• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cache.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <linux/gfp.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 #include <linux/hugetlb.h>
57 #include <linux/module.h>
58 
59 #include "book3s.h"
60 
61 /* #define EXIT_DEBUG */
62 /* #define EXIT_DEBUG_SIMPLE */
63 /* #define EXIT_DEBUG_INT */
64 
65 /* Used to indicate that a guest page fault needs to be handled */
66 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
67 
68 /* Used as a "null" value for timebase values */
69 #define TB_NIL	(~(u64)0)
70 
71 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
72 
73 #if defined(CONFIG_PPC_64K_PAGES)
74 #define MPP_BUFFER_ORDER	0
75 #elif defined(CONFIG_PPC_4K_PAGES)
76 #define MPP_BUFFER_ORDER	3
77 #endif
78 
79 
80 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
81 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
82 
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)83 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
84 {
85 	int me;
86 	int cpu = vcpu->cpu;
87 	wait_queue_head_t *wqp;
88 
89 	wqp = kvm_arch_vcpu_wq(vcpu);
90 	if (waitqueue_active(wqp)) {
91 		wake_up_interruptible(wqp);
92 		++vcpu->stat.halt_wakeup;
93 	}
94 
95 	me = get_cpu();
96 
97 	/* CPU points to the first thread of the core */
98 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
99 #ifdef CONFIG_PPC_ICP_NATIVE
100 		int real_cpu = cpu + vcpu->arch.ptid;
101 		if (paca[real_cpu].kvm_hstate.xics_phys)
102 			xics_wake_cpu(real_cpu);
103 		else
104 #endif
105 		if (cpu_online(cpu))
106 			smp_send_reschedule(cpu);
107 	}
108 	put_cpu();
109 }
110 
111 /*
112  * We use the vcpu_load/put functions to measure stolen time.
113  * Stolen time is counted as time when either the vcpu is able to
114  * run as part of a virtual core, but the task running the vcore
115  * is preempted or sleeping, or when the vcpu needs something done
116  * in the kernel by the task running the vcpu, but that task is
117  * preempted or sleeping.  Those two things have to be counted
118  * separately, since one of the vcpu tasks will take on the job
119  * of running the core, and the other vcpu tasks in the vcore will
120  * sleep waiting for it to do that, but that sleep shouldn't count
121  * as stolen time.
122  *
123  * Hence we accumulate stolen time when the vcpu can run as part of
124  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
125  * needs its task to do other things in the kernel (for example,
126  * service a page fault) in busy_stolen.  We don't accumulate
127  * stolen time for a vcore when it is inactive, or for a vcpu
128  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
129  * a misnomer; it means that the vcpu task is not executing in
130  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
131  * the kernel.  We don't have any way of dividing up that time
132  * between time that the vcpu is genuinely stopped, time that
133  * the task is actively working on behalf of the vcpu, and time
134  * that the task is preempted, so we don't count any of it as
135  * stolen.
136  *
137  * Updates to busy_stolen are protected by arch.tbacct_lock;
138  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
139  * of the vcpu that has taken responsibility for running the vcore
140  * (i.e. vc->runner).  The stolen times are measured in units of
141  * timebase ticks.  (Note that the != TB_NIL checks below are
142  * purely defensive; they should never fail.)
143  */
144 
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)145 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
146 {
147 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
151 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
152 	    vc->preempt_tb != TB_NIL) {
153 		vc->stolen_tb += mftb() - vc->preempt_tb;
154 		vc->preempt_tb = TB_NIL;
155 	}
156 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
157 	    vcpu->arch.busy_preempt != TB_NIL) {
158 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
159 		vcpu->arch.busy_preempt = TB_NIL;
160 	}
161 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
162 }
163 
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)164 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
165 {
166 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
170 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
171 		vc->preempt_tb = mftb();
172 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
173 		vcpu->arch.busy_preempt = mftb();
174 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
175 }
176 
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)177 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
178 {
179 	vcpu->arch.shregs.msr = msr;
180 	kvmppc_end_cede(vcpu);
181 }
182 
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)183 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
184 {
185 	vcpu->arch.pvr = pvr;
186 }
187 
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)188 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
189 {
190 	unsigned long pcr = 0;
191 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
192 
193 	if (arch_compat) {
194 		if (!cpu_has_feature(CPU_FTR_ARCH_206))
195 			return -EINVAL;	/* 970 has no compat mode support */
196 
197 		switch (arch_compat) {
198 		case PVR_ARCH_205:
199 			/*
200 			 * If an arch bit is set in PCR, all the defined
201 			 * higher-order arch bits also have to be set.
