     = ctx->ctx_state;
3084 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3085 	is_system = ctx->ctx_fl_system;
3086 	ovfl_mask = pmu_conf->ovfl_val;
3087 	task      = ctx->ctx_task;
3088 
3089 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3090 
3091 	/*
3092 	 * on both UP and SMP, we can only write to the PMC when the task is
3093 	 * the owner of the local PMU.
3094 	 */
3095 	if (likely(is_loaded)) {
3096 		/*
3097 		 * In system wide and when the context is loaded, access can only happen
3098 		 * when the caller is running on the CPU being monitored by the session.
3099 		 * It does not have to be the owner (ctx_task) of the context per se.
3100 		 */
3101 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3102 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3103 			return -EBUSY;
3104 		}
3105 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3106 	}
3107 	expert_mode = pfm_sysctl.expert_mode;
3108 
3109 	for (i = 0; i < count; i++, req++) {
3110 
3111 		cnum  = req->reg_num;
3112 		value = req->reg_value;
3113 
3114 		if (!PMD_IS_IMPL(cnum)) {
3115 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3116 			goto abort_mission;
3117 		}
3118 		is_counting = PMD_IS_COUNTING(cnum);
3119 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3120 
3121 		/*
3122 		 * execute write checker, if any
3123 		 */
3124 		if (unlikely(expert_mode == 0 && wr_func)) {
3125 			unsigned long v = value;
3126 
3127 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3128 			if (ret) goto abort_mission;
3129 
3130 			value = v;
3131 			ret   = -EINVAL;
3132 		}
3133 
3134 		/*
3135 		 * no error on this register
3136 		 */
3137 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3138 
3139 		/*
3140 		 * now commit changes to software state
3141 		 */
3142 		hw_value = value;
3143 
3144 		/*
3145 		 * update virtualized (64bits) counter
3146 		 */
3147 		if (is_counting) {
3148 			/*
3149 			 * write context state
3150 			 */
3151 			ctx->ctx_pmds[cnum].lval = value;
3152 
3153 			/*
3154 			 * when context is load we use the split value
3155 			 */
3156 			if (is_loaded) {
3157 				hw_value = value &  ovfl_mask;
3158 				value    = value & ~ovfl_mask;
3159 			}
3160 		}
3161 		/*
3162 		 * update reset values (not just for counters)
3163 		 */
3164 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3165 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3166 
3167 		/*
3168 		 * update randomization parameters (not just for counters)
3169 		 */
3170 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3171 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3172 
3173 		/*
3174 		 * update context value
3175 		 */
3176 		ctx->ctx_pmds[cnum].val  = value;
3177 
3178 		/*
3179 		 * Keep track of what we use
3180 		 *
3181 		 * We do not keep track of PMC because we have to
3182 		 * systematically restore ALL of them.
3183 		 */
3184 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3185 
3186 		/*
3187 		 * mark this PMD register used as well
3188 		 */
3189 		CTX_USED_PMD(ctx, RDEP(cnum));
3190 
3191 		/*
3192 		 * make sure we do not try to reset on
3193 		 * restart because we have established new values
3194 		 */
3195 		if (is_counting && state == PFM_CTX_MASKED) {
3196 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3197 		}
3198 
3199 		if (is_loaded) {
3200 			/*
3201 		 	 * write thread state
3202 		 	 */
3203 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3204 
3205 			/*
3206 			 * write hardware register if we can
3207 			 */
3208 			if (can_access_pmu) {
3209 				ia64_set_pmd(cnum, hw_value);
3210 			} else {
3211 #ifdef CONFIG_SMP
3212 				/*
3213 			 	 * we are guaranteed that the task is not running on the other CPU,
3214 			 	 * we indicate that this PMD will need to be reloaded if the task
3215 			 	 * is rescheduled on the CPU it ran last on.
3216 			 	 */
3217 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3218 #endif
3219 			}
3220 		}
3221 
3222 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3223 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3224 			cnum,
3225 			value,
3226 			is_loaded,
3227 			can_access_pmu,
3228 			hw_value,
3229 			ctx->ctx_pmds[cnum].val,
3230 			ctx->ctx_pmds[cnum].short_reset,
3231 			ctx->ctx_pmds[cnum].long_reset,
3232 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3233 			ctx->ctx_pmds[cnum].seed,
3234 			ctx->ctx_pmds[cnum].mask,
3235 			ctx->ctx_used_pmds[0],
3236 			ctx->ctx_pmds[cnum].reset_pmds[0],
3237 			ctx->ctx_reload_pmds[0],
3238 			ctx->ctx_all_pmds[0],
3239 			ctx->ctx_ovfl_regs[0]));
3240 	}
3241 
3242 	/*
3243 	 * make changes visible
3244 	 */
3245 	if (can_access_pmu) ia64_srlz_d();
3246 
3247 	return 0;
3248 
3249 abort_mission:
3250 	/*
3251 	 * for now, we have only one possibility for error
3252 	 */
3253 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3254 	return ret;
3255 }
3256 
3257 /*
3258  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260  * interrupt is delivered during the call, it will be kept pending until we leave, making
3261  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262  * guaranteed to return consistent data to the user, it may simply be old. It is not
3263  * trivial to treat the overflow while inside the call because you may end up in
3264  * some module sampling buffer code causing deadlocks.
3265  */
3266 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3267 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3268 {
3269 	struct task_struct *task;
3270 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3271 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3272 	unsigned int cnum, reg_flags = 0;
3273 	int i, can_access_pmu = 0, state;
3274 	int is_loaded, is_system, is_counting, expert_mode;
3275 	int ret = -EINVAL;
3276 	pfm_reg_check_t rd_func;
3277 
3278 	/*
3279 	 * access is possible when loaded only for
3280 	 * self-monitoring tasks or in UP mode
3281 	 */
3282 
3283 	state     = ctx->ctx_state;
3284 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3285 	is_system = ctx->ctx_fl_system;
3286 	ovfl_mask = pmu_conf->ovfl_val;
3287 	task      = ctx->ctx_task;
3288 
3289 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3290 
3291 	if (likely(is_loaded)) {
3292 		/*
3293 		 * In system wide and when the context is loaded, access can only happen
3294 		 * when the caller is running on the CPU being monitored by the session.
3295 		 * It does not have to be the owner (ctx_task) of the context per se.
3296 		 */
3297 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3298 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3299 			return -EBUSY;
3300 		}
3301 		/*
3302 		 * this can be true when not self-monitoring only in UP
3303 		 */
3304 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3305 
3306 		if (can_access_pmu) ia64_srlz_d();
3307 	}
3308 	expert_mode = pfm_sysctl.expert_mode;
3309 
3310 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3311 		is_loaded,
3312 		can_access_pmu,
3313 		state));
3314 
3315 	/*
3316 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3317 	 * the task is the owner of the local PMU.
3318 	 */
3319 
3320 	for (i = 0; i < count; i++, req++) {
3321 
3322 		cnum        = req->reg_num;
3323 		reg_flags   = req->reg_flags;
3324 
3325 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3326 		/*
3327 		 * we can only read the register that we use. That includes
3328 		 * the one we explicitly initialize AND the one we want included
3329 		 * in the sampling buffer (smpl_regs).
3330 		 *
3331 		 * Having this restriction allows optimization in the ctxsw routine
3332 		 * without compromising security (leaks)
3333 		 */
3334 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3335 
3336 		sval        = ctx->ctx_pmds[cnum].val;
3337 		lval        = ctx->ctx_pmds[cnum].lval;
3338 		is_counting = PMD_IS_COUNTING(cnum);
3339 
3340 		/*
3341 		 * If the task is not the current one, then we check if the
3342 		 * PMU state is still in the local live register due to lazy ctxsw.
3343 		 * If true, then we read directly from the registers.
3344 		 */
3345 		if (can_access_pmu){
3346 			val = ia64_get_pmd(cnum);
3347 		} else {
3348 			/*
3349 			 * context has been saved
3350 			 * if context is zombie, then task does not exist anymore.
3351 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3352 			 */
3353 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3354 		}
3355 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3356 
3357 		if (is_counting) {
3358 			/*
3359 			 * XXX: need to check for overflow when loaded
3360 			 */
3361 			val &= ovfl_mask;
3362 			val += sval;
3363 		}
3364 
3365 		/*
3366 		 * execute read checker, if any
3367 		 */
3368 		if (unlikely(expert_mode == 0 && rd_func)) {
3369 			unsigned long v = val;
3370 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3371 			if (ret) goto error;
3372 			val = v;
3373 			ret = -EINVAL;
3374 		}
3375 
3376 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3377 
3378 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3379 
3380 		/*
3381 		 * update register return value, abort all if problem during copy.
3382 		 * we only modify the reg_flags field. no check mode is fine because
3383 		 * access has been verified upfront in sys_perfmonctl().
3384 		 */
3385 		req->reg_value            = val;
3386 		req->reg_flags            = reg_flags;
3387 		req->reg_last_reset_val   = lval;
3388 	}
3389 
3390 	return 0;
3391 
3392 error:
3393 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3394 	return ret;
3395 }
3396 
3397 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3398 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3399 {
3400 	pfm_context_t *ctx;
3401 
3402 	if (req == NULL) return -EINVAL;
3403 
3404  	ctx = GET_PMU_CTX();
3405 
3406 	if (ctx == NULL) return -EINVAL;
3407 
3408 	/*
3409 	 * for now limit to current task, which is enough when calling
3410 	 * from overflow handler
3411 	 */
3412 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3413 
3414 	return pfm_write_pmcs(ctx, req, nreq, regs);
3415 }
3416 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3417 
3418 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3419 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3420 {
3421 	pfm_context_t *ctx;
3422 
3423 	if (req == NULL) return -EINVAL;
3424 
3425  	ctx = GET_PMU_CTX();
3426 
3427 	if (ctx == NULL) return -EINVAL;
3428 
3429 	/*
3430 	 * for now limit to current task, which is enough when calling
3431 	 * from overflow handler
3432 	 */
3433 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3434 
3435 	return pfm_read_pmds(ctx, req, nreq, regs);
3436 }
3437 EXPORT_SYMBOL(pfm_mod_read_pmds);
3438 
3439 /*
3440  * Only call this function when a process it trying to
3441  * write the debug registers (reading is always allowed)
3442  */
3443 int
pfm_use_debug_registers(struct task_struct * task)3444 pfm_use_debug_registers(struct task_struct *task)
3445 {
3446 	pfm_context_t *ctx = task->thread.pfm_context;
3447 	unsigned long flags;
3448 	int ret = 0;
3449 
3450 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3451 
3452 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3453 
3454 	/*
3455 	 * do it only once
3456 	 */
3457 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3458 
3459 	/*
3460 	 * Even on SMP, we do not need to use an atomic here because
3461 	 * the only way in is via ptrace() and this is possible only when the
3462 	 * process is stopped. Even in the case where the ctxsw out is not totally
3463 	 * completed by the time we come here, there is no way the 'stopped' process
3464 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465 	 * So this is always safe.
3466 	 */
3467 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3468 
3469 	LOCK_PFS(flags);
3470 
3471 	/*
3472 	 * We cannot allow setting breakpoints when system wide monitoring
3473 	 * sessions are using the debug registers.
3474 	 */
3475 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3476 		ret = -1;
3477 	else
3478 		pfm_sessions.pfs_ptrace_use_dbregs++;
3479 
3480 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3481 		  pfm_sessions.pfs_ptrace_use_dbregs,
3482 		  pfm_sessions.pfs_sys_use_dbregs,
3483 		  task_pid_nr(task), ret));
3484 
3485 	UNLOCK_PFS(flags);
3486 
3487 	return ret;
3488 }
3489 
3490 /*
3491  * This function is called for every task that exits with the
3492  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493  * able to use the debug registers for debugging purposes via
3494  * ptrace(). Therefore we know it was not using them for
3495  * performance monitoring, so we only decrement the number
3496  * of "ptraced" debug register users to keep the count up to date
3497  */
3498 int
pfm_release_debug_registers(struct task_struct * task)3499 pfm_release_debug_registers(struct task_struct *task)
3500 {
3501 	unsigned long flags;
3502 	int ret;
3503 
3504 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3505 
3506 	LOCK_PFS(flags);
3507 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3508 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3509 		ret = -1;
3510 	}  else {
3511 		pfm_sessions.pfs_ptrace_use_dbregs--;
3512 		ret = 0;
3513 	}
3514 	UNLOCK_PFS(flags);
3515 
3516 	return ret;
3517 }
3518 
3519 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3520 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3521 {
3522 	struct task_struct *task;
3523 	pfm_buffer_fmt_t *fmt;
3524 	pfm_ovfl_ctrl_t rst_ctrl;
3525 	int state, is_system;
3526 	int ret = 0;
3527 
3528 	state     = ctx->ctx_state;
3529 	fmt       = ctx->ctx_buf_fmt;
3530 	is_system = ctx->ctx_fl_system;
3531 	task      = PFM_CTX_TASK(ctx);
3532 
3533 	switch(state) {
3534 		case PFM_CTX_MASKED:
3535 			break;
3536 		case PFM_CTX_LOADED:
3537 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3538 			/* fall through */
3539 		case PFM_CTX_UNLOADED:
3540 		case PFM_CTX_ZOMBIE:
3541 			DPRINT(("invalid state=%d\n", state));
3542 			return -EBUSY;
3543 		default:
3544 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3545 			return -EINVAL;
3546 	}
3547 
3548 	/*
3549  	 * In system wide and when the context is loaded, access can only happen
3550  	 * when the caller is running on the CPU being monitored by the session.
