1 /* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
28 #include <asm/disassemble.h>
29
30 struct aligninfo {
31 unsigned char len;
32 unsigned char flags;
33 };
34
35
36 #define INVALID { 0, 0 }
37
38 /* Bits in the flags field */
39 #define LD 0 /* load */
40 #define ST 1 /* store */
41 #define SE 2 /* sign-extend value, or FP ld/st as word */
42 #define F 4 /* to/from fp regs */
43 #define U 8 /* update index register */
44 #define M 0x10 /* multiple load/store */
45 #define SW 0x20 /* byte swap */
46 #define S 0x40 /* single-precision fp or... */
47 #define SX 0x40 /* ... byte count in XER */
48 #define HARD 0x80 /* string, stwcx. */
49 #define E4 0x40 /* SPE endianness is word */
50 #define E8 0x80 /* SPE endianness is double word */
51 #define SPLT 0x80 /* VSX SPLAT load */
52
53 /* DSISR bits reported for a DCBZ instruction: */
54 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
55
56 /*
57 * The PowerPC stores certain bits of the instruction that caused the
58 * alignment exception in the DSISR register. This array maps those
59 * bits to information about the operand length and what the
60 * instruction would do.
61 */
62 static struct aligninfo aligninfo[128] = {
63 { 4, LD }, /* 00 0 0000: lwz / lwarx */
64 INVALID, /* 00 0 0001 */
65 { 4, ST }, /* 00 0 0010: stw */
66 INVALID, /* 00 0 0011 */
67 { 2, LD }, /* 00 0 0100: lhz */
68 { 2, LD+SE }, /* 00 0 0101: lha */
69 { 2, ST }, /* 00 0 0110: sth */
70 { 4, LD+M }, /* 00 0 0111: lmw */
71 { 4, LD+F+S }, /* 00 0 1000: lfs */
72 { 8, LD+F }, /* 00 0 1001: lfd */
73 { 4, ST+F+S }, /* 00 0 1010: stfs */
74 { 8, ST+F }, /* 00 0 1011: stfd */
75 { 16, LD }, /* 00 0 1100: lq */
76 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
77 INVALID, /* 00 0 1110 */
78 { 8, ST }, /* 00 0 1111: std/stdu */
79 { 4, LD+U }, /* 00 1 0000: lwzu */
80 INVALID, /* 00 1 0001 */
81 { 4, ST+U }, /* 00 1 0010: stwu */
82 INVALID, /* 00 1 0011 */
83 { 2, LD+U }, /* 00 1 0100: lhzu */
84 { 2, LD+SE+U }, /* 00 1 0101: lhau */
85 { 2, ST+U }, /* 00 1 0110: sthu */
86 { 4, ST+M }, /* 00 1 0111: stmw */
87 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
88 { 8, LD+F+U }, /* 00 1 1001: lfdu */
89 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
90 { 8, ST+F+U }, /* 00 1 1011: stfdu */
91 { 16, LD+F }, /* 00 1 1100: lfdp */
92 INVALID, /* 00 1 1101 */
93 { 16, ST+F }, /* 00 1 1110: stfdp */
94 INVALID, /* 00 1 1111 */
95 { 8, LD }, /* 01 0 0000: ldx */
96 INVALID, /* 01 0 0001 */
97 { 8, ST }, /* 01 0 0010: stdx */
98 INVALID, /* 01 0 0011 */
99 INVALID, /* 01 0 0100 */
100 { 4, LD+SE }, /* 01 0 0101: lwax */
101 INVALID, /* 01 0 0110 */
102 INVALID, /* 01 0 0111 */
103 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
104 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
105 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
106 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
107 INVALID, /* 01 0 1100 */
108 { 8, LD+U }, /* 01 0 1101: ldu */
109 INVALID, /* 01 0 1110 */
110 { 8, ST+U }, /* 01 0 1111: stdu */
111 { 8, LD+U }, /* 01 1 0000: ldux */
112 INVALID, /* 01 1 0001 */
113 { 8, ST+U }, /* 01 1 0010: stdux */
114 INVALID, /* 01 1 0011 */
115 INVALID, /* 01 1 0100 */
116 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
117 INVALID, /* 01 1 0110 */
118 INVALID, /* 01 1 0111 */
119 INVALID, /* 01 1 1000 */
120 INVALID, /* 01 1 1001 */
121 INVALID, /* 01 1 1010 */