202 			 */
203 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
204 			break;
205 		case PVR_ARCH_206:
206 		case PVR_ARCH_206p:
207 			pcr = PCR_ARCH_206;
208 			break;
209 		case PVR_ARCH_207:
210 			break;
211 		default:
212 			return -EINVAL;
213 		}
214 
215 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
216 			/* POWER7 can't emulate POWER8 */
217 			if (!(pcr & PCR_ARCH_206))
218 				return -EINVAL;
219 			pcr &= ~PCR_ARCH_206;
220 		}
221 	}
222 
223 	spin_lock(&vc->lock);
224 	vc->arch_compat = arch_compat;
225 	vc->pcr = pcr;
226 	spin_unlock(&vc->lock);
227 
228 	return 0;
229 }
230 
kvmppc_dump_regs(struct kvm_vcpu * vcpu)231 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
232 {
233 	int r;
234 
235 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
236 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
237 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
238 	for (r = 0; r < 16; ++r)
239 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
240 		       r, kvmppc_get_gpr(vcpu, r),
241 		       r+16, kvmppc_get_gpr(vcpu, r+16));
242 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
243 	       vcpu->arch.ctr, vcpu->arch.lr);
244 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
245 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
246 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
247 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
248 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
249 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
250 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
251 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
252 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
253 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
254 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
255 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
256 	for (r = 0; r < vcpu->arch.slb_max; ++r)
257 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
258 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
259 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
260 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
261 	       vcpu->arch.last_inst);
262 }
263 
kvmppc_find_vcpu(struct kvm * kvm,int id)264 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
265 {
266 	int r;
267 	struct kvm_vcpu *v, *ret = NULL;
268 
269 	mutex_lock(&kvm->lock);
270 	kvm_for_each_vcpu(r, v, kvm) {
271 		if (v->vcpu_id == id) {
272 			ret = v;
273 			break;
274 		}
275 	}
276 	mutex_unlock(&kvm->lock);
277 	return ret;
278 }
279 
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)280 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
281 {
282 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
283 	vpa->yield_count = cpu_to_be32(1);
284 }
285 
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)286 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
287 		   unsigned long addr, unsigned long len)
288 {
289 	/* check address is cacheline aligned */
290 	if (addr & (L1_CACHE_BYTES - 1))
291 		return -EINVAL;
292 	spin_lock(&vcpu->arch.vpa_update_lock);
293 	if (v->next_gpa != addr || v->len != len) {
294 		v->next_gpa = addr;
295 		v->len = addr ? len : 0;
296 		v->update_pending = 1;
297 	}
298 	spin_unlock(&vcpu->arch.vpa_update_lock);
299 	return 0;
300 }
301 
302 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
303 struct reg_vpa {
304 	u32 dummy;
305 	union {
306 		__be16 hword;
307 		__be32 word;
308 	} length;
309 };
310 
vpa_is_registered(struct kvmppc_vpa * vpap)311 static int vpa_is_registered(struct kvmppc_vpa *vpap)
312 {
313 	if (vpap->update_pending)
314 		return vpap->next_gpa != 0;
315 	return vpap->pinned_addr != NULL;
316 }
317 
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)318 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
319 				       unsigned long flags,
320 				       unsigned long vcpuid, unsigned long vpa)
321 {
322 	struct kvm *kvm = vcpu->kvm;
323 	unsigned long len, nb;
324 	void *va;