3551  	 * It does not have to be the owner (ctx_task) of the context per se.
3552  	 */
3553 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3554 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3555 		return -EBUSY;
3556 	}
3557 
3558 	/* sanity check */
3559 	if (unlikely(task == NULL)) {
3560 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3561 		return -EINVAL;
3562 	}
3563 
3564 	if (task == current || is_system) {
3565 
3566 		fmt = ctx->ctx_buf_fmt;
3567 
3568 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3569 			task_pid_nr(task),
3570 			ctx->ctx_ovfl_regs[0]));
3571 
3572 		if (CTX_HAS_SMPL(ctx)) {
3573 
3574 			prefetch(ctx->ctx_smpl_hdr);
3575 
3576 			rst_ctrl.bits.mask_monitoring = 0;
3577 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3578 
3579 			if (state == PFM_CTX_LOADED)
3580 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3581 			else
3582 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3583 		} else {
3584 			rst_ctrl.bits.mask_monitoring = 0;
3585 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3586 		}
3587 
3588 		if (ret == 0) {
3589 			if (rst_ctrl.bits.reset_ovfl_pmds)
3590 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3591 
3592 			if (rst_ctrl.bits.mask_monitoring == 0) {
3593 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3594 
3595 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3596 			} else {
3597 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3598 
3599 				// cannot use pfm_stop_monitoring(task, regs);
3600 			}
3601 		}
3602 		/*
3603 		 * clear overflowed PMD mask to remove any stale information
3604 		 */
3605 		ctx->ctx_ovfl_regs[0] = 0UL;
3606 
3607 		/*
3608 		 * back to LOADED state
3609 		 */
3610 		ctx->ctx_state = PFM_CTX_LOADED;
3611 
3612 		/*
3613 		 * XXX: not really useful for self monitoring
3614 		 */
3615 		ctx->ctx_fl_can_restart = 0;
3616 
3617 		return 0;
3618 	}
3619 
3620 	/*
3621 	 * restart another task
3622 	 */
3623 
3624 	/*
3625 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3626 	 * one is seen by the task.
3627 	 */
3628 	if (state == PFM_CTX_MASKED) {
3629 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3630 		/*
3631 		 * will prevent subsequent restart before this one is
3632 		 * seen by other task
3633 		 */
3634 		ctx->ctx_fl_can_restart = 0;
3635 	}
3636 
3637 	/*
3638 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639 	 * the task is blocked or on its way to block. That's the normal
3640 	 * restart path. If the monitoring is not masked, then the task
3641 	 * can be actively monitoring and we cannot directly intervene.
3642 	 * Therefore we use the trap mechanism to catch the task and
3643 	 * force it to reset the buffer/reset PMDs.
3644 	 *
3645 	 * if non-blocking, then we ensure that the task will go into
3646 	 * pfm_handle_work() before returning to user mode.
3647 	 *
3648 	 * We cannot explicitly reset another task, it MUST always
3649 	 * be done by the task itself. This works for system wide because
3650 	 * the tool that is controlling the session is logically doing
3651 	 * "self-monitoring".
3652 	 */
3653 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3654 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3655 		complete(&ctx->ctx_restart_done);
3656 	} else {
3657 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3658 
3659 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3660 
3661 		PFM_SET_WORK_PENDING(task, 1);
3662 
3663 		set_notify_resume(task);
3664 
3665 		/*
3666 		 * XXX: send reschedule if task runs on another CPU
3667 		 */
3668 	}
3669 	return 0;
3670 }
3671 
3672 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3673 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3674 {
3675 	unsigned int m = *(unsigned int *)arg;
3676 
3677 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3678 
3679 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3680 
3681 	if (m == 0) {
3682 		memset(pfm_stats, 0, sizeof(pfm_stats));
3683 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3684 	}
3685 	return 0;
3686 }
3687 
3688 /*
3689  * arg can be NULL and count can be zero for this function
3690  */
3691 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3692 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3693 {
3694 	struct thread_struct *thread = NULL;
3695 	struct task_struct *task;
3696 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3697 	unsigned long flags;
3698 	dbreg_t dbreg;
3699 	unsigned int rnum;
3700 	int first_time;
3701 	int ret = 0, state;
3702 	int i, can_access_pmu = 0;
3703 	int is_system, is_loaded;
3704 
3705 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3706 
3707 	state     = ctx->ctx_state;
3708 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3709 	is_system = ctx->ctx_fl_system;
3710 	task      = ctx->ctx_task;
3711 
3712 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3713 
3714 	/*
3715 	 * on both UP and SMP, we can only write to the PMC when the task is
3716 	 * the owner of the local PMU.
3717 	 */
3718 	if (is_loaded) {
3719 		thread = &task->thread;
3720 		/*
3721 		 * In system wide and when the context is loaded, access can only happen
3722 		 * when the caller is running on the CPU being monitored by the session.
3723 		 * It does not have to be the owner (ctx_task) of the context per se.
3724 		 */
3725 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3726 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3727 			return -EBUSY;
3728 		}
3729 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3730 	}
3731 
3732 	/*
3733 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734 	 * ensuring that no real breakpoint can be installed via this call.
3735 	 *
3736 	 * IMPORTANT: regs can be NULL in this function
3737 	 */
3738 
3739 	first_time = ctx->ctx_fl_using_dbreg == 0;
3740 
3741 	/*
3742 	 * don't bother if we are loaded and task is being debugged
3743 	 */
3744 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3745 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3746 		return -EBUSY;
3747 	}
3748 
3749 	/*
3750 	 * check for debug registers in system wide mode
3751 	 *
3752 	 * If though a check is done in pfm_context_load(),
3753 	 * we must repeat it here, in case the registers are
3754 	 * written after the context is loaded
3755 	 */
3756 	if (is_loaded) {
3757 		LOCK_PFS(flags);
3758 
3759 		if (first_time && is_system) {
3760 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3761 				ret = -EBUSY;
3762 			else
3763 				pfm_sessions.pfs_sys_use_dbregs++;
3764 		}
3765 		UNLOCK_PFS(flags);
3766 	}
3767 
3768 	if (ret != 0) return ret;
3769 
3770 	/*
3771 	 * mark ourself as user of the debug registers for
3772 	 * perfmon purposes.
3773 	 */
3774 	ctx->ctx_fl_using_dbreg = 1;
3775 
3776 	/*
3777  	 * clear hardware registers to make sure we don't
3778  	 * pick up stale state.
3779 	 *
3780 	 * for a system wide session, we do not use
3781 	 * thread.dbr, thread.ibr because this process
3782 	 * never leaves the current CPU and the state
3783 	 * is shared by all processes running on it
3784  	 */
3785 	if (first_time && can_access_pmu) {
3786 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3787 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3788 			ia64_set_ibr(i, 0UL);
3789 			ia64_dv_serialize_instruction();
3790 		}
3791 		ia64_srlz_i();
3792 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3793 			ia64_set_dbr(i, 0UL);
3794 			ia64_dv_serialize_data();
3795 		}
3796 		ia64_srlz_d();
3797 	}
3798 
3799 	/*
3800 	 * Now install the values into the registers
3801 	 */
3802 	for (i = 0; i < count; i++, req++) {
3803 
3804 		rnum      = req->dbreg_num;
3805 		dbreg.val = req->dbreg_value;
3806 
3807 		ret = -EINVAL;
3808 
3809 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3810 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811 				  rnum, dbreg.val, mode, i, count));
3812 
3813 			goto abort_mission;
3814 		}
3815 
3816 		/*
3817 		 * make sure we do not install enabled breakpoint
3818 		 */
3819 		if (rnum & 0x1) {
3820 			if (mode == PFM_CODE_RR)
3821 				dbreg.ibr.ibr_x = 0;
3822 			else
3823 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3824 		}
3825 
3826 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3827 
3828 		/*
3829 		 * Debug registers, just like PMC, can only be modified
3830 		 * by a kernel call. Moreover, perfmon() access to those
3831 		 * registers are centralized in this routine. The hardware
3832 		 * does not modify the value of these registers, therefore,
3833 		 * if we save them as they are written, we can avoid having
3834 		 * to save them on context switch out. This is made possible
3835 		 * by the fact that when perfmon uses debug registers, ptrace()
3836 		 * won't be able to modify them concurrently.
3837 		 */
3838 		if (mode == PFM_CODE_RR) {
3839 			CTX_USED_IBR(ctx, rnum);
3840 
3841 			if (can_access_pmu) {
3842 				ia64_set_ibr(rnum, dbreg.val);
3843 				ia64_dv_serialize_instruction();
3844 			}
3845 
3846 			ctx->ctx_ibrs[rnum] = dbreg.val;
3847 
3848 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3850 		} else {
3851 			CTX_USED_DBR(ctx, rnum);
3852 
3853 			if (can_access_pmu) {
3854 				ia64_set_dbr(rnum, dbreg.val);
3855 				ia64_dv_serialize_data();
3856 			}
3857 			ctx->ctx_dbrs[rnum] = dbreg.val;
3858 
3859 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3861 		}
3862 	}
3863 
3864 	return 0;
3865 
3866 abort_mission:
3867 	/*
3868 	 * in case it was our first attempt, we undo the global modifications
3869 	 */
3870 	if (first_time) {
3871 		LOCK_PFS(flags);
3872 		if (ctx->ctx_fl_system) {
3873 			pfm_sessions.pfs_sys_use_dbregs--;
3874 		}
3875 		UNLOCK_PFS(flags);
3876 		ctx->ctx_fl_using_dbreg = 0;
3877 	}
3878 	/*
3879 	 * install error return flag
3880 	 */
3881 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3882 
3883 	return ret;
3884 }
3885 
3886 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3887 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3888 {
3889 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3890 }
3891 
3892 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3893 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894 {
3895 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3896 }
3897 
3898 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3899 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3900 {
3901 	pfm_context_t *ctx;
3902 
3903 	if (req == NULL) return -EINVAL;
3904 
3905  	ctx = GET_PMU_CTX();
3906 
3907 	if (ctx == NULL) return -EINVAL;
3908 
3909 	/*
3910 	 * for now limit to current task, which is enough when calling
3911 	 * from overflow handler
3912 	 */
3913 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3914 
3915 	return pfm_write_ibrs(ctx, req, nreq, regs);
3916 }
3917 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3918 
3919 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3920 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3921 {
3922 	pfm_context_t *ctx;
3923 
3924 	if (req == NULL) return -EINVAL;
3925 
3926  	ctx = GET_PMU_CTX();
3927 
3928 	if (ctx == NULL) return -EINVAL;
3929 
3930 	/*
3931 	 * for now limit to current task, which is enough when calling
3932 	 * from overflow handler
3933 	 */
3934 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3935 
3936 	return pfm_write_dbrs(ctx, req, nreq, regs);
3937 }
3938 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3939 
3940 
3941 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3942 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943 {
3944 	pfarg_features_t *req = (pfarg_features_t *)arg;
3945 
3946 	req->ft_version = PFM_VERSION;
3947 	return 0;
3948 }
3949 
3950 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3951 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952 {
3953 	struct pt_regs *tregs;
3954 	struct task_struct *task = PFM_CTX_TASK(ctx);
3955 	int state, is_system;
3956 
3957 	state     = ctx->ctx_state;
3958 	is_system = ctx->ctx_fl_system;
3959 
3960 	/*
3961 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3962 	 */
3963 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3964 
3965 	/*
3966  	 * In system wide and when the context is loaded, access can only happen
3967  	 * when the caller is running on the CPU being monitored by the session.
3968  	 * It does not have to be the owner (ctx_task) of the context per se.
3969  	 */
3970 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3971 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3972 		return -EBUSY;
3973 	}
3974 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975 		task_pid_nr(PFM_CTX_TASK(ctx)),
3976 		state,
3977 		is_system));
3978 	/*
3979 	 * in system mode, we need to update the PMU directly
3980 	 * and the user level state of the caller, which may not
3981 	 * necessarily be the creator of the context.