122 INVALID, /* 01 1 1011 */
123 INVALID, /* 01 1 1100 */
124 INVALID, /* 01 1 1101 */
125 INVALID, /* 01 1 1110 */
126 INVALID, /* 01 1 1111 */
127 INVALID, /* 10 0 0000 */
128 INVALID, /* 10 0 0001 */
129 INVALID, /* 10 0 0010: stwcx. */
130 INVALID, /* 10 0 0011 */
131 INVALID, /* 10 0 0100 */
132 INVALID, /* 10 0 0101 */
133 INVALID, /* 10 0 0110 */
134 INVALID, /* 10 0 0111 */
135 { 4, LD+SW }, /* 10 0 1000: lwbrx */
136 INVALID, /* 10 0 1001 */
137 { 4, ST+SW }, /* 10 0 1010: stwbrx */
138 INVALID, /* 10 0 1011 */
139 { 2, LD+SW }, /* 10 0 1100: lhbrx */
140 { 4, LD+SE }, /* 10 0 1101 lwa */
141 { 2, ST+SW }, /* 10 0 1110: sthbrx */
142 { 16, ST }, /* 10 0 1111: stq */
143 INVALID, /* 10 1 0000 */
144 INVALID, /* 10 1 0001 */
145 INVALID, /* 10 1 0010 */
146 INVALID, /* 10 1 0011 */
147 INVALID, /* 10 1 0100 */
148 INVALID, /* 10 1 0101 */
149 INVALID, /* 10 1 0110 */
150 INVALID, /* 10 1 0111 */
151 INVALID, /* 10 1 1000 */
152 INVALID, /* 10 1 1001 */
153 INVALID, /* 10 1 1010 */
154 INVALID, /* 10 1 1011 */
155 INVALID, /* 10 1 1100 */
156 INVALID, /* 10 1 1101 */
157 INVALID, /* 10 1 1110 */
158 { 0, ST+HARD }, /* 10 1 1111: dcbz */
159 { 4, LD }, /* 11 0 0000: lwzx */
160 INVALID, /* 11 0 0001 */
161 { 4, ST }, /* 11 0 0010: stwx */
162 INVALID, /* 11 0 0011 */
163 { 2, LD }, /* 11 0 0100: lhzx */
164 { 2, LD+SE }, /* 11 0 0101: lhax */
165 { 2, ST }, /* 11 0 0110: sthx */
166 INVALID, /* 11 0 0111 */
167 { 4, LD+F+S }, /* 11 0 1000: lfsx */
168 { 8, LD+F }, /* 11 0 1001: lfdx */
169 { 4, ST+F+S }, /* 11 0 1010: stfsx */
170 { 8, ST+F }, /* 11 0 1011: stfdx */
171 { 16, LD+F }, /* 11 0 1100: lfdpx */
172 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
173 { 16, ST+F }, /* 11 0 1110: stfdpx */
174 { 4, ST+F }, /* 11 0 1111: stfiwx */
175 { 4, LD+U }, /* 11 1 0000: lwzux */
176 INVALID, /* 11 1 0001 */
177 { 4, ST+U }, /* 11 1 0010: stwux */
178 INVALID, /* 11 1 0011 */
179 { 2, LD+U }, /* 11 1 0100: lhzux */
180 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
181 { 2, ST+U }, /* 11 1 0110: sthux */
182 INVALID, /* 11 1 0111 */
183 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
184 { 8, LD+F+U }, /* 11 1 1001: lfdux */
185 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
186 { 8, ST+F+U }, /* 11 1 1011: stfdux */
187 INVALID, /* 11 1 1100 */
188 { 4, LD+F }, /* 11 1 1101: lfiwzx */
189 INVALID, /* 11 1 1110 */
190 INVALID, /* 11 1 1111 */
191 };
192
193 /*
194 * The dcbz (data cache block zero) instruction
195 * gives an alignment fault if used on non-cacheable
196 * memory. We handle the fault mainly for the
197 * case when we are running with the cache disabled
198 * for debugging.
199 */
emulate_dcbz(struct pt_regs * regs,unsigned char __user * addr)200 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
201 {
202 long __user *p;
203 int i, size;
204
205 #ifdef __powerpc64__
206 size = ppc64_caches.dline_size;
207 #else
208 size = L1_CACHE_BYTES;
209 #endif
210 p = (long __user *) (regs->dar & -size);
211 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
212 return -EFAULT;
213 for (i = 0; i < size / sizeof(long); ++i)
214 if (__put_user_inatomic(0, p+i))
215 return -EFAULT;
216 return 1;
217 }
218
219 /*
220 * Emulate load & store multiple instructions
221 * On 64-bit machines, these instructions only affect/use the
222 * bottom 4 bytes of each register, and the loads clear the
223 * top 4 bytes of the affected register.