325 	struct kvm_vcpu *tvcpu;
326 	int err;
327 	int subfunc;
328 	struct kvmppc_vpa *vpap;
329 
330 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
331 	if (!tvcpu)
332 		return H_PARAMETER;
333 
334 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
335 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
336 	    subfunc == H_VPA_REG_SLB) {
337 		/* Registering new area - address must be cache-line aligned */
338 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
339 			return H_PARAMETER;
340 
341 		/* convert logical addr to kernel addr and read length */
342 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
343 		if (va == NULL)
344 			return H_PARAMETER;
345 		if (subfunc == H_VPA_REG_VPA)
346 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
347 		else
348 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
349 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
350 
351 		/* Check length */
352 		if (len > nb || len < sizeof(struct reg_vpa))
353 			return H_PARAMETER;
354 	} else {
355 		vpa = 0;
356 		len = 0;
357 	}
358 
359 	err = H_PARAMETER;
360 	vpap = NULL;
361 	spin_lock(&tvcpu->arch.vpa_update_lock);
362 
363 	switch (subfunc) {
364 	case H_VPA_REG_VPA:		/* register VPA */
365 		if (len < sizeof(struct lppaca))
366 			break;
367 		vpap = &tvcpu->arch.vpa;
368 		err = 0;
369 		break;
370 
371 	case H_VPA_REG_DTL:		/* register DTL */
372 		if (len < sizeof(struct dtl_entry))
373 			break;
374 		len -= len % sizeof(struct dtl_entry);
375 
376 		/* Check that they have previously registered a VPA */
377 		err = H_RESOURCE;
378 		if (!vpa_is_registered(&tvcpu->arch.vpa))
379 			break;
380 
381 		vpap = &tvcpu->arch.dtl;
382 		err = 0;
383 		break;
384 
385 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
386 		/* Check that they have previously registered a VPA */
387 		err = H_RESOURCE;
388 		if (!vpa_is_registered(&tvcpu->arch.vpa))
389 			break;
390 
391 		vpap = &tvcpu->arch.slb_shadow;
392 		err = 0;
393 		break;
394 
395 	case H_VPA_DEREG_VPA:		/* deregister VPA */
396 		/* Check they don't still have a DTL or SLB buf registered */
397 		err = H_RESOURCE;
398 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
399 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
400 			break;
401 
402 		vpap = &tvcpu->arch.vpa;
403 		err = 0;
404 		break;
405 
406 	case H_VPA_DEREG_DTL:		/* deregister DTL */
407 		vpap = &tvcpu->arch.dtl;
408 		err = 0;
409 		break;
410 
411 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
412 		vpap = &tvcpu->arch.slb_shadow;
413 		err = 0;
414 		break;
415 	}
416 
417 	if (vpap) {
418 		vpap->next_gpa = vpa;
419 		vpap->len = len;
420 		vpap->update_pending = 1;
421 	}
422 
423 	spin_unlock(&tvcpu->arch.vpa_update_lock);
424 
425 	return err;
426 }
427 
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)428 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
429 {
430 	struct kvm *kvm = vcpu->kvm;
431 	void *va;
432 	unsigned long nb;
433 	unsigned long gpa;
434 
435 	/*
436 	 * We need to pin the page pointed to by vpap->next_gpa,
437 	 * but we can't call kvmppc_pin_guest_page under the lock
438 	 * as it does get_user_pages() and down_read().  So we
439 	 * have to drop the lock, pin the page, then get the lock
440 	 * again and check that a new area didn't get registered
441 	 * in the meantime.
442 	 */
443 	for (;;) {
444 		gpa = vpap->next_gpa;
445 		spin_unlock(&vcpu->arch.vpa_update_lock);
446 		va = NULL;
447 		nb = 0;
448 		if (gpa)
449 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
450 		spin_lock(&vcpu->arch.vpa_update_lock);
451 		if (gpa == vpap->next_gpa)
452 			break;
453 		/* sigh... unpin that one and try again */
454 		if (va)
455 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
456 	}
457 
458 	vpap->update_pending = 0;
459 	if (va && nb < vpap->len) {
460 		/*
461 		 * If it's now too short, it must be that userspace
462 		 * has changed the mappings underlying guest memory,
463 		 * so unregister the region.