3982 	 */
3983 	if (is_system) {
3984 		/*
3985 		 * Update local PMU first
3986 		 *
3987 		 * disable dcr pp
3988 		 */
3989 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3990 		ia64_srlz_i();
3991 
3992 		/*
3993 		 * update local cpuinfo
3994 		 */
3995 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3996 
3997 		/*
3998 		 * stop monitoring, does srlz.i
3999 		 */
4000 		pfm_clear_psr_pp();
4001 
4002 		/*
4003 		 * stop monitoring in the caller
4004 		 */
4005 		ia64_psr(regs)->pp = 0;
4006 
4007 		return 0;
4008 	}
4009 	/*
4010 	 * per-task mode
4011 	 */
4012 
4013 	if (task == current) {
4014 		/* stop monitoring  at kernel level */
4015 		pfm_clear_psr_up();
4016 
4017 		/*
4018 	 	 * stop monitoring at the user level
4019 	 	 */
4020 		ia64_psr(regs)->up = 0;
4021 	} else {
4022 		tregs = task_pt_regs(task);
4023 
4024 		/*
4025 	 	 * stop monitoring at the user level
4026 	 	 */
4027 		ia64_psr(tregs)->up = 0;
4028 
4029 		/*
4030 		 * monitoring disabled in kernel at next reschedule
4031 		 */
4032 		ctx->ctx_saved_psr_up = 0;
4033 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4034 	}
4035 	return 0;
4036 }
4037 
4038 
4039 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4040 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4041 {
4042 	struct pt_regs *tregs;
4043 	int state, is_system;
4044 
4045 	state     = ctx->ctx_state;
4046 	is_system = ctx->ctx_fl_system;
4047 
4048 	if (state != PFM_CTX_LOADED) return -EINVAL;
4049 
4050 	/*
4051  	 * In system wide and when the context is loaded, access can only happen
4052  	 * when the caller is running on the CPU being monitored by the session.
4053  	 * It does not have to be the owner (ctx_task) of the context per se.
4054  	 */
4055 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4056 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4057 		return -EBUSY;
4058 	}
4059 
4060 	/*
4061 	 * in system mode, we need to update the PMU directly
4062 	 * and the user level state of the caller, which may not
4063 	 * necessarily be the creator of the context.
4064 	 */
4065 	if (is_system) {
4066 
4067 		/*
4068 		 * set user level psr.pp for the caller
4069 		 */
4070 		ia64_psr(regs)->pp = 1;
4071 
4072 		/*
4073 		 * now update the local PMU and cpuinfo
4074 		 */
4075 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4076 
4077 		/*
4078 		 * start monitoring at kernel level
4079 		 */
4080 		pfm_set_psr_pp();
4081 
4082 		/* enable dcr pp */
4083 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4084 		ia64_srlz_i();
4085 
4086 		return 0;
4087 	}
4088 
4089 	/*
4090 	 * per-process mode
4091 	 */
4092 
4093 	if (ctx->ctx_task == current) {
4094 
4095 		/* start monitoring at kernel level */
4096 		pfm_set_psr_up();
4097 
4098 		/*
4099 		 * activate monitoring at user level
4100 		 */
4101 		ia64_psr(regs)->up = 1;
4102 
4103 	} else {
4104 		tregs = task_pt_regs(ctx->ctx_task);
4105 
4106 		/*
4107 		 * start monitoring at the kernel level the next
4108 		 * time the task is scheduled
4109 		 */
4110 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4111 
4112 		/*
4113 		 * activate monitoring at user level
4114 		 */
4115 		ia64_psr(tregs)->up = 1;
4116 	}
4117 	return 0;
4118 }
4119 
4120 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4121 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4122 {
4123 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4124 	unsigned int cnum;
4125 	int i;
4126 	int ret = -EINVAL;
4127 
4128 	for (i = 0; i < count; i++, req++) {
4129 
4130 		cnum = req->reg_num;
4131 
4132 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4133 
4134 		req->reg_value = PMC_DFL_VAL(cnum);
4135 
4136 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4137 
4138 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4139 	}
4140 	return 0;
4141 
4142 abort_mission:
4143 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4144 	return ret;
4145 }
4146 
4147 static int
pfm_check_task_exist(pfm_context_t * ctx)4148 pfm_check_task_exist(pfm_context_t *ctx)
4149 {
4150 	struct task_struct *g, *t;
4151 	int ret = -ESRCH;
4152 
4153 	read_lock(&tasklist_lock);
4154 
4155 	do_each_thread (g, t) {
4156 		if (t->thread.pfm_context == ctx) {
4157 			ret = 0;
4158 			goto out;
4159 		}
4160 	} while_each_thread (g, t);
4161 out:
4162 	read_unlock(&tasklist_lock);
4163 
4164 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4165 
4166 	return ret;
4167 }
4168 
4169 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4170 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4171 {
4172 	struct task_struct *task;
4173 	struct thread_struct *thread;
4174 	struct pfm_context_t *old;
4175 	unsigned long flags;
4176 #ifndef CONFIG_SMP
4177 	struct task_struct *owner_task = NULL;
4178 #endif
4179 	pfarg_load_t *req = (pfarg_load_t *)arg;
4180 	unsigned long *pmcs_source, *pmds_source;
4181 	int the_cpu;
4182 	int ret = 0;
4183 	int state, is_system, set_dbregs = 0;
4184 
4185 	state     = ctx->ctx_state;
4186 	is_system = ctx->ctx_fl_system;
4187 	/*
4188 	 * can only load from unloaded or terminated state
4189 	 */
4190 	if (state != PFM_CTX_UNLOADED) {
4191 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4192 			req->load_pid,
4193 			ctx->ctx_state));
4194 		return -EBUSY;
4195 	}
4196 
4197 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4198 
4199 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4200 		DPRINT(("cannot use blocking mode on self\n"));
4201 		return -EINVAL;
4202 	}
4203 
4204 	ret = pfm_get_task(ctx, req->load_pid, &task);
4205 	if (ret) {
4206 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4207 		return ret;
4208 	}
4209 
4210 	ret = -EINVAL;
4211 
4212 	/*
4213 	 * system wide is self monitoring only
4214 	 */
4215 	if (is_system && task != current) {
4216 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4217 			req->load_pid));
4218 		goto error;
4219 	}
4220 
4221 	thread = &task->thread;
4222 
4223 	ret = 0;
4224 	/*
4225 	 * cannot load a context which is using range restrictions,
4226 	 * into a task that is being debugged.
4227 	 */
4228 	if (ctx->ctx_fl_using_dbreg) {
4229 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4230 			ret = -EBUSY;
4231 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4232 			goto error;
4233 		}
4234 		LOCK_PFS(flags);
4235 
4236 		if (is_system) {
4237 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4238 				DPRINT(("cannot load [%d] dbregs in use\n",
4239 							task_pid_nr(task)));
4240 				ret = -EBUSY;
4241 			} else {
4242 				pfm_sessions.pfs_sys_use_dbregs++;
4243 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4244 				set_dbregs = 1;
4245 			}
4246 		}
4247 
4248 		UNLOCK_PFS(flags);
4249 
4250 		if (ret) goto error;
4251 	}
4252 
4253 	/*
4254 	 * SMP system-wide monitoring implies self-monitoring.
4255 	 *
4256 	 * The programming model expects the task to
4257 	 * be pinned on a CPU throughout the session.
4258 	 * Here we take note of the current CPU at the
4259 	 * time the context is loaded. No call from
4260 	 * another CPU will be allowed.
4261 	 *
4262 	 * The pinning via shed_setaffinity()
4263 	 * must be done by the calling task prior
4264 	 * to this call.
4265 	 *
4266 	 * systemwide: keep track of CPU this session is supposed to run on
4267 	 */
4268 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4269 
4270 	ret = -EBUSY;
4271 	/*
4272 	 * now reserve the session
4273 	 */
4274 	ret = pfm_reserve_session(current, is_system, the_cpu);
4275 	if (ret) goto error;
4276 
4277 	/*
4278 	 * task is necessarily stopped at this point.
4279 	 *
4280 	 * If the previous context was zombie, then it got removed in
4281 	 * pfm_save_regs(). Therefore we should not see it here.
4282 	 * If we see a context, then this is an active context
4283 	 *
4284 	 * XXX: needs to be atomic
4285 	 */
4286 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287 		thread->pfm_context, ctx));
4288 
4289 	ret = -EBUSY;
4290 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4291 	if (old != NULL) {
4292 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4293 		goto error_unres;
4294 	}
4295 
4296 	pfm_reset_msgq(ctx);
4297 
4298 	ctx->ctx_state = PFM_CTX_LOADED;
4299 
4300 	/*
4301 	 * link context to task
4302 	 */
4303 	ctx->ctx_task = task;
4304 
4305 	if (is_system) {
4306 		/*
4307 		 * we load as stopped
4308 		 */
4309 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4310 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4311 
4312 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4313 	} else {
4314 		thread->flags |= IA64_THREAD_PM_VALID;
4315 	}
4316 
4317 	/*
4318 	 * propagate into thread-state
4319 	 */
4320 	pfm_copy_pmds(task, ctx);
4321 	pfm_copy_pmcs(task, ctx);
4322 
4323 	pmcs_source = ctx->th_pmcs;
4324 	pmds_source = ctx->th_pmds;
4325 
4326 	/*
4327 	 * always the case for system-wide
4328 	 */
4329 	if (task == current) {
4330 
4331 		if (is_system == 0) {
4332 
4333 			/* allow user level control */
4334 			ia64_psr(regs)->sp = 0;
4335 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4336 
4337 			SET_LAST_CPU(ctx, smp_processor_id());
4338 			INC_ACTIVATION();
4339 			SET_ACTIVATION(ctx);
4340 #ifndef CONFIG_SMP
4341 			/*
4342 			 * push the other task out, if any
4343 			 */
4344 			owner_task = GET_PMU_OWNER();
4345 			if (owner_task) pfm_lazy_save_regs(owner_task);
4346 #endif
4347 		}
4348 		/*
4349 		 * load all PMD from ctx to PMU (as opposed to thread state)
4350 		 * restore all PMC from ctx to PMU
4351 		 */
4352 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4353 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4354 
4355 		ctx->ctx_reload_pmcs[0] = 0UL;
4356 		ctx->ctx_reload_pmds[0] = 0UL;
4357 
4358 		/*
4359 		 * guaranteed safe by earlier check against DBG_VALID
4360 		 */
4361 		if (ctx->ctx_fl_using_dbreg) {
4362 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4363 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4364 		}
4365 		/*
4366 		 * set new ownership
4367 		 */
4368 		SET_PMU_OWNER(task, ctx);
4369 
4370 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4371 	} else {
4372 		/*
4373 		 * when not current, task MUST be stopped, so this is safe
4374 		 */
4375 		regs = task_pt_regs(task);
4376 
4377 		/* force a full reload */
4378 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4379 		SET_LAST_CPU(ctx, -1);
4380 
4381 		/* initial saved psr (stopped) */
4382 		ctx->ctx_saved_psr_up = 0UL;
4383 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4384 	}
4385 
4386 	ret = 0;
4387 
4388 error_unres:
4389 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4390 error:
4391 	/*
4392 	 * we must undo the dbregs setting (for system-wide)
4393 	 */
4394 	if (ret && set_dbregs) {
4395 		LOCK_PFS(flags);
4396 		pfm_sessions.pfs_sys_use_dbregs--;
4397 		UNLOCK_PFS(flags);
4398 	}
4399 	/*
4400 	 * release task, there is now a link with the context
4401 	 */
4402 	if (is_system == 0 && task != current) {
4403 		pfm_put_task(task);
4404 
4405 		if (ret == 0) {
4406 			ret = pfm_check_task_exist(ctx);
4407 			if (ret) {
4408 				ctx->ctx_state = PFM_CTX_UNLOADED;
4409 				ctx->ctx_task  = NULL;
4410 			}
4411 		}
4412 	}
4413 	return ret;
4414 }
4415 
4416 /*
4417  * in this function, we do not need to increase the use count
4418  * for the task via get_task_struct(), because we hold the
4419  * context lock. If the task were to disappear while having
4420  * a context attached, it would go through pfm_exit_thread()
4421  * which also grabs the context lock  and would therefore be blocked
4422  * until we are here.
4423  */
4424 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4425 
4426 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4427 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4428 {
4429 	struct task_struct *task = PFM_CTX_TASK(ctx);
4430 	struct pt_regs *tregs;
4431 	int prev_state, is_system;
4432 	int ret;
4433 
4434 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4435 
4436 	prev_state = ctx->ctx_state;
4437 	is_system  = ctx->ctx_fl_system;
4438 
4439 	/*
4440 	 * unload only when necessary
4441 	 */
4442 	if (prev_state == PFM_CTX_UNLOADED) {
4443 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4444 		return 0;
4445 	}
4446 
4447 	/*
4448 	 * clear psr and dcr bits
4449 	 */
4450 	ret = pfm_stop(ctx, NULL, 0, regs);
4451 	if (ret) return ret;
4452 
4453 	ctx->ctx_state = PFM_CTX_UNLOADED;
4454 
4455 	/*
4456 	 * in system mode, we need to update the PMU directly
4457 	 * and the user level state of the caller, which may not
4458 	 * necessarily be the creator of the context.
4459 	 */
4460 	if (is_system) {
4461 
4462 		/*
4463 		 * Update cpuinfo
4464 		 *
4465 		 * local PMU is taken care of in pfm_stop()
4466 		 */
4467 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4468 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4469 
4470 		/*
4471 		 * save PMDs in context
4472 		 * release ownership
4473 		 */
4474 		pfm_flush_pmds(current, ctx);
4475 
4476 		/*
4477 		 * at this point we are done with the PMU
4478 		 * so we can unreserve the resource.
4479 		 */
4480 		if (prev_state != PFM_CTX_ZOMBIE)
4481 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4482 
4483 		/*
4484 		 * disconnect context from task
4485 		 */
4486 		task->thread.pfm_context = NULL;
4487 		/*
4488 		 * disconnect task from context
4489 		 */
4490 		ctx->ctx_task = NULL;
4491 
4492 		/*
4493 		 * There is nothing more to cleanup here.