224 */
225 #ifdef __BIG_ENDIAN__
226 #ifdef CONFIG_PPC64
227 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
228 #else
229 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
230 #endif
231 #endif
232
233 #ifdef __LITTLE_ENDIAN__
234 #define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
235 #endif
236
237 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
238
239 #define __get_user_or_set_dar(_regs, _dest, _addr) \
240 ({ \
241 int rc = 0; \
242 typeof(_addr) __addr = (_addr); \
243 if (__get_user_inatomic(_dest, __addr)) { \
244 _regs->dar = (unsigned long)__addr; \
245 rc = -EFAULT; \
246 } \
247 rc; \
248 })
249
250 #define __put_user_or_set_dar(_regs, _src, _addr) \
251 ({ \
252 int rc = 0; \
253 typeof(_addr) __addr = (_addr); \
254 if (__put_user_inatomic(_src, __addr)) { \
255 _regs->dar = (unsigned long)__addr; \
256 rc = -EFAULT; \
257 } \
258 rc; \
259 })
260
emulate_multiple(struct pt_regs * regs,unsigned char __user * addr,unsigned int reg,unsigned int nb,unsigned int flags,unsigned int instr,unsigned long swiz)261 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
262 unsigned int reg, unsigned int nb,
263 unsigned int flags, unsigned int instr,
264 unsigned long swiz)
265 {
266 unsigned long *rptr;
267 unsigned int nb0, i, bswiz;
268 unsigned long p;
269
270 /*
271 * We do not try to emulate 8 bytes multiple as they aren't really
272 * available in our operating environments and we don't try to
273 * emulate multiples operations in kernel land as they should never
274 * be used/generated there at least not on unaligned boundaries
275 */
276 if (unlikely((nb > 4) || !user_mode(regs)))
277 return 0;
278
279 /* lmw, stmw, lswi/x, stswi/x */
280 nb0 = 0;
281 if (flags & HARD) {
282 if (flags & SX) {
283 nb = regs->xer & 127;
284 if (nb == 0)
285 return 1;
286 } else {
287 unsigned long pc = regs->nip ^ (swiz & 4);
288
289 if (__get_user_or_set_dar(regs, instr,
290 (unsigned int __user *)pc))
291 return -EFAULT;
292
293 if (swiz == 0 && (flags & SW))
294 instr = cpu_to_le32(instr);
295 nb = (instr >> 11) & 0x1f;
296 if (nb == 0)
297 nb = 32;
298 }
299 if (nb + reg * 4 > 128) {
300 nb0 = nb + reg * 4 - 128;
301 nb = 128 - reg * 4;
302 }
303 #ifdef __LITTLE_ENDIAN__
304 /*
305 * String instructions are endian neutral but the code
306 * below is not. Force byte swapping on so that the
307 * effects of swizzling are undone in the load/store
308 * loops below.
309 */
310 flags ^= SW;
311 #endif
312 } else {
313 /* lwm, stmw */
314 nb = (32 - reg) * 4;
315 }
316
317 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
318 return -EFAULT; /* bad address */
319
320 rptr = ®s->gpr[reg];
321 p = (unsigned long) addr;
322 bswiz = (flags & SW)? 3: 0;
323
324 if (!(flags & ST)) {
325 /*
326 * This zeroes the top 4 bytes of the affected registers
327 * in 64-bit mode, and also zeroes out any remaining
328 * bytes of the last register for lsw*.
329 */
330 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
331 if (nb0 > 0)
332 memset(®s->gpr[0], 0,
333 ((nb0 + 3) / 4) * sizeof(unsigned long));
334
335 for (i = 0; i < nb; ++i, ++p)
336 if (__get_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz),
337 SWIZ_PTR(p)))
338 return -EFAULT;
339 if (nb0 > 0) {
340 rptr = ®s->gpr[0];
341 addr += nb;
342 for (i = 0; i < nb0; ++i, ++p)
343 if (__get_user_or_set_dar(regs,
344 REG_BYTE(rptr, i ^ bswiz),
345 SWIZ_PTR(p)))
346 return -EFAULT;
347 }
348
349 } else {
350 for (i = 0; i < nb; ++i, ++p)
351 if (__put_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz),
352 SWIZ_PTR(p)))
353 return -EFAULT;
354 if (nb0 > 0) {
355 rptr = ®s->gpr[0];
356 addr += nb;
357 for (i = 0; i < nb0; ++i, ++p)
358 if (__put_user_or_set_dar(regs,
359 REG_BYTE(rptr, i ^ bswiz),
360 SWIZ_PTR(p)))
361 return -EFAULT;
362 }
363 }
364 return 1;
365 }
366
367 /*
368 * Emulate floating-point pair loads and stores.