464 		 */
465 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
466 		va = NULL;
467 	}
468 	if (vpap->pinned_addr)
469 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
470 					vpap->dirty);
471 	vpap->gpa = gpa;
472 	vpap->pinned_addr = va;
473 	vpap->dirty = false;
474 	if (va)
475 		vpap->pinned_end = va + vpap->len;
476 }
477 
kvmppc_update_vpas(struct kvm_vcpu * vcpu)478 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
479 {
480 	if (!(vcpu->arch.vpa.update_pending ||
481 	      vcpu->arch.slb_shadow.update_pending ||
482 	      vcpu->arch.dtl.update_pending))
483 		return;
484 
485 	spin_lock(&vcpu->arch.vpa_update_lock);
486 	if (vcpu->arch.vpa.update_pending) {
487 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
488 		if (vcpu->arch.vpa.pinned_addr)
489 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
490 	}
491 	if (vcpu->arch.dtl.update_pending) {
492 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
493 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
494 		vcpu->arch.dtl_index = 0;
495 	}
496 	if (vcpu->arch.slb_shadow.update_pending)
497 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
498 	spin_unlock(&vcpu->arch.vpa_update_lock);
499 }
500 
501 /*
502  * Return the accumulated stolen time for the vcore up until `now'.
503  * The caller should hold the vcore lock.
504  */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)505 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
506 {
507 	u64 p;
508 
509 	/*
510 	 * If we are the task running the vcore, then since we hold
511 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
512 	 * can't be updated, so we don't need the tbacct_lock.
513 	 * If the vcore is inactive, it can't become active (since we
514 	 * hold the vcore lock), so the vcpu load/put functions won't
515 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
516 	 */
517 	if (vc->vcore_state != VCORE_INACTIVE &&
518 	    vc->runner->arch.run_task != current) {
519 		spin_lock_irq(&vc->runner->arch.tbacct_lock);
520 		p = vc->stolen_tb;
521 		if (vc->preempt_tb != TB_NIL)
522 			p += now - vc->preempt_tb;
523 		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
524 	} else {
525 		p = vc->stolen_tb;
526 	}
527 	return p;
528 }
529 
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
531 				    struct kvmppc_vcore *vc)
532 {
533 	struct dtl_entry *dt;
534 	struct lppaca *vpa;
535 	unsigned long stolen;
536 	unsigned long core_stolen;
537 	u64 now;
538 
539 	dt = vcpu->arch.dtl_ptr;
540 	vpa = vcpu->arch.vpa.pinned_addr;
541 	now = mftb();
542 	core_stolen = vcore_stolen_time(vc, now);
543 	stolen = core_stolen - vcpu->arch.stolen_logged;
544 	vcpu->arch.stolen_logged = core_stolen;
545 	spin_lock_irq(&vcpu->arch.tbacct_lock);
546 	stolen += vcpu->arch.busy_stolen;
547 	vcpu->arch.busy_stolen = 0;
548 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
549 	if (!dt || !vpa)
550 		return;
551 	memset(dt, 0, sizeof(struct dtl_entry));
552 	dt->dispatch_reason = 7;
553 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
554 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
555 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
556 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
557 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558 	++dt;
559 	if (dt == vcpu->arch.dtl.pinned_end)
560 		dt = vcpu->arch.dtl.pinned_addr;
561 	vcpu->arch.dtl_ptr = dt;
562 	/* order writing *dt vs. writing vpa->dtl_idx */
563 	smp_wmb();
564 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565 	vcpu->arch.dtl.dirty = true;
566 }
567 
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
571 		return true;
572 	if ((!vcpu->arch.vcore->arch_compat) &&
573 	    cpu_has_feature(CPU_FTR_ARCH_207S))
574 		return true;
575 	return false;
576 }
577 
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