4494 		 */
4495 		return 0;
4496 	}
4497 
4498 	/*
4499 	 * per-task mode
4500 	 */
4501 	tregs = task == current ? regs : task_pt_regs(task);
4502 
4503 	if (task == current) {
4504 		/*
4505 		 * cancel user level control
4506 		 */
4507 		ia64_psr(regs)->sp = 1;
4508 
4509 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4510 	}
4511 	/*
4512 	 * save PMDs to context
4513 	 * release ownership
4514 	 */
4515 	pfm_flush_pmds(task, ctx);
4516 
4517 	/*
4518 	 * at this point we are done with the PMU
4519 	 * so we can unreserve the resource.
4520 	 *
4521 	 * when state was ZOMBIE, we have already unreserved.
4522 	 */
4523 	if (prev_state != PFM_CTX_ZOMBIE)
4524 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4525 
4526 	/*
4527 	 * reset activation counter and psr
4528 	 */
4529 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4530 	SET_LAST_CPU(ctx, -1);
4531 
4532 	/*
4533 	 * PMU state will not be restored
4534 	 */
4535 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4536 
4537 	/*
4538 	 * break links between context and task
4539 	 */
4540 	task->thread.pfm_context  = NULL;
4541 	ctx->ctx_task             = NULL;
4542 
4543 	PFM_SET_WORK_PENDING(task, 0);
4544 
4545 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4546 	ctx->ctx_fl_can_restart  = 0;
4547 	ctx->ctx_fl_going_zombie = 0;
4548 
4549 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4550 
4551 	return 0;
4552 }
4553 
4554 
4555 /*
4556  * called only from exit_thread()
4557  * we come here only if the task has a context attached (loaded or masked)
4558  */
4559 void
pfm_exit_thread(struct task_struct * task)4560 pfm_exit_thread(struct task_struct *task)
4561 {
4562 	pfm_context_t *ctx;
4563 	unsigned long flags;
4564 	struct pt_regs *regs = task_pt_regs(task);
4565 	int ret, state;
4566 	int free_ok = 0;
4567 
4568 	ctx = PFM_GET_CTX(task);
4569 
4570 	PROTECT_CTX(ctx, flags);
4571 
4572 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4573 
4574 	state = ctx->ctx_state;
4575 	switch(state) {
4576 		case PFM_CTX_UNLOADED:
4577 			/*
4578 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4579 			 * be in unloaded state
4580 	 		 */
4581 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4582 			break;
4583 		case PFM_CTX_LOADED:
4584 		case PFM_CTX_MASKED:
4585 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4586 			if (ret) {
4587 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588 			}
4589 			DPRINT(("ctx unloaded for current state was %d\n", state));
4590 
4591 			pfm_end_notify_user(ctx);
4592 			break;
4593 		case PFM_CTX_ZOMBIE:
4594 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4595 			if (ret) {
4596 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4597 			}
4598 			free_ok = 1;
4599 			break;
4600 		default:
4601 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4602 			break;
4603 	}
4604 	UNPROTECT_CTX(ctx, flags);
4605 
4606 	{ u64 psr = pfm_get_psr();
4607 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4608 	  BUG_ON(GET_PMU_OWNER());
4609 	  BUG_ON(ia64_psr(regs)->up);
4610 	  BUG_ON(ia64_psr(regs)->pp);
4611 	}
4612 
4613 	/*
4614 	 * All memory free operations (especially for vmalloc'ed memory)
4615 	 * MUST be done with interrupts ENABLED.
4616 	 */
4617 	if (free_ok) pfm_context_free(ctx);
4618 }
4619 
4620 /*
4621  * functions MUST be listed in the increasing order of their index (see permfon.h)
4622  */
4623 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4627 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4628 
4629 static pfm_cmd_desc_t pfm_cmd_tab[]={
4630 /* 0  */PFM_CMD_NONE,
4631 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4632 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4633 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4634 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4635 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4636 /* 6  */PFM_CMD_NONE,
4637 /* 7  */PFM_CMD_NONE,
4638 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4639 /* 9  */PFM_CMD_NONE,
4640 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4641 /* 11 */PFM_CMD_NONE,
4642 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4643 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4644 /* 14 */PFM_CMD_NONE,
4645 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4647 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4648 /* 18 */PFM_CMD_NONE,
4649 /* 19 */PFM_CMD_NONE,
4650 /* 20 */PFM_CMD_NONE,
4651 /* 21 */PFM_CMD_NONE,
4652 /* 22 */PFM_CMD_NONE,
4653 /* 23 */PFM_CMD_NONE,
4654 /* 24 */PFM_CMD_NONE,
4655 /* 25 */PFM_CMD_NONE,
4656 /* 26 */PFM_CMD_NONE,
4657 /* 27 */PFM_CMD_NONE,
4658 /* 28 */PFM_CMD_NONE,
4659 /* 29 */PFM_CMD_NONE,
4660 /* 30 */PFM_CMD_NONE,
4661 /* 31 */PFM_CMD_NONE,
4662 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4663 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4664 };
4665 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4666 
4667 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4668 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4669 {
4670 	struct task_struct *task;
4671 	int state, old_state;
4672 
4673 recheck:
4674 	state = ctx->ctx_state;
4675 	task  = ctx->ctx_task;
4676 
4677 	if (task == NULL) {
4678 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4679 		return 0;
4680 	}
4681 
4682 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4683 		ctx->ctx_fd,
4684 		state,
4685 		task_pid_nr(task),
4686 		task->state, PFM_CMD_STOPPED(cmd)));
4687 
4688 	/*
4689 	 * self-monitoring always ok.
4690 	 *
4691 	 * for system-wide the caller can either be the creator of the
4692 	 * context (to one to which the context is attached to) OR
4693 	 * a task running on the same CPU as the session.
4694 	 */
4695 	if (task == current || ctx->ctx_fl_system) return 0;
4696 
4697 	/*
4698 	 * we are monitoring another thread
4699 	 */
4700 	switch(state) {
4701 		case PFM_CTX_UNLOADED:
4702 			/*
4703 			 * if context is UNLOADED we are safe to go
4704 			 */
4705 			return 0;
4706 		case PFM_CTX_ZOMBIE:
4707 			/*
4708 			 * no command can operate on a zombie context
4709 			 */
4710 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4711 			return -EINVAL;
4712 		case PFM_CTX_MASKED:
4713 			/*
4714 			 * PMU state has been saved to software even though
4715 			 * the thread may still be running.
4716 			 */
4717 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4718 	}
4719 
4720 	/*
4721 	 * context is LOADED or MASKED. Some commands may need to have
4722 	 * the task stopped.
4723 	 *
4724 	 * We could lift this restriction for UP but it would mean that
4725 	 * the user has no guarantee the task would not run between
4726 	 * two successive calls to perfmonctl(). That's probably OK.
4727 	 * If this user wants to ensure the task does not run, then
4728 	 * the task must be stopped.
4729 	 */
4730 	if (PFM_CMD_STOPPED(cmd)) {
4731 		if (!task_is_stopped_or_traced(task)) {
4732 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4733 			return -EBUSY;
4734 		}
4735 		/*
4736 		 * task is now stopped, wait for ctxsw out
4737 		 *
4738 		 * This is an interesting point in the code.
4739 		 * We need to unprotect the context because
4740 		 * the pfm_save_regs() routines needs to grab
4741 		 * the same lock. There are danger in doing
4742 		 * this because it leaves a window open for
4743 		 * another task to get access to the context
4744 		 * and possibly change its state. The one thing
4745 		 * that is not possible is for the context to disappear
4746 		 * because we are protected by the VFS layer, i.e.,
4747 		 * get_fd()/put_fd().
4748 		 */
4749 		old_state = state;
4750 
4751 		UNPROTECT_CTX(ctx, flags);
4752 
4753 		wait_task_inactive(task, 0);
4754 
4755 		PROTECT_CTX(ctx, flags);
4756 
4757 		/*
4758 		 * we must recheck to verify if state has changed
4759 		 */
4760 		if (ctx->ctx_state != old_state) {
4761 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4762 			goto recheck;
4763 		}
4764 	}
4765 	return 0;
4766 }
4767 
4768 /*
4769  * system-call entry point (must return long)
4770  */
4771 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4772 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4773 {
4774 	struct fd f = {NULL, 0};
4775 	pfm_context_t *ctx = NULL;
4776 	unsigned long flags = 0UL;
4777 	void *args_k = NULL;
4778 	long ret; /* will expand int return types */
4779 	size_t base_sz, sz, xtra_sz = 0;
4780 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4781 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4782 	int (*getsize)(void *arg, size_t *sz);
4783 #define PFM_MAX_ARGSIZE	4096
4784 
4785 	/*
4786 	 * reject any call if perfmon was disabled at initialization
4787 	 */
4788 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4789 
4790 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4791 		DPRINT(("invalid cmd=%d\n", cmd));
4792 		return -EINVAL;
4793 	}
4794 
4795 	func      = pfm_cmd_tab[cmd].cmd_func;
4796 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4797 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4798 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4799 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4800 
4801 	if (unlikely(func == NULL)) {
4802 		DPRINT(("invalid cmd=%d\n", cmd));
4803 		return -EINVAL;
4804 	}
4805 
4806 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4807 		PFM_CMD_NAME(cmd),
4808 		cmd,
4809 		narg,
4810 		base_sz,
4811 		count));
4812 
4813 	/*
4814 	 * check if number of arguments matches what the command expects
4815 	 */
4816 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4817 		return -EINVAL;
4818 
4819 restart_args:
4820 	sz = xtra_sz + base_sz*count;
4821 	/*
4822 	 * limit abuse to min page size
4823 	 */
4824 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4825 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4826 		return -E2BIG;
4827 	}
4828 
4829 	/*
4830 	 * allocate default-sized argument buffer
4831 	 */
4832 	if (likely(count && args_k == NULL)) {
4833 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4834 		if (args_k == NULL) return -ENOMEM;
4835 	}
4836 
4837 	ret = -EFAULT;
4838 
4839 	/*
4840 	 * copy arguments
4841 	 *
4842 	 * assume sz = 0 for command without parameters
4843 	 */
4844 	if (sz && copy_from_user(args_k, arg, sz)) {
4845 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4846 		goto error_args;
4847 	}
4848 
4849 	/*
4850 	 * check if command supports extra parameters
4851 	 */
4852 	if (completed_args == 0 && getsize) {
4853 		/*
4854 		 * get extra parameters size (based on main argument)
4855 		 */
4856 		ret = (*getsize)(args_k, &xtra_sz);
4857 		if (ret) goto error_args;
4858 
4859 		completed_args = 1;
4860 
4861 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4862 
4863 		/* retry if necessary */
4864 		if (likely(xtra_sz)) goto restart_args;
4865 	}
4866 
4867 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4868 
4869 	ret = -EBADF;
4870 
4871 	f = fdget(fd);
4872 	if (unlikely(f.file == NULL)) {
4873 		DPRINT(("invalid fd %d\n", fd));
4874 		goto error_args;
4875 	}
4876 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4877 		DPRINT(("fd %d not related to perfmon\n", fd));
4878 		goto error_args;
4879 	}
4880 
4881 	ctx = f.file->private_data;
4882 	if (unlikely(ctx == NULL)) {
4883 		DPRINT(("no context for fd %d\n", fd));
4884 		goto error_args;
4885 	}
4886 	prefetch(&ctx->ctx_state);
4887 
4888 	PROTECT_CTX(ctx, flags);
4889 
4890 	/*
4891 	 * check task is stopped
4892 	 */
4893 	ret = pfm_check_task_state(ctx, cmd, flags);
4894 	if (unlikely(ret)) goto abort_locked;
4895 
4896 skip_fd:
4897 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4898 
4899 	call_made = 1;
4900 
4901 abort_locked:
4902 	if (likely(ctx)) {
4903 		DPRINT(("context unlocked\n"));
4904 		UNPROTECT_CTX(ctx, flags);
4905 	}
4906 
4907 	/* copy argument back to user, if needed */
4908 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4909 
4910 error_args:
4911 	if (f.file)
4912 		fdput(f);
4913 
4914 	kfree(args_k);
4915 
4916 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4917 
4918 	return ret;
4919 }
4920 
4921 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4922 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4923 {
4924 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4925 	pfm_ovfl_ctrl_t rst_ctrl;
4926 	int state;
4927 	int ret = 0;
4928 
4929 	state = ctx->ctx_state;
4930 	/*
4931 	 * Unlock sampling buffer and reset index atomically
4932 	 * XXX: not really needed when blocking
4933 	 */
4934 	if (CTX_HAS_SMPL(ctx)) {
4935 
4936 		rst_ctrl.bits.mask_monitoring = 0;
4937 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4938 
4939 		if (state == PFM_CTX_LOADED)
4940 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941 		else
4942 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4943 	} else {
4944 		rst_ctrl.bits.mask_monitoring = 0;
4945 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4946 	}
4947 
4948 	if (ret == 0) {
4949 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4950 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4951 		}
4952 		if (rst_ctrl.bits.mask_monitoring == 0) {
4953 			DPRINT(("resuming monitoring\n"));
4954 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4955 		} else {
4956 			DPRINT(("stopping monitoring\n"));
4957 			//pfm_stop_monitoring(current, regs);
4958 		}
4959 		ctx->ctx_state = PFM_CTX_LOADED;
4960 	}
4961 }
4962 
4963 /*
4964  * context MUST BE LOCKED when calling
4965  * can only be called for current
4966  */
4967 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4968 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4969 {
4970 	int ret;
4971 
4972 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4973 
4974 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4975 	if (ret) {
4976 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4977 	}
4978 
4979 	/*
4980 	 * and wakeup controlling task, indicating we are now disconnected
4981 	 */
4982 	wake_up_interruptible(&ctx->ctx_zombieq);
4983 
4984 	/*
4985 	 * given that context is still locked, the controlling
4986 	 * task will only get access when we return from
4987 	 * pfm_handle_work().