369 * Only POWER6 has these instructions, and it does true little-endian,
370 * so we don't need the address swizzling.
371 */
emulate_fp_pair(struct pt_regs * regs,unsigned char __user * addr,unsigned int reg,unsigned int flags)372 static int emulate_fp_pair(struct pt_regs *regs, unsigned char __user *addr,
373 unsigned int reg, unsigned int flags)
374 {
375 char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
376 char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
377 int i, sw = 0;
378
379 if (reg & 1)
380 return 0; /* invalid form: FRS/FRT must be even */
381 if (flags & SW)
382 sw = 7;
383
384 for (i = 0; i < 8; ++i) {
385 if (!(flags & ST)) {
386 if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i))
387 return -EFAULT;
388 if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
389 return -EFAULT;
390 } else {
391 if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i))
392 return -EFAULT;
393 if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
394 return -EFAULT;
395 }
396 }
397
398 return 1; /* exception handled and fixed up */
399 }
400
401 #ifdef CONFIG_PPC64
emulate_lq_stq(struct pt_regs * regs,unsigned char __user * addr,unsigned int reg,unsigned int flags)402 static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
403 unsigned int reg, unsigned int flags)
404 {
405 char *ptr0 = (char *)®s->gpr[reg];
406 char *ptr1 = (char *)®s->gpr[reg+1];
407 int i, sw = 0;
408
409 if (reg & 1)
410 return 0; /* invalid form: GPR must be even */
411 if (flags & SW)
412 sw = 7;
413
414 for (i = 0; i < 8; ++i) {
415 if (!(flags & ST)) {
416 if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i))
417 return -EFAULT;
418 if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
419 return -EFAULT;
420 } else {
421 if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i))
422 return -EFAULT;
423 if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
424 return -EFAULT;
425 }
426 }
427
428 return 1; /* exception handled and fixed up */
429 }
430 #endif /* CONFIG_PPC64 */
431
432 #ifdef CONFIG_SPE
433
434 static struct aligninfo spe_aligninfo[32] = {
435 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
436 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
437 { 8, LD }, /* 0 00 10: evldh[x] */
438 INVALID, /* 0 00 11 */
439 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
440 INVALID, /* 0 01 01 */
441 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
442 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
443 { 4, LD }, /* 0 10 00: evlwhe[x] */
444 INVALID, /* 0 10 01 */
445 { 4, LD }, /* 0 10 10: evlwhou[x] */
446 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
447 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
448 INVALID, /* 0 11 01 */
449 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
450 INVALID, /* 0 11 11 */
451
452 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
453 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
454 { 8, ST }, /* 1 00 10: evstdh[x] */
455 INVALID, /* 1 00 11 */
456 INVALID, /* 1 01 00 */
457 INVALID, /* 1 01 01 */
458 INVALID, /* 1 01 10 */
459 INVALID, /* 1 01 11 */
460 { 4, ST }, /* 1 10 00: evstwhe[x] */
461 INVALID, /* 1 10 01 */
462 { 4, ST }, /* 1 10 10: evstwho[x] */
463 INVALID, /* 1 10 11 */
464 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
465 INVALID, /* 1 11 01 */
466 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
467 INVALID, /* 1 11 11 */
468 };
469
470 #define EVLDD 0x00
471 #define EVLDW 0x01
472 #define EVLDH 0x02
473 #define EVLHHESPLAT 0x04
474 #define EVLHHOUSPLAT 0x06
475 #define EVLHHOSSPLAT 0x07
476 #define EVLWHE 0x08
477 #define EVLWHOU 0x0A
478 #define EVLWHOS 0x0B
479 #define EVLWWSPLAT 0x0C
480 #define EVLWHSPLAT 0x0E
481 #define EVSTDD 0x10
482 #define EVSTDW 0x11
483 #define EVSTDH 0x12
484 #define EVSTWHE 0x18
485 #define EVSTWHO 0x1A
486 #define EVSTWWE 0x1C
487 #define EVSTWWO 0x1E
488
489 /*
490 * Emulate SPE loads and stores.
491 * Only Book-E has these instructions, and it does true little-endian,
492 * so we don't need the address swizzling.