4988 	 */
4989 }
4990 
4991 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4992 
4993  /*
4994   * pfm_handle_work() can be called with interrupts enabled
4995   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996   * call may sleep, therefore we must re-enable interrupts
4997   * to avoid deadlocks. It is safe to do so because this function
4998   * is called ONLY when returning to user level (pUStk=1), in which case
4999   * there is no risk of kernel stack overflow due to deep
5000   * interrupt nesting.
5001   */
5002 void
pfm_handle_work(void)5003 pfm_handle_work(void)
5004 {
5005 	pfm_context_t *ctx;
5006 	struct pt_regs *regs;
5007 	unsigned long flags, dummy_flags;
5008 	unsigned long ovfl_regs;
5009 	unsigned int reason;
5010 	int ret;
5011 
5012 	ctx = PFM_GET_CTX(current);
5013 	if (ctx == NULL) {
5014 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5015 			task_pid_nr(current));
5016 		return;
5017 	}
5018 
5019 	PROTECT_CTX(ctx, flags);
5020 
5021 	PFM_SET_WORK_PENDING(current, 0);
5022 
5023 	regs = task_pt_regs(current);
5024 
5025 	/*
5026 	 * extract reason for being here and clear
5027 	 */
5028 	reason = ctx->ctx_fl_trap_reason;
5029 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5030 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5031 
5032 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5033 
5034 	/*
5035 	 * must be done before we check for simple-reset mode
5036 	 */
5037 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5038 		goto do_zombie;
5039 
5040 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041 	if (reason == PFM_TRAP_REASON_RESET)
5042 		goto skip_blocking;
5043 
5044 	/*
5045 	 * restore interrupt mask to what it was on entry.
5046 	 * Could be enabled/diasbled.
5047 	 */
5048 	UNPROTECT_CTX(ctx, flags);
5049 
5050 	/*
5051 	 * force interrupt enable because of down_interruptible()
5052 	 */
5053 	local_irq_enable();
5054 
5055 	DPRINT(("before block sleeping\n"));
5056 
5057 	/*
5058 	 * may go through without blocking on SMP systems
5059 	 * if restart has been received already by the time we call down()
5060 	 */
5061 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5062 
5063 	DPRINT(("after block sleeping ret=%d\n", ret));
5064 
5065 	/*
5066 	 * lock context and mask interrupts again
5067 	 * We save flags into a dummy because we may have
5068 	 * altered interrupts mask compared to entry in this
5069 	 * function.
5070 	 */
5071 	PROTECT_CTX(ctx, dummy_flags);
5072 
5073 	/*
5074 	 * we need to read the ovfl_regs only after wake-up
5075 	 * because we may have had pfm_write_pmds() in between
5076 	 * and that can changed PMD values and therefore
5077 	 * ovfl_regs is reset for these new PMD values.
5078 	 */
5079 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5080 
5081 	if (ctx->ctx_fl_going_zombie) {
5082 do_zombie:
5083 		DPRINT(("context is zombie, bailing out\n"));
5084 		pfm_context_force_terminate(ctx, regs);
5085 		goto nothing_to_do;
5086 	}
5087 	/*
5088 	 * in case of interruption of down() we don't restart anything
5089 	 */
5090 	if (ret < 0)
5091 		goto nothing_to_do;
5092 
5093 skip_blocking:
5094 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5095 	ctx->ctx_ovfl_regs[0] = 0UL;
5096 
5097 nothing_to_do:
5098 	/*
5099 	 * restore flags as they were upon entry
5100 	 */
5101 	UNPROTECT_CTX(ctx, flags);
5102 }
5103 
5104 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5105 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5106 {
5107 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5108 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5109 		return 0;
5110 	}
5111 
5112 	DPRINT(("waking up somebody\n"));
5113 
5114 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5115 
5116 	/*
5117 	 * safe, we are not in intr handler, nor in ctxsw when
5118 	 * we come here
5119 	 */
5120 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5121 
5122 	return 0;
5123 }
5124 
5125 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5126 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5127 {
5128 	pfm_msg_t *msg = NULL;
5129 
5130 	if (ctx->ctx_fl_no_msg == 0) {
5131 		msg = pfm_get_new_msg(ctx);
5132 		if (msg == NULL) {
5133 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5134 			return -1;
5135 		}
5136 
5137 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5138 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5139 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5140 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5141 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5142 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5143 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5144 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5145 	}
5146 
5147 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148 		msg,
5149 		ctx->ctx_fl_no_msg,
5150 		ctx->ctx_fd,
5151 		ovfl_pmds));
5152 
5153 	return pfm_notify_user(ctx, msg);
5154 }
5155 
5156 static int
pfm_end_notify_user(pfm_context_t * ctx)5157 pfm_end_notify_user(pfm_context_t *ctx)
5158 {
5159 	pfm_msg_t *msg;
5160 
5161 	msg = pfm_get_new_msg(ctx);
5162 	if (msg == NULL) {
5163 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5164 		return -1;
5165 	}
5166 	/* no leak */
5167 	memset(msg, 0, sizeof(*msg));
5168 
5169 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5170 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5171 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172 
5173 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5174 		msg,
5175 		ctx->ctx_fl_no_msg,
5176 		ctx->ctx_fd));
5177 
5178 	return pfm_notify_user(ctx, msg);
5179 }
5180 
5181 /*
5182  * main overflow processing routine.
5183  * it can be called from the interrupt path or explicitly during the context switch code
5184  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5185 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5186 				unsigned long pmc0, struct pt_regs *regs)
5187 {
5188 	pfm_ovfl_arg_t *ovfl_arg;
5189 	unsigned long mask;
5190 	unsigned long old_val, ovfl_val, new_val;
5191 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5192 	unsigned long tstamp;
5193 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5194 	unsigned int i, has_smpl;
5195 	int must_notify = 0;
5196 
5197 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5198 
5199 	/*
5200 	 * sanity test. Should never happen
5201 	 */
5202 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5203 
5204 	tstamp   = ia64_get_itc();
5205 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5206 	ovfl_val = pmu_conf->ovfl_val;
5207 	has_smpl = CTX_HAS_SMPL(ctx);
5208 
5209 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210 		     "used_pmds=0x%lx\n",
5211 			pmc0,
5212 			task ? task_pid_nr(task): -1,
5213 			(regs ? regs->cr_iip : 0),
5214 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5215 			ctx->ctx_used_pmds[0]));
5216 
5217 
5218 	/*
5219 	 * first we update the virtual counters
5220 	 * assume there was a prior ia64_srlz_d() issued
5221 	 */
5222 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5223 
5224 		/* skip pmd which did not overflow */
5225 		if ((mask & 0x1) == 0) continue;
5226 
5227 		/*
5228 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5229 		 * may have happened before the PMU was frozen. The residual count is not
5230 		 * taken into consideration here but will be with any read of the pmd via
5231 		 * pfm_read_pmds().
5232 		 */
5233 		old_val              = new_val = ctx->ctx_pmds[i].val;
5234 		new_val             += 1 + ovfl_val;
5235 		ctx->ctx_pmds[i].val = new_val;
5236 
5237 		/*
5238 		 * check for overflow condition
5239 		 */
5240 		if (likely(old_val > new_val)) {
5241 			ovfl_pmds |= 1UL << i;
5242 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5243 		}
5244 
5245 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5246 			i,
5247 			new_val,
5248 			old_val,
5249 			ia64_get_pmd(i) & ovfl_val,
5250 			ovfl_pmds,
5251 			ovfl_notify));
5252 	}
5253 
5254 	/*
5255 	 * there was no 64-bit overflow, nothing else to do
5256 	 */
5257 	if (ovfl_pmds == 0UL) return;
5258 
5259 	/*
5260 	 * reset all control bits
5261 	 */
5262 	ovfl_ctrl.val = 0;
5263 	reset_pmds    = 0UL;
5264 
5265 	/*
5266 	 * if a sampling format module exists, then we "cache" the overflow by
5267 	 * calling the module's handler() routine.
5268 	 */
5269 	if (has_smpl) {
5270 		unsigned long start_cycles, end_cycles;
5271 		unsigned long pmd_mask;
5272 		int j, k, ret = 0;
5273 		int this_cpu = smp_processor_id();
5274 
5275 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5276 		ovfl_arg = &ctx->ctx_ovfl_arg;
5277 
5278 		prefetch(ctx->ctx_smpl_hdr);
5279 
5280 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5281 
5282 			mask = 1UL << i;
5283 
5284 			if ((pmd_mask & 0x1) == 0) continue;
5285 
5286 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5287 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5288 			ovfl_arg->active_set    = 0;
5289 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5290 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5291 
5292 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5293 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5294 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5295 
5296 			/*
5297 		 	 * copy values of pmds of interest. Sampling format may copy them
5298 		 	 * into sampling buffer.
5299 		 	 */
5300 			if (smpl_pmds) {
5301 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5302 					if ((smpl_pmds & 0x1) == 0) continue;
5303 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5304 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5305 				}
5306 			}
5307 
5308 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5309 
5310 			start_cycles = ia64_get_itc();
5311 
5312 			/*
5313 		 	 * call custom buffer format record (handler) routine
5314 		 	 */
5315 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5316 
5317 			end_cycles = ia64_get_itc();
5318 
5319 			/*
5320 			 * For those controls, we take the union because they have
5321 			 * an all or nothing behavior.
5322 			 */
5323 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5324 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5325 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5326 			/*
5327 			 * build the bitmask of pmds to reset now
5328 			 */
5329 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5330 
5331 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5332 		}
5333 		/*
5334 		 * when the module cannot handle the rest of the overflows, we abort right here
5335 		 */
5336 		if (ret && pmd_mask) {
5337 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338 				pmd_mask<<PMU_FIRST_COUNTER));
5339 		}
5340 		/*
5341 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5342 		 */
5343 		ovfl_pmds &= ~reset_pmds;
5344 	} else {
5345 		/*
5346 		 * when no sampling module is used, then the default
5347 		 * is to notify on overflow if requested by user
5348 		 */
5349 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5350 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5351 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5352 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5353 		/*
5354 		 * if needed, we reset all overflowed pmds
5355 		 */
5356 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5357 	}
5358 
5359 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5360 
5361 	/*
5362 	 * reset the requested PMD registers using the short reset values
5363 	 */
5364 	if (reset_pmds) {
5365 		unsigned long bm = reset_pmds;
5366 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5367 	}
5368 
5369 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5370 		/*
5371 		 * keep track of what to reset when unblocking
5372 		 */
5373 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5374 
5375 		/*
5376 		 * check for blocking context
5377 		 */
5378 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5379 
5380 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5381 
5382 			/*
5383 			 * set the perfmon specific checking pending work for the task
5384 			 */
5385 			PFM_SET_WORK_PENDING(task, 1);
5386 
5387 			/*
5388 			 * when coming from ctxsw, current still points to the
5389 			 * previous task, therefore we must work with task and not current.
5390 			 */
5391 			set_notify_resume(task);
5392 		}
5393 		/*
5394 		 * defer until state is changed (shorten spin window). the context is locked
5395 		 * anyway, so the signal receiver would come spin for nothing.
5396 		 */
5397 		must_notify = 1;
5398 	}
5399 
5400 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402 			PFM_GET_WORK_PENDING(task),
5403 			ctx->ctx_fl_trap_reason,
5404 			ovfl_pmds,
5405 			ovfl_notify,
5406 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5407 	/*
5408 	 * in case monitoring must be stopped, we toggle the psr bits
5409 	 */
5410 	if (ovfl_ctrl.bits.mask_monitoring) {
5411 		pfm_mask_monitoring(task);
5412 		ctx->ctx_state = PFM_CTX_MASKED;
5413 		ctx->ctx_fl_can_restart = 1;
5414 	}
5415 
5416 	/*
5417 	 * send notification now
5418 	 */
5419 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5420 
5421 	return;
5422 
5423 sanity_check:
5424 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5425 			smp_processor_id(),
5426 			task ? task_pid_nr(task) : -1,
5427 			pmc0);
5428 	return;
5429 
5430 stop_monitoring:
5431 	/*
5432 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434 	 * come here as zombie only if the task is the current task. In which case, we
5435 	 * can access the PMU  hardware directly.
5436 	 *
5437 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5438 	 *
5439 	 * In case the context was zombified it could not be reclaimed at the time
5440 	 * the monitoring program exited. At this point, the PMU reservation has been
5441 	 * returned, the sampiing buffer has been freed. We must convert this call
5442 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5443 	 * by stopping monitoring for this task. We can only come here for a per-task
5444 	 * context. All we need to do is to stop monitoring using the psr bits which
5445 	 * are always task private. By re-enabling secure montioring, we ensure that
5446 	 * the monitored task will not be able to re-activate monitoring.
5447 	 * The task will eventually be context switched out, at which point the context
5448 	 * will be reclaimed (that includes releasing ownership of the PMU).
5449 	 *
5450 	 * So there might be a window of time where the number of per-task session is zero
5451 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452 	 * context. This is safe because if a per-task session comes in, it will push this one
5453 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455 	 * also push our zombie context out.
5456 	 *
5457 	 * Overall pretty hairy stuff....
5458 	 */
5459 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5460 	pfm_clear_psr_up();
5461 	ia64_psr(regs)->up = 0;
5462 	ia64_psr(regs)->sp = 1;
5463 	return;
5464 }
5465 
5466 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5467 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5468 {
5469 	struct task_struct *task;
5470 	pfm_context_t *ctx;
5471 	unsigned long flags;
5472 	u64 pmc0;
5473 	int this_cpu = smp_processor_id();
5474 	int retval = 0;
5475 
5476 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5477 
5478 	/*
5479 	 * srlz.d done before arriving here
5480 	 */
5481 	pmc0 = ia64_get_pmc(0);
5482 
5483 	task = GET_PMU_OWNER();
5484 	ctx  = GET_PMU_CTX();
5485 
5486 	/*
5487 	 * if we have some pending bits set
5488 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5489 	 */
5490 	if (PMC0_HAS_OVFL(pmc0) && task) {
5491 		/*
5492 		 * we assume that pmc0.fr is always set here
5493 		 */
5494 
5495 		/* sanity check */
5496 		if (!ctx) goto report_spurious1;
5497 
5498 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5499 			goto report_spurious2;
5500 
5501 		PROTECT_CTX_NOPRINT(ctx, flags);
5502 
5503 		pfm_overflow_handler(task, ctx, pmc0, regs);
5504 
5505 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5506 
5507 	} else {
5508 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5509 		retval = -1;
5510 	}
5511 	/*
5512 	 * keep it unfrozen at all times
5513 	 */
5514 	pfm_unfreeze_pmu();
5515 
5516 	return retval;
5517 
5518 report_spurious1:
5519 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520 		this_cpu, task_pid_nr(task));
5521 	pfm_unfreeze_pmu();
5522 	return -1;
5523 report_spurious2:
5524 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5525 		this_cpu,
5526 		task_pid_nr(task));
5527 	pfm_unfreeze_pmu();
5528 	return -1;
5529 }
5530 
5531 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5532 pfm_interrupt_handler(int irq, void *arg)
5533 {
5534 	unsigned long start_cycles, total_cycles;
5535 	unsigned long min, max;
5536 	int this_cpu;
5537 	int ret;
5538 	struct pt_regs *regs = get_irq_regs();
5539 
5540 	this_cpu = get_cpu();
5541 	if (likely(!pfm_alt_intr_handler)) {
5542 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5543 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5544 
5545 		start_cycles = ia64_get_itc();
5546 
5547 		ret = pfm_do_interrupt_handler(arg, regs);
5548 
5549 		total_cycles = ia64_get_itc();
5550 
5551 		/*
5552 		 * don't measure spurious interrupts
5553 		 */
5554 		if (likely(ret == 0)) {
5555 			total_cycles -= start_cycles;
5556 
5557 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5558 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5559 
5560 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5561 		}
5562 	}
5563 	else {
5564 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5565 	}
5566 
5567 	put_cpu();
5568 	return IRQ_HANDLED;
5569 }
5570 
5571 /*
5572  * /proc/perfmon interface, for debug only
5573  */
5574 
5575 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5576 
5577 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5578 pfm_proc_start(struct seq_file *m, loff_t *pos)
5579 {
5580 	if (*pos == 0) {
5581 		return PFM_PROC_SHOW_HEADER;
5582 	}
5583 
5584 	while (*pos <= nr_cpu_ids) {
5585 		if (cpu_online(*pos - 1)) {
5586 			return (void *)*pos;
5587 		}
5588 		++*pos;
5589 	}
5590 	return NULL;
5591 }
5592 
5593 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5594 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5595 {
5596 	++*pos;
5597 	return pfm_proc_start(m, pos);
5598 }
5599 
5600 static void
pfm_proc_stop(struct seq_file * m,void * v)5601 pfm_proc_stop(struct seq_file *m, void *v)
5602 {
5603 }
5604 
5605 static void
pfm_proc_show_header(struct seq_file * m)5606 pfm_proc_show_header(struct seq_file *m)
5607 {
5608 	struct list_head * pos;
5609 	pfm_buffer_fmt_t * entry;
5610 	unsigned long flags;
5611 
5612  	seq_printf(m,
5613 		"perfmon version           : %u.%u\n"
5614 		"model                     : %s\n"
5615 		"fastctxsw                 : %s\n"
5616 		"expert mode               : %s\n"
5617 		"ovfl_mask                 : 0x%lx\n"
5618 		"PMU flags                 : 0x%x\n",
5619 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5620 		pmu_conf->pmu_name,
5621 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5622 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5623 		pmu_conf->ovfl_val,
5624 		pmu_conf->flags);
5625 
5626   	LOCK_PFS(flags);
5627 
5628  	seq_printf(m,
5629  		"proc_sessions             : %u\n"
5630  		"sys_sessions              : %u\n"
5631  		"sys_use_dbregs            : %u\n"
5632  		"ptrace_use_dbregs         : %u\n",
5633  		pfm_sessions.pfs_task_sessions,
5634  		pfm_sessions.pfs_sys_sessions,
5635  		pfm_sessions.pfs_sys_use_dbregs,
5636  		pfm_sessions.pfs_ptrace_use_dbregs);
5637 
5638   	UNLOCK_PFS(flags);
5639 
5640 	spin_lock(&pfm_buffer_fmt_lock);
5641 
5642 	list_for_each(pos, &pfm_buffer_fmt_list) {
5643 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5644 		seq_printf(m, "format                    : %16phD %s\n",
5645 			   entry->fmt_uuid, entry->fmt_name);
5646 	}
5647 	spin_unlock(&pfm_buffer_fmt_lock);
5648 
5649 }
5650 
5651 static int
pfm_proc_show(struct seq_file * m,void * v)5652 pfm_proc_show(struct seq_file *m, void *v)
5653 {
5654 	unsigned long psr;
5655 	unsigned int i;
5656 	int cpu;
5657 
5658 	if (v == PFM_PROC_SHOW_HEADER) {
5659 		pfm_proc_show_header(m);
5660 		return 0;
5661 	}
5662 
5663 	/* show info for CPU (v - 1) */
5664 
5665 	cpu = (long)v - 1;
5666 	seq_printf(m,
5667 		"CPU%-2d overflow intrs      : %lu\n"
5668 		"CPU%-2d overflow cycles     : %lu\n"
5669 		"CPU%-2d overflow min        : %lu\n"
5670 		"CPU%-2d overflow max        : %lu\n"
5671 		"CPU%-2d smpl handler calls  : %lu\n"
5672 		"CPU%-2d smpl handler cycles : %lu\n"
5673 		"CPU%-2d spurious intrs      : %lu\n"
5674 		"CPU%-2d replay   intrs      : %lu\n"
5675 		"CPU%-2d syst_wide           : %d\n"
5676 		"CPU%-2d dcr_pp              : %d\n"
5677 		"CPU%-2d exclude idle        : %d\n"
5678 		"CPU%-2d owner               : %d\n"
5679 		"CPU%-2d context             : %p\n"
5680 		"CPU%-2d activations         : %lu\n",
5681 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5682 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5683 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5684 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5685 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5686 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5687 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5688 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5689 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5690 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5691 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5692 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5693 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5694 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5695 
5696 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5697 
5698 		psr = pfm_get_psr();
5699 
5700 		ia64_srlz_d();
5701 
5702 		seq_printf(m,
5703 			"CPU%-2d psr                 : 0x%lx\n"
5704 			"CPU%-2d pmc0                : 0x%lx\n",
5705 			cpu, psr,
5706 			cpu, ia64_get_pmc(0));
5707 
5708 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5709 			if (PMC_IS_COUNTING(i) == 0) continue;
5710    			seq_printf(m,
5711 				"CPU%-2d pmc%u                : 0x%lx\n"
5712    				"CPU%-2d pmd%u                : 0x%lx\n",
5713 				cpu, i, ia64_get_pmc(i),
5714 				cpu, i, ia64_get_pmd(i));
5715   		}
5716 	}
5717 	return 0;
5718 }
5719 
5720 const struct seq_operations pfm_seq_ops = {
5721 	.start =	pfm_proc_start,
5722  	.next =		pfm_proc_next,
5723  	.stop =		pfm_proc_stop,
5724  	.show =		pfm_proc_show
5725 };
5726 
5727 static int
pfm_proc_open(struct inode * inode,struct file * file)5728 pfm_proc_open(struct inode *inode, struct file *file)
5729 {
5730 	return seq_open(file, &pfm_seq_ops);
5731 }
5732 
5733 
5734 /*
5735  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737  * is active or inactive based on mode. We must rely on the value in
5738  * local_cpu_data->pfm_syst_info
5739  */
5740 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5741 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5742 {
5743 	struct pt_regs *regs;
5744 	unsigned long dcr;
5745 	unsigned long dcr_pp;
5746 
5747 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5748 
5749 	/*
5750 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751 	 * on every CPU, so we can rely on the pid to identify the idle task.
5752 	 */
5753 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5754 		regs = task_pt_regs(task);
5755 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5756 		return;
5757 	}
5758 	/*
5759 	 * if monitoring has started
5760 	 */
5761 	if (dcr_pp) {
5762 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5763 		/*
5764 		 * context switching in?
5765 		 */
5766 		if (is_ctxswin) {
5767 			/* mask monitoring for the idle task */
5768 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5769 			pfm_clear_psr_pp();
5770 			ia64_srlz_i();
5771 			return;
5772 		}
5773 		/*
5774 		 * context switching out
5775 		 * restore monitoring for next task
5776 		 *
5777 		 * Due to inlining this odd if-then-else construction generates
5778 		 * better code.
5779 		 */
5780 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5781 		pfm_set_psr_pp();
5782 		ia64_srlz_i();
5783 	}
5784 }
5785 
5786 #ifdef CONFIG_SMP
5787 
5788 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5789 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5790 {
5791 	struct task_struct *task = ctx->ctx_task;
5792 
5793 	ia64_psr(regs)->up = 0;
5794 	ia64_psr(regs)->sp = 1;
5795 
5796 	if (GET_PMU_OWNER() == task) {
5797 		DPRINT(("cleared ownership for [%d]\n",
5798 					task_pid_nr(ctx->ctx_task)));
5799 		SET_PMU_OWNER(NULL, NULL);
5800 	}
5801 
5802 	/*
5803 	 * disconnect the task from the context and vice-versa
5804 	 */
5805 	PFM_SET_WORK_PENDING(task, 0);
5806 
5807 	task->thread.pfm_context  = NULL;
5808 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5809 
5810 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5811 }
5812 
5813 
5814 /*
5815  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5816  */
5817 void
pfm_save_regs(struct task_struct * task)5818 pfm_save_regs(struct task_struct *task)
5819 {
5820 	pfm_context_t *ctx;
5821 	unsigned long flags;
5822 	u64 psr;
5823 
5824 
5825 	ctx = PFM_GET_CTX(task);
5826 	if (ctx == NULL) return;
5827 
5828 	/*
5829  	 * we always come here with interrupts ALREADY disabled by
5830  	 * the scheduler. So we simply need to protect against concurrent
5831 	 * access, not CPU concurrency.
5832 	 */
5833 	flags = pfm_protect_ctx_ctxsw(ctx);
5834 
5835 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5836 		struct pt_regs *regs = task_pt_regs(task);
5837 
5838 		pfm_clear_psr_up();
5839 
5840 		pfm_force_cleanup(ctx, regs);
5841 
5842 		BUG_ON(ctx->ctx_smpl_hdr);
5843 
5844 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5845 
5846 		pfm_context_free(ctx);
5847 		return;
5848 	}
5849 
5850 	/*
5851 	 * save current PSR: needed because we modify it
5852 	 */
5853 	ia64_srlz_d();
5854 	psr = pfm_get_psr();
5855 
5856 	BUG_ON(psr & (IA64_PSR_I));
5857 
5858 	/*
5859 	 * stop monitoring:
5860 	 * This is the last instruction which may generate an overflow
5861 	 *
5862 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5863 	 * It will be restored from ipsr when going back to user level
5864 	 */
5865 	pfm_clear_psr_up();
5866 
5867 	/*
5868 	 * keep a copy of psr.up (for reload)
5869 	 */
5870 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5871 
5872 	/*
5873 	 * release ownership of this PMU.
5874 	 * PM interrupts are masked, so nothing
5875 	 * can happen.