493 */
emulate_spe(struct pt_regs * regs,unsigned int reg,unsigned int instr)494 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
495 unsigned int instr)
496 {
497 int ret;
498 union {
499 u64 ll;
500 u32 w[2];
501 u16 h[4];
502 u8 v[8];
503 } data, temp;
504 unsigned char __user *p, *addr;
505 unsigned long *evr = ¤t->thread.evr[reg];
506 unsigned int nb, flags;
507
508 instr = (instr >> 1) & 0x1f;
509
510 /* DAR has the operand effective address */
511 addr = (unsigned char __user *)regs->dar;
512
513 nb = spe_aligninfo[instr].len;
514 flags = spe_aligninfo[instr].flags;
515
516 /* Verify the address of the operand */
517 if (unlikely(user_mode(regs) &&
518 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
519 addr, nb)))
520 return -EFAULT;
521
522 /* userland only */
523 if (unlikely(!user_mode(regs)))
524 return 0;
525
526 flush_spe_to_thread(current);
527
528 /* If we are loading, get the data from user space, else
529 * get it from register values
530 */
531 if (flags & ST) {
532 data.ll = 0;
533 switch (instr) {
534 case EVSTDD:
535 case EVSTDW:
536 case EVSTDH:
537 data.w[0] = *evr;
538 data.w[1] = regs->gpr[reg];
539 break;
540 case EVSTWHE:
541 data.h[2] = *evr >> 16;
542 data.h[3] = regs->gpr[reg] >> 16;
543 break;
544 case EVSTWHO:
545 data.h[2] = *evr & 0xffff;
546 data.h[3] = regs->gpr[reg] & 0xffff;
547 break;
548 case EVSTWWE:
549 data.w[1] = *evr;
550 break;
551 case EVSTWWO:
552 data.w[1] = regs->gpr[reg];
553 break;
554 default:
555 return -EINVAL;
556 }
557 } else {
558 temp.ll = data.ll = 0;
559 ret = 0;
560 p = addr;
561
562 switch (nb) {
563 case 8:
564 ret |= __get_user_inatomic(temp.v[0], p++);
565 ret |= __get_user_inatomic(temp.v[1], p++);
566 ret |= __get_user_inatomic(temp.v[2], p++);
567 ret |= __get_user_inatomic(temp.v[3], p++);
568 case 4:
569 ret |= __get_user_inatomic(temp.v[4], p++);
570 ret |= __get_user_inatomic(temp.v[5], p++);
571 case 2:
572 ret |= __get_user_inatomic(temp.v[6], p++);
573 ret |= __get_user_inatomic(temp.v[7], p++);
574 if (unlikely(ret))
575 return -EFAULT;
576 }
577
578 switch (instr) {
579 case EVLDD:
580 case EVLDW:
581 case EVLDH:
582 data.ll = temp.ll;
583 break;
584 case EVLHHESPLAT:
585 data.h[0] = temp.h[3];
586 data.h[2] = temp.h[3];
587 break;
588 case EVLHHOUSPLAT:
589 case EVLHHOSSPLAT:
590 data.h[1] = temp.h[3];
591 data.h[3] = temp.h[3];
592 break;
593 case EVLWHE:
594 data.h[0] = temp.h[2];
595 data.h[2] = temp.h[3];
596 break;
597 case EVLWHOU:
598 case EVLWHOS:
599 data.h[1] = temp.h[2];
600 data.h[3] = temp.h[3];
601 break;
602 case EVLWWSPLAT:
603 data.w[0] = temp.w[1];
604 data.w[1] = temp.w[1];
605 break;
606 case EVLWHSPLAT:
607 data.h[0] = temp.h[2];
608 data.h[1] = temp.h[2];
609 data.h[2] = temp.h[3];
610 data.h[3] = temp.h[3];
611 break;
612 default:
613 return -EINVAL;
614 }
615 }
616
617 if (flags & SW) {
618 switch (flags & 0xf0) {
619 case E8:
620 data.ll = swab64(data.ll);
621 break;
622 case E4:
623 data.w[0] = swab32(data.w[0]);
624 data.w[1] = swab32(data.w[1]);
625 break;
626 /* Its half word endian */
627 default:
628 data.h[0] = swab16(data.h[0]);
629 data.h[1] = swab16(data.h[1]);
630 data.h[2] = swab16(data.h[2]);
631 data.h[3] = swab16(data.h[3]);
632 break;
633 }
634 }
635
636 if (flags & SE) {
637 data.w[0] = (s16)data.h[1];
638 data.w[1] = (s16)data.h[3];
639 }
640
641 /* Store result to memory or update registers */
642 if (flags & ST) {
643 ret = 0;
644 p = addr;
645 switch (nb) {
646 case 8:
647 ret |= __put_user_inatomic(data.v[0], p++);
648 ret |= __put_user_inatomic(data.v[1], p++);
649 ret |= __put_user_inatomic(data.v[2], p++);
650 ret |= __put_user_inatomic(data.v[3], p++);
651 case 4:
652 ret |= __put_user_inatomic(data.v[4], p++);
653 ret |= __put_user_inatomic(data.v[5], p++);
654 case 2:
655 ret |= __put_user_inatomic(data.v[6], p++);
656 ret |= __put_user_inatomic(data.v[7], p++);
657 }
658 if (unlikely(ret))
659 return -EFAULT;
660 } else {
661 *evr = data.w[0];
662 regs->gpr[reg] = data.w[1];
663 }
664
665 return 1;
666 }
667 #endif /* CONFIG_SPE */
668
669 #ifdef CONFIG_VSX
670 /*
671 * Emulate VSX instructions...
672 */
emulate_vsx(unsigned char __user * addr,unsigned int reg,unsigned int areg,struct pt_regs * regs,unsigned int flags,unsigned int length,unsigned int elsize)673 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
674 unsigned int areg, struct pt_regs *regs,
675 unsigned int flags, unsigned int length,
676 unsigned int elsize)
677 {
678 char *ptr;
679 unsigned long *lptr;
680 int ret = 0;
681 int sw = 0;
682 int i, j;
683
684 /* userland only */
685 if (unlikely(!user_mode(regs)))
686 return 0;
687
688 flush_vsx_to_thread(current);
689
690 if (reg < 32)
691 ptr = (char *) ¤t->thread.fp_state.fpr[reg][0];
692 else
693 ptr = (char *) ¤t->thread.vr_state.vr[reg - 32];
694
695 lptr = (unsigned long *) ptr;
696
697 #ifdef __LITTLE_ENDIAN__
698 if (flags & SW) {
699 elsize = length;
700 sw = length-1;
701 } else {
702 /*
703 * The elements are BE ordered, even in LE mode, so process
704 * them in reverse order.
705 */
706 addr += length - elsize;
707
708 /* 8 byte memory accesses go in the top 8 bytes of the VR */
709 if (length == 8)
710 ptr += 8;
711 }
712 #else
713 if (flags & SW)
714 sw = elsize-1;
715 #endif
716
717 for (j = 0; j < length; j += elsize) {
718 for (i = 0; i < elsize; ++i) {
719 if (flags & ST)
720 ret = __put_user_or_set_dar(regs, ptr[i^sw],
721 addr + i);
722 else
723 ret = __get_user_or_set_dar(regs, ptr[i^sw],
724 addr + i);
725
726 if (ret)
727 return ret;
728 }
729 ptr += elsize;
730 #ifdef __LITTLE_ENDIAN__
731 addr -= elsize;
732 #else
733 addr += elsize;
734 #endif
735 }
736
737 #ifdef __BIG_ENDIAN__
738 #define VSX_HI 0
739 #define VSX_LO 1
740 #else
741 #define VSX_HI 1
742 #define VSX_LO 0
743 #endif
744
745 if (!ret) {
746 if (flags & U)
747 regs->gpr[areg] = regs->dar;
748
749 /* Splat load copies the same data to top and bottom 8 bytes */
750 if (flags & SPLT)
751 lptr[VSX_LO] = lptr[VSX_HI];
752 /* For 8 byte loads, zero the low 8 bytes */
753 else if (!(flags & ST) && (8 == length))
754 lptr[VSX_LO] = 0;
755 } else
756 return -EFAULT;
757
758 return 1;
759 }
760 #endif
761
762 /*
763 * Called on alignment exception. Attempts to fixup
764 *
765 * Return 1 on success
766 * Return 0 if unable to handle the interrupt
767 * Return -EFAULT if data address is bad
768 */
769
fix_alignment(struct pt_regs * regs)770 int fix_alignment(struct pt_regs *regs)
771 {
772 unsigned int instr, nb, flags, instruction = 0;
773 unsigned int reg, areg;
774 unsigned int dsisr;
775 unsigned char __user *addr;
776 unsigned long p, swiz;
777 int i;
778 union data {
779 u64 ll;
780 double dd;
781 unsigned char v[8];
782 struct {
783 #ifdef __LITTLE_ENDIAN__
784 int low32;
785 unsigned hi32;
786 #else
787 unsigned hi32;
788 int low32;
789 #endif
790 } x32;
791 struct {
792 #ifdef __LITTLE_ENDIAN__
793 short low16;
794 unsigned char hi48[6];
795 #else
796 unsigned char hi48[6];
797 short low16;
798 #endif
799 } x16;
800 } data;
801
802 /*
803 * We require a complete register set, if not, then our assembly
804 * is broken
805 */
806 CHECK_FULL_REGS(regs);
807
808 dsisr = regs->dsisr;
809
810 /* Some processors don't provide us with a DSISR we can use here,
811 * let's make one up from the instruction
812 */
813 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
814 unsigned long pc = regs->nip;
815
816 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
817 pc ^= 4;
818 if (unlikely(__get_user_inatomic(instr,