5876 	 */
5877 	SET_PMU_OWNER(NULL, NULL);
5878 
5879 	/*
5880 	 * we systematically save the PMD as we have no
5881 	 * guarantee we will be schedule at that same
5882 	 * CPU again.
5883 	 */
5884 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5885 
5886 	/*
5887 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888 	 * we will need it on the restore path to check
5889 	 * for pending overflow.
5890 	 */
5891 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5892 
5893 	/*
5894 	 * unfreeze PMU if had pending overflows
5895 	 */
5896 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5897 
5898 	/*
5899 	 * finally, allow context access.
5900 	 * interrupts will still be masked after this call.
5901 	 */
5902 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5903 }
5904 
5905 #else /* !CONFIG_SMP */
5906 void
pfm_save_regs(struct task_struct * task)5907 pfm_save_regs(struct task_struct *task)
5908 {
5909 	pfm_context_t *ctx;
5910 	u64 psr;
5911 
5912 	ctx = PFM_GET_CTX(task);
5913 	if (ctx == NULL) return;
5914 
5915 	/*
5916 	 * save current PSR: needed because we modify it
5917 	 */
5918 	psr = pfm_get_psr();
5919 
5920 	BUG_ON(psr & (IA64_PSR_I));
5921 
5922 	/*
5923 	 * stop monitoring:
5924 	 * This is the last instruction which may generate an overflow
5925 	 *
5926 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5927 	 * It will be restored from ipsr when going back to user level
5928 	 */
5929 	pfm_clear_psr_up();
5930 
5931 	/*
5932 	 * keep a copy of psr.up (for reload)
5933 	 */
5934 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5935 }
5936 
5937 static void
pfm_lazy_save_regs(struct task_struct * task)5938 pfm_lazy_save_regs (struct task_struct *task)
5939 {
5940 	pfm_context_t *ctx;
5941 	unsigned long flags;
5942 
5943 	{ u64 psr  = pfm_get_psr();
5944 	  BUG_ON(psr & IA64_PSR_UP);
5945 	}
5946 
5947 	ctx = PFM_GET_CTX(task);
5948 
5949 	/*
5950 	 * we need to mask PMU overflow here to
5951 	 * make sure that we maintain pmc0 until
5952 	 * we save it. overflow interrupts are
5953 	 * treated as spurious if there is no
5954 	 * owner.
5955 	 *
5956 	 * XXX: I don't think this is necessary
5957 	 */
5958 	PROTECT_CTX(ctx,flags);
5959 
5960 	/*
5961 	 * release ownership of this PMU.
5962 	 * must be done before we save the registers.
5963 	 *
5964 	 * after this call any PMU interrupt is treated
5965 	 * as spurious.
5966 	 */
5967 	SET_PMU_OWNER(NULL, NULL);
5968 
5969 	/*
5970 	 * save all the pmds we use
5971 	 */
5972 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5973 
5974 	/*
5975 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976 	 * it is needed to check for pended overflow
5977 	 * on the restore path
5978 	 */
5979 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5980 
5981 	/*
5982 	 * unfreeze PMU if had pending overflows
5983 	 */
5984 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5985 
5986 	/*
5987 	 * now get can unmask PMU interrupts, they will
5988 	 * be treated as purely spurious and we will not
5989 	 * lose any information
5990 	 */
5991 	UNPROTECT_CTX(ctx,flags);
5992 }
5993 #endif /* CONFIG_SMP */
5994 
5995 #ifdef CONFIG_SMP
5996 /*
5997  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5998  */
5999 void
pfm_load_regs(struct task_struct * task)6000 pfm_load_regs (struct task_struct *task)
6001 {
6002 	pfm_context_t *ctx;
6003 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6004 	unsigned long flags;
6005 	u64 psr, psr_up;
6006 	int need_irq_resend;
6007 
6008 	ctx = PFM_GET_CTX(task);
6009 	if (unlikely(ctx == NULL)) return;
6010 
6011 	BUG_ON(GET_PMU_OWNER());
6012 
6013 	/*
6014 	 * possible on unload
6015 	 */
6016 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6017 
6018 	/*
6019  	 * we always come here with interrupts ALREADY disabled by
6020  	 * the scheduler. So we simply need to protect against concurrent
6021 	 * access, not CPU concurrency.
6022 	 */
6023 	flags = pfm_protect_ctx_ctxsw(ctx);
6024 	psr   = pfm_get_psr();
6025 
6026 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6027 
6028 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6029 	BUG_ON(psr & IA64_PSR_I);
6030 
6031 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6032 		struct pt_regs *regs = task_pt_regs(task);
6033 
6034 		BUG_ON(ctx->ctx_smpl_hdr);
6035 
6036 		pfm_force_cleanup(ctx, regs);
6037 
6038 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6039 
6040 		/*
6041 		 * this one (kmalloc'ed) is fine with interrupts disabled
6042 		 */
6043 		pfm_context_free(ctx);
6044 
6045 		return;
6046 	}
6047 
6048 	/*
6049 	 * we restore ALL the debug registers to avoid picking up
6050 	 * stale state.
6051 	 */
6052 	if (ctx->ctx_fl_using_dbreg) {
6053 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6054 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6055 	}
6056 	/*
6057 	 * retrieve saved psr.up
6058 	 */
6059 	psr_up = ctx->ctx_saved_psr_up;
6060 
6061 	/*
6062 	 * if we were the last user of the PMU on that CPU,
6063 	 * then nothing to do except restore psr
6064 	 */
6065 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6066 
6067 		/*
6068 		 * retrieve partial reload masks (due to user modifications)
6069 		 */
6070 		pmc_mask = ctx->ctx_reload_pmcs[0];
6071 		pmd_mask = ctx->ctx_reload_pmds[0];
6072 
6073 	} else {
6074 		/*
6075 	 	 * To avoid leaking information to the user level when psr.sp=0,
6076 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6077 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6078 	 	 * we initialized or requested (sampling) so there is no risk there.
6079 	 	 */
6080 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6081 
6082 		/*
6083 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6084 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085 	 	 * up stale configuration.
6086 	 	 *
6087 	 	 * PMC0 is never in the mask. It is always restored separately.
6088 	 	 */
6089 		pmc_mask = ctx->ctx_all_pmcs[0];
6090 	}
6091 	/*
6092 	 * when context is MASKED, we will restore PMC with plm=0
6093 	 * and PMD with stale information, but that's ok, nothing
6094 	 * will be captured.
6095 	 *
6096 	 * XXX: optimize here
6097 	 */
6098 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6099 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6100 
6101 	/*
6102 	 * check for pending overflow at the time the state
6103 	 * was saved.
6104 	 */
6105 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6106 		/*
6107 		 * reload pmc0 with the overflow information
6108 		 * On McKinley PMU, this will trigger a PMU interrupt
6109 		 */
6110 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6111 		ia64_srlz_d();
6112 		ctx->th_pmcs[0] = 0UL;
6113 
6114 		/*
6115 		 * will replay the PMU interrupt
6116 		 */
6117 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6118 
6119 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6120 	}
6121 
6122 	/*
6123 	 * we just did a reload, so we reset the partial reload fields
6124 	 */
6125 	ctx->ctx_reload_pmcs[0] = 0UL;
6126 	ctx->ctx_reload_pmds[0] = 0UL;
6127 
6128 	SET_LAST_CPU(ctx, smp_processor_id());
6129 
6130 	/*
6131 	 * dump activation value for this PMU
6132 	 */
6133 	INC_ACTIVATION();
6134 	/*
6135 	 * record current activation for this context
6136 	 */
6137 	SET_ACTIVATION(ctx);
6138 
6139 	/*
6140 	 * establish new ownership.
6141 	 */
6142 	SET_PMU_OWNER(task, ctx);
6143 
6144 	/*
6145 	 * restore the psr.up bit. measurement
6146 	 * is active again.
6147 	 * no PMU interrupt can happen at this point
6148 	 * because we still have interrupts disabled.
6149 	 */
6150 	if (likely(psr_up)) pfm_set_psr_up();
6151 
6152 	/*
6153 	 * allow concurrent access to context
6154 	 */
6155 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6156 }
6157 #else /*  !CONFIG_SMP */
6158 /*
6159  * reload PMU state for UP kernels
6160  * in 2.5 we come here with interrupts disabled
6161  */
6162 void
pfm_load_regs(struct task_struct * task)6163 pfm_load_regs (struct task_struct *task)
6164 {
6165 	pfm_context_t *ctx;
6166 	struct task_struct *owner;
6167 	unsigned long pmd_mask, pmc_mask;
6168 	u64 psr, psr_up;
6169 	int need_irq_resend;
6170 
6171 	owner = GET_PMU_OWNER();
6172 	ctx   = PFM_GET_CTX(task);
6173 	psr   = pfm_get_psr();
6174 
6175 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6176 	BUG_ON(psr & IA64_PSR_I);
6177 
6178 	/*
6179 	 * we restore ALL the debug registers to avoid picking up
6180 	 * stale state.
6181 	 *
6182 	 * This must be done even when the task is still the owner
6183 	 * as the registers may have been modified via ptrace()
6184 	 * (not perfmon) by the previous task.
6185 	 */
6186 	if (ctx->ctx_fl_using_dbreg) {
6187 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6188 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6189 	}
6190 
6191 	/*
6192 	 * retrieved saved psr.up
6193 	 */
6194 	psr_up = ctx->ctx_saved_psr_up;
6195 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6196 
6197 	/*
6198 	 * short path, our state is still there, just
6199 	 * need to restore psr and we go
6200 	 *
6201 	 * we do not touch either PMC nor PMD. the psr is not touched
6202 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6203 	 * concurrency even without interrupt masking.
6204 	 */
6205 	if (likely(owner == task)) {
6206 		if (likely(psr_up)) pfm_set_psr_up();
6207 		return;
6208 	}
6209 
6210 	/*
6211 	 * someone else is still using the PMU, first push it out and
6212 	 * then we'll be able to install our stuff !
6213 	 *
6214 	 * Upon return, there will be no owner for the current PMU
6215 	 */
6216 	if (owner) pfm_lazy_save_regs(owner);
6217 
6218 	/*
6219 	 * To avoid leaking information to the user level when psr.sp=0,
6220 	 * we must reload ALL implemented pmds (even the ones we don't use).
6221 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6222 	 * we initialized or requested (sampling) so there is no risk there.
6223 	 */
6224 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6225 
6226 	/*
6227 	 * ALL accessible PMCs are systematically reloaded, unused registers
6228 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229 	 * up stale configuration.
6230 	 *
6231 	 * PMC0 is never in the mask. It is always restored separately
6232 	 */
6233 	pmc_mask = ctx->ctx_all_pmcs[0];
6234 
6235 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6236 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6237 
6238 	/*
6239 	 * check for pending overflow at the time the state
6240 	 * was saved.
6241 	 */
6242 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6243 		/*
6244 		 * reload pmc0 with the overflow information
6245 		 * On McKinley PMU, this will trigger a PMU interrupt
6246 		 */
6247 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6248 		ia64_srlz_d();
6249 
6250 		ctx->th_pmcs[0] = 0UL;
6251 
6252 		/*
6253 		 * will replay the PMU interrupt
6254 		 */
6255 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6256 
6257 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6258 	}
6259 
6260 	/*
6261 	 * establish new ownership.
6262 	 */
6263 	SET_PMU_OWNER(task, ctx);
6264 
6265 	/*
6266 	 * restore the psr.up bit. measurement
6267 	 * is active again.
6268 	 * no PMU interrupt can happen at this point
6269 	 * because we still have interrupts disabled.
6270 	 */
6271 	if (likely(psr_up)) pfm_set_psr_up();
6272 }
6273 #endif /* CONFIG_SMP */
6274 
6275 /*
6276  * this function assumes monitoring is stopped
6277  */
6278 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6279 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6280 {
6281 	u64 pmc0;
6282 	unsigned long mask2, val, pmd_val, ovfl_val;
6283 	int i, can_access_pmu = 0;
6284 	int is_self;
6285 
6286 	/*
6287 	 * is the caller the task being monitored (or which initiated the
6288 	 * session for system wide measurements)
6289 	 */
6290 	is_self = ctx->ctx_task == task ? 1 : 0;
6291 
6292 	/*
6293 	 * can access PMU is task is the owner of the PMU state on the current CPU
6294 	 * or if we are running on the CPU bound to the context in system-wide mode
6295 	 * (that is not necessarily the task the context is attached to in this mode).
6296 	 * In system-wide we always have can_access_pmu true because a task running on an
6297 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6298 	 */
6299 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6300 	if (can_access_pmu) {
6301 		/*
6302 		 * Mark the PMU as not owned
6303 		 * This will cause the interrupt handler to do nothing in case an overflow
6304 		 * interrupt was in-flight
6305 		 * This also guarantees that pmc0 will contain the final state
6306 		 * It virtually gives us full control on overflow processing from that point
6307 		 * on.