819 (unsigned int __user *)pc)))
820 return -EFAULT;
821 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
822 instr = cpu_to_le32(instr);
823 dsisr = make_dsisr(instr);
824 instruction = instr;
825 }
826
827 /* extract the operation and registers from the dsisr */
828 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
829 areg = dsisr & 0x1f; /* register to update */
830
831 #ifdef CONFIG_SPE
832 if ((instr >> 26) == 0x4) {
833 PPC_WARN_ALIGNMENT(spe, regs);
834 return emulate_spe(regs, reg, instr);
835 }
836 #endif
837
838 instr = (dsisr >> 10) & 0x7f;
839 instr |= (dsisr >> 13) & 0x60;
840
841 /* Lookup the operation in our table */
842 nb = aligninfo[instr].len;
843 flags = aligninfo[instr].flags;
844
845 /*
846 * Handle some cases which give overlaps in the DSISR values.
847 */
848 if (IS_XFORM(instruction)) {
849 switch (get_xop(instruction)) {
850 case 532: /* ldbrx */
851 nb = 8;
852 flags = LD+SW;
853 break;
854 case 660: /* stdbrx */
855 nb = 8;
856 flags = ST+SW;
857 break;
858 case 20: /* lwarx */
859 case 84: /* ldarx */
860 case 116: /* lharx */
861 case 276: /* lqarx */
862 return 0; /* not emulated ever */
863 }
864 }
865
866 /* Byteswap little endian loads and stores */
867 swiz = 0;
868 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
869 flags ^= SW;
870 #ifdef __BIG_ENDIAN__
871 /*
872 * So-called "PowerPC little endian" mode works by
873 * swizzling addresses rather than by actually doing
874 * any byte-swapping. To emulate this, we XOR each
875 * byte address with 7. We also byte-swap, because
876 * the processor's address swizzling depends on the
877 * operand size (it xors the address with 7 for bytes,
878 * 6 for halfwords, 4 for words, 0 for doublewords) but
879 * we will xor with 7 and load/store each byte separately.
880 */
881 if (cpu_has_feature(CPU_FTR_PPC_LE))
882 swiz = 7;
883 #endif
884 }
885
886 /* DAR has the operand effective address */
887 addr = (unsigned char __user *)regs->dar;
888
889 #ifdef CONFIG_VSX
890 if ((instruction & 0xfc00003e) == 0x7c000018) {
891 unsigned int elsize;
892
893 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
894 reg |= (instruction & 0x1) << 5;
895 /* Simple inline decoder instead of a table */
896 /* VSX has only 8 and 16 byte memory accesses */
897 nb = 8;
898 if (instruction & 0x200)
899 nb = 16;
900
901 /* Vector stores in little-endian mode swap individual
902 elements, so process them separately */
903 elsize = 4;
904 if (instruction & 0x80)
905 elsize = 8;
906
907 flags = 0;
908 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
909 flags |= SW;
910 if (instruction & 0x100)
911 flags |= ST;
912 if (instruction & 0x040)
913 flags |= U;
914 /* splat load needs a special decoder */
915 if ((instruction & 0x400) == 0){
916 flags |= SPLT;
917 nb = 8;
918 }
919 PPC_WARN_ALIGNMENT(vsx, regs);
920 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
921 }
922 #endif
923 /* A size of 0 indicates an instruction we don't support, with
924 * the exception of DCBZ which is handled as a special case here
925 */
926 if (instr == DCBZ) {
927 PPC_WARN_ALIGNMENT(dcbz, regs);
928 return emulate_dcbz(regs, addr);
929 }
930 if (unlikely(nb == 0))
931 return 0;
932
933 /* Load/Store Multiple instructions are handled in their own
934 * function
935 */
936 if (flags & M) {
937 PPC_WARN_ALIGNMENT(multiple, regs);
938 return emulate_multiple(regs, addr, reg, nb,
939 flags, instr, swiz);
940 }
941
942 /* Verify the address of the operand */
943 if (unlikely(user_mode(regs) &&
944 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
945 addr, nb)))
946 return -EFAULT;
947
948 /* Force the fprs into the save area so we can reference them */
949 if (flags & F) {
950 /* userland only */
951 if (unlikely(!user_mode(regs)))
952 return 0;
953 flush_fp_to_thread(current);
954 }
955
956 if ((nb == 16)) {
957 if (flags & F) {
958 /* Special case for 16-byte FP loads and stores */
959 PPC_WARN_ALIGNMENT(fp_pair, regs);
960 return emulate_fp_pair(regs, addr, reg, flags);
961 } else {
962 #ifdef CONFIG_PPC64
963 /* Special case for 16-byte loads and stores */
964 PPC_WARN_ALIGNMENT(lq_stq, regs);
965 return emulate_lq_stq(regs, addr, reg, flags);
966 #else
967 return 0;
968 #endif
969 }
970 }
971
972 PPC_WARN_ALIGNMENT(unaligned, regs);
973
974 /* If we are loading, get the data from user space, else
975 * get it from register values
976 */
977 if (!(flags & ST)) {
978 unsigned int start = 0;
979
980 switch (nb) {
981 case 4:
982 start = offsetof(union data, x32.low32);
983 break;
984 case 2:
985 start = offsetof(union data, x16.low16);
986 break;
987 }
988
989 data.ll = 0;
990 p = (unsigned long)addr;
991
992 for (i = 0; i < nb; i++)
993 if (__get_user_or_set_dar(regs, data.v[start + i],
994 SWIZ_PTR(p++)))
995 return -EFAULT;
996
997 } else if (flags & F) {
998 data.ll = current->thread.TS_FPR(reg);
999 if (flags & S) {
1000 /* Single-precision FP store requires conversion... */
1001 #ifdef CONFIG_PPC_FPU
1002 preempt_disable();
1003 enable_kernel_fp();
1004 cvt_df(&data.dd, (float *)&data.x32.low32);
1005 preempt_enable();
1006 #else
1007 return 0;
1008 #endif
1009 }
1010 } else
1011 data.ll = regs->gpr[reg];
1012
1013 if (flags & SW) {
1014 switch (nb) {
1015 case 8:
1016 data.ll = swab64(data.ll);
1017 break;
1018 case 4:
1019 data.x32.low32 = swab32(data.x32.low32);
1020 break;
1021 case 2:
1022 data.x16.low16 = swab16(data.x16.low16);
1023 break;
1024 }
1025 }
1026
1027 /* Perform other misc operations like sign extension
1028 * or floating point single precision conversion
1029 */
1030 switch (flags & ~(U|SW)) {
1031 case LD+SE: /* sign extending integer loads */
1032 case LD+F+SE: /* sign extend for lfiwax */
1033 if ( nb == 2 )
1034 data.ll = data.x16.low16;
1035 else /* nb must be 4 */
1036 data.ll = data.x32.low32;
1037 break;
1038
1039 /* Single-precision FP load requires conversion... */
1040 case LD+F+S:
1041 #ifdef CONFIG_PPC_FPU
1042 preempt_disable();
1043 enable_kernel_fp();
1044 cvt_fd((float *)&data.x32.low32, &data.dd);
1045 preempt_enable();
1046 #else
1047 return 0;
1048 #endif
1049 break;
1050 }
1051
1052 /* Store result to memory or update registers */
1053 if (flags & ST) {
1054 unsigned int start = 0;
1055
1056 switch (nb) {
1057 case 4:
1058 start = offsetof(union data, x32.low32);
1059 break;
1060 case 2:
1061 start = offsetof(union data, x16.low16);
1062 break;
1063 }
1064
1065 p = (unsigned long)addr;
1066
1067 for (i = 0; i < nb; i++)
1068 if (__put_user_or_set_dar(regs, data.v[start + i],
1069 SWIZ_PTR(p++)))
1070 return -EFAULT;
1071
1072 } else if (flags & F)
1073 current->thread.TS_FPR(reg) = data.ll;
1074 else
1075 regs->gpr[reg] = data.ll;
1076
1077 /* Update RA as needed */
1078 if (flags & U)
1079 regs->gpr[areg] = regs->dar;
1080
1081 return 1;
1082 }
1083