6308 		 */
6309 		SET_PMU_OWNER(NULL, NULL);
6310 		DPRINT(("releasing ownership\n"));
6311 
6312 		/*
6313 		 * read current overflow status:
6314 		 *
6315 		 * we are guaranteed to read the final stable state
6316 		 */
6317 		ia64_srlz_d();
6318 		pmc0 = ia64_get_pmc(0); /* slow */
6319 
6320 		/*
6321 		 * reset freeze bit, overflow status information destroyed
6322 		 */
6323 		pfm_unfreeze_pmu();
6324 	} else {
6325 		pmc0 = ctx->th_pmcs[0];
6326 		/*
6327 		 * clear whatever overflow status bits there were
6328 		 */
6329 		ctx->th_pmcs[0] = 0;
6330 	}
6331 	ovfl_val = pmu_conf->ovfl_val;
6332 	/*
6333 	 * we save all the used pmds
6334 	 * we take care of overflows for counting PMDs
6335 	 *
6336 	 * XXX: sampling situation is not taken into account here
6337 	 */
6338 	mask2 = ctx->ctx_used_pmds[0];
6339 
6340 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6341 
6342 	for (i = 0; mask2; i++, mask2>>=1) {
6343 
6344 		/* skip non used pmds */
6345 		if ((mask2 & 0x1) == 0) continue;
6346 
6347 		/*
6348 		 * can access PMU always true in system wide mode
6349 		 */
6350 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6351 
6352 		if (PMD_IS_COUNTING(i)) {
6353 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6354 				task_pid_nr(task),
6355 				i,
6356 				ctx->ctx_pmds[i].val,
6357 				val & ovfl_val));
6358 
6359 			/*
6360 			 * we rebuild the full 64 bit value of the counter
6361 			 */
6362 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6363 
6364 			/*
6365 			 * now everything is in ctx_pmds[] and we need
6366 			 * to clear the saved context from save_regs() such that
6367 			 * pfm_read_pmds() gets the correct value
6368 			 */
6369 			pmd_val = 0UL;
6370 
6371 			/*
6372 			 * take care of overflow inline
6373 			 */
6374 			if (pmc0 & (1UL << i)) {
6375 				val += 1 + ovfl_val;
6376 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6377 			}
6378 		}
6379 
6380 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6381 
6382 		if (is_self) ctx->th_pmds[i] = pmd_val;
6383 
6384 		ctx->ctx_pmds[i].val = val;
6385 	}
6386 }
6387 
6388 static struct irqaction perfmon_irqaction = {
6389 	.handler = pfm_interrupt_handler,
6390 	.name    = "perfmon"
6391 };
6392 
6393 static void
pfm_alt_save_pmu_state(void * data)6394 pfm_alt_save_pmu_state(void *data)
6395 {
6396 	struct pt_regs *regs;
6397 
6398 	regs = task_pt_regs(current);
6399 
6400 	DPRINT(("called\n"));
6401 
6402 	/*
6403 	 * should not be necessary but
6404 	 * let's take not risk
6405 	 */
6406 	pfm_clear_psr_up();
6407 	pfm_clear_psr_pp();
6408 	ia64_psr(regs)->pp = 0;
6409 
6410 	/*
6411 	 * This call is required
6412 	 * May cause a spurious interrupt on some processors
6413 	 */
6414 	pfm_freeze_pmu();
6415 
6416 	ia64_srlz_d();
6417 }
6418 
6419 void
pfm_alt_restore_pmu_state(void * data)6420 pfm_alt_restore_pmu_state(void *data)
6421 {
6422 	struct pt_regs *regs;
6423 
6424 	regs = task_pt_regs(current);
6425 
6426 	DPRINT(("called\n"));
6427 
6428 	/*
6429 	 * put PMU back in state expected
6430 	 * by perfmon
6431 	 */
6432 	pfm_clear_psr_up();
6433 	pfm_clear_psr_pp();
6434 	ia64_psr(regs)->pp = 0;
6435 
6436 	/*
6437 	 * perfmon runs with PMU unfrozen at all times
6438 	 */
6439 	pfm_unfreeze_pmu();
6440 
6441 	ia64_srlz_d();
6442 }
6443 
6444 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6445 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6446 {
6447 	int ret, i;
6448 	int reserve_cpu;
6449 
6450 	/* some sanity checks */
6451 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6452 
6453 	/* do the easy test first */
6454 	if (pfm_alt_intr_handler) return -EBUSY;
6455 
6456 	/* one at a time in the install or remove, just fail the others */
6457 	if (!spin_trylock(&pfm_alt_install_check)) {
6458 		return -EBUSY;
6459 	}
6460 
6461 	/* reserve our session */
6462 	for_each_online_cpu(reserve_cpu) {
6463 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6464 		if (ret) goto cleanup_reserve;
6465 	}
6466 
6467 	/* save the current system wide pmu states */
6468 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6469 	if (ret) {
6470 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6471 		goto cleanup_reserve;
6472 	}
6473 
6474 	/* officially change to the alternate interrupt handler */
6475 	pfm_alt_intr_handler = hdl;
6476 
6477 	spin_unlock(&pfm_alt_install_check);
6478 
6479 	return 0;
6480 
6481 cleanup_reserve:
6482 	for_each_online_cpu(i) {
6483 		/* don't unreserve more than we reserved */
6484 		if (i >= reserve_cpu) break;
6485 
6486 		pfm_unreserve_session(NULL, 1, i);
6487 	}
6488 
6489 	spin_unlock(&pfm_alt_install_check);
6490 
6491 	return ret;
6492 }
6493 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6494 
6495 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6496 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6497 {
6498 	int i;
6499 	int ret;
6500 
6501 	if (hdl == NULL) return -EINVAL;
6502 
6503 	/* cannot remove someone else's handler! */
6504 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6505 
6506 	/* one at a time in the install or remove, just fail the others */
6507 	if (!spin_trylock(&pfm_alt_install_check)) {
6508 		return -EBUSY;
6509 	}
6510 
6511 	pfm_alt_intr_handler = NULL;
6512 
6513 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6514 	if (ret) {
6515 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6516 	}
6517 
6518 	for_each_online_cpu(i) {
6519 		pfm_unreserve_session(NULL, 1, i);
6520 	}
6521 
6522 	spin_unlock(&pfm_alt_install_check);
6523 
6524 	return 0;
6525 }
6526 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6527 
6528 /*
6529  * perfmon initialization routine, called from the initcall() table
6530  */
6531 static int init_pfm_fs(void);
6532 
6533 static int __init
pfm_probe_pmu(void)6534 pfm_probe_pmu(void)
6535 {
6536 	pmu_config_t **p;
6537 	int family;
6538 
6539 	family = local_cpu_data->family;
6540 	p      = pmu_confs;
6541 
6542 	while(*p) {
6543 		if ((*p)->probe) {
6544 			if ((*p)->probe() == 0) goto found;
6545 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6546 			goto found;
6547 		}
6548 		p++;
6549 	}
6550 	return -1;
6551 found:
6552 	pmu_conf = *p;
6553 	return 0;
6554 }
6555 
6556 static const struct file_operations pfm_proc_fops = {
6557 	.open		= pfm_proc_open,
6558 	.read		= seq_read,
6559 	.llseek		= seq_lseek,
6560 	.release	= seq_release,
6561 };
6562 
6563 int __init
pfm_init(void)6564 pfm_init(void)
6565 {
6566 	unsigned int n, n_counters, i;
6567 
6568 	printk("perfmon: version %u.%u IRQ %u\n",
6569 		PFM_VERSION_MAJ,
6570 		PFM_VERSION_MIN,
6571 		IA64_PERFMON_VECTOR);
6572 
6573 	if (pfm_probe_pmu()) {
6574 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6575 				local_cpu_data->family);
6576 		return -ENODEV;
6577 	}
6578 
6579 	/*
6580 	 * compute the number of implemented PMD/PMC from the
6581 	 * description tables
6582 	 */
6583 	n = 0;
6584 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6585 		if (PMC_IS_IMPL(i) == 0) continue;
6586 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6587 		n++;
6588 	}
6589 	pmu_conf->num_pmcs = n;
6590 
6591 	n = 0; n_counters = 0;
6592 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6593 		if (PMD_IS_IMPL(i) == 0) continue;
6594 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6595 		n++;
6596 		if (PMD_IS_COUNTING(i)) n_counters++;
6597 	}
6598 	pmu_conf->num_pmds      = n;
6599 	pmu_conf->num_counters  = n_counters;
6600 
6601 	/*
6602 	 * sanity checks on the number of debug registers
6603 	 */
6604 	if (pmu_conf->use_rr_dbregs) {
6605 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6606 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6607 			pmu_conf = NULL;
6608 			return -1;
6609 		}
6610 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6611 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6612 			pmu_conf = NULL;
6613 			return -1;
6614 		}
6615 	}
6616 
6617 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6618 	       pmu_conf->pmu_name,
6619 	       pmu_conf->num_pmcs,
6620 	       pmu_conf->num_pmds,
6621 	       pmu_conf->num_counters,
6622 	       ffz(pmu_conf->ovfl_val));
6623 
6624 	/* sanity check */
6625 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6626 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6627 		pmu_conf = NULL;
6628 		return -1;
6629 	}
6630 
6631 	/*
6632 	 * create /proc/perfmon (mostly for debugging purposes)
6633 	 */
6634 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6635 	if (perfmon_dir == NULL) {
6636 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6637 		pmu_conf = NULL;
6638 		return -1;
6639 	}
6640 
6641 	/*
6642 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6643 	 */
6644 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6645 
6646 	/*
6647 	 * initialize all our spinlocks
6648 	 */
6649 	spin_lock_init(&pfm_sessions.pfs_lock);
6650 	spin_lock_init(&pfm_buffer_fmt_lock);
6651 
6652 	init_pfm_fs();
6653 
6654 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6655 
6656 	return 0;
6657 }
6658 
6659 __initcall(pfm_init);
6660 
6661 /*
6662  * this function is called before pfm_init()
6663  */
6664 void
pfm_init_percpu(void)6665 pfm_init_percpu (void)
6666 {
6667 	static int first_time=1;
6668 	/*
6669 	 * make sure no measurement is active
6670 	 * (may inherit programmed PMCs from EFI).
6671 	 */
6672 	pfm_clear_psr_pp();
6673 	pfm_clear_psr_up();
6674 
6675 	/*
6676 	 * we run with the PMU not frozen at all times
6677 	 */
6678 	pfm_unfreeze_pmu();
6679 
6680 	if (first_time) {
6681 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6682 		first_time=0;
6683 	}
6684 
6685 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6686 	ia64_srlz_d();
6687 }
6688 
6689 /*
6690  * used for debug purposes only
6691  */
6692 void
dump_pmu_state(const char * from)6693 dump_pmu_state(const char *from)
6694 {
6695 	struct task_struct *task;
6696 	struct pt_regs *regs;
6697 	pfm_context_t *ctx;
6698 	unsigned long psr, dcr, info, flags;
6699 	int i, this_cpu;
6700 
6701 	local_irq_save(flags);
6702 
6703 	this_cpu = smp_processor_id();
6704 	regs     = task_pt_regs(current);
6705 	info     = PFM_CPUINFO_GET();
6706 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6707 
6708 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6709 		local_irq_restore(flags);
6710 		return;
6711 	}
6712 
6713 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6714 		this_cpu,
6715 		from,
6716 		task_pid_nr(current),
6717 		regs->cr_iip,
6718 		current->comm);
6719 
6720 	task = GET_PMU_OWNER();
6721 	ctx  = GET_PMU_CTX();
6722 
6723 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6724 
6725 	psr = pfm_get_psr();
6726 
6727 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6728 		this_cpu,
6729 		ia64_get_pmc(0),
6730 		psr & IA64_PSR_PP ? 1 : 0,
6731 		psr & IA64_PSR_UP ? 1 : 0,
6732 		dcr & IA64_DCR_PP ? 1 : 0,
6733 		info,
6734 		ia64_psr(regs)->up,
6735 		ia64_psr(regs)->pp);
6736 
6737 	ia64_psr(regs)->up = 0;
6738 	ia64_psr(regs)->pp = 0;
6739 
6740 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6741 		if (PMC_IS_IMPL(i) == 0) continue;
6742 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6743 	}
6744 
6745 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6746 		if (PMD_IS_IMPL(i) == 0) continue;
6747 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6748 	}
6749 
6750 	if (ctx) {
6751 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6752 				this_cpu,
6753 				ctx->ctx_state,
6754 				ctx->ctx_smpl_vaddr,
6755 				ctx->ctx_smpl_hdr,
6756 				ctx->ctx_msgq_head,
6757 				ctx->ctx_msgq_tail,
6758 				ctx->ctx_saved_psr_up);
6759 	}
6760 	local_irq_restore(flags);
6761 }
6762 
6763 /*
6764  * called from process.c:copy_thread(). task is new child.
6765  */
6766 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6767 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6768 {
6769 	struct thread_struct *thread;
6770 
6771 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6772 
6773 	thread = &task->thread;
6774 
6775 	/*
6776 	 * cut links inherited from parent (current)
6777 	 */
6778 	thread->pfm_context = NULL;
6779 
6780 	PFM_SET_WORK_PENDING(task, 0);
6781 
6782 	/*
6783 	 * the psr bits are already set properly in copy_threads()
6784 	 */
6785 }
6786 #else  /* !CONFIG_PERFMON */
6787 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6788 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6789 {
6790 	return -ENOSYS;
6791 }
6792 #endif /* CONFIG_PERFMON */
6793