579 			     unsigned long resource, unsigned long value1,
580 			     unsigned long value2)
581 {
582 	switch (resource) {
583 	case H_SET_MODE_RESOURCE_SET_CIABR:
584 		if (!kvmppc_power8_compatible(vcpu))
585 			return H_P2;
586 		if (value2)
587 			return H_P4;
588 		if (mflags)
589 			return H_UNSUPPORTED_FLAG_START;
590 		/* Guests can't breakpoint the hypervisor */
591 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
592 			return H_P3;
593 		vcpu->arch.ciabr  = value1;
594 		return H_SUCCESS;
595 	case H_SET_MODE_RESOURCE_SET_DAWR:
596 		if (!kvmppc_power8_compatible(vcpu))
597 			return H_P2;
598 		if (mflags)
599 			return H_UNSUPPORTED_FLAG_START;
600 		if (value2 & DABRX_HYP)
601 			return H_P4;
602 		vcpu->arch.dawr  = value1;
603 		vcpu->arch.dawrx = value2;
604 		return H_SUCCESS;
605 	default:
606 		return H_TOO_HARD;
607 	}
608 }
609 
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)610 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
611 {
612 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
613 	unsigned long target, ret = H_SUCCESS;
614 	struct kvm_vcpu *tvcpu;
615 	int idx, rc;
616 
617 	if (req <= MAX_HCALL_OPCODE &&
618 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
619 		return RESUME_HOST;
620 
621 	switch (req) {
622 	case H_ENTER:
623 		idx = srcu_read_lock(&vcpu->kvm->srcu);
624 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
625 					      kvmppc_get_gpr(vcpu, 5),
626 					      kvmppc_get_gpr(vcpu, 6),
627 					      kvmppc_get_gpr(vcpu, 7));
628 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
629 		break;
630 	case H_CEDE:
631 		break;
632 	case H_PROD:
633 		target = kvmppc_get_gpr(vcpu, 4);
634 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
635 		if (!tvcpu) {
636 			ret = H_PARAMETER;
637 			break;
638 		}
639 		tvcpu->arch.prodded = 1;
640 		smp_mb();
641 		if (vcpu->arch.ceded) {
642 			if (waitqueue_active(&vcpu->wq)) {
643 				wake_up_interruptible(&vcpu->wq);
644 				vcpu->stat.halt_wakeup++;
645 			}
646 		}
647 		break;
648 	case H_CONFER:
649 		target = kvmppc_get_gpr(vcpu, 4);
650 		if (target == -1)
651 			break;
652 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
653 		if (!tvcpu) {
654 			ret = H_PARAMETER;
655 			break;
656 		}
657 		kvm_vcpu_yield_to(tvcpu);
658 		break;
659 	case H_REGISTER_VPA:
660 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
661 					kvmppc_get_gpr(vcpu, 5),
662 					kvmppc_get_gpr(vcpu, 6));
663 		break;
664 	case H_RTAS:
665 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
666 			return RESUME_HOST;
667 
668 		idx = srcu_read_lock(&vcpu->kvm->srcu);
669 		rc = kvmppc_rtas_hcall(vcpu);
670 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
671 
672 		if (rc == -ENOENT)
673 			return RESUME_HOST;
674 		else if (rc == 0)
675 			break;
676 
677 		/* Send the error out to userspace via KVM_RUN */
678 		return rc;
679 	case H_SET_MODE:
680 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
681 					kvmppc_get_gpr(vcpu, 5),
682 					kvmppc_get_gpr(vcpu, 6),
683 					kvmppc_get_gpr(vcpu, 7));
684 		if (ret == H_TOO_HARD)
685 			return RESUME_HOST;
686 		break;
687 	case H_XIRR:
688 	case H_CPPR:
689 	case H_EOI:
690 	case H_IPI:
691 	case H_IPOLL:
692 	case H_XIRR_X:
693 		if (kvmppc_xics_enabled(vcpu)) {
694 			ret = kvmppc_xics_hcall(vcpu, req);
695 			break;
696 		} /* fallthrough */
697 	default:
698 		return RESUME_HOST;
699 	}
700 	kvmppc_set_gpr(vcpu, 3, ret);
701 	vcpu->arch.hcall_needed = 0;
702 	return RESUME_GUEST;
703 }
704 
kvmppc_hcall_impl_hv(unsigned long cmd)705 static int kvmppc_hcall_impl_hv(unsigned long cmd)
706 {
707 	switch (cmd) {
708 	case H_CEDE:
709 	case H_PROD:
710 	case H_CONFER:
711 	case H_REGISTER_VPA:
712 	case H_SET_MODE:
713 #ifdef CONFIG_KVM_XICS
714 	case H_XIRR:
715 	case H_CPPR:
716 	case H_EOI:
717 	case H_IPI:
718 	case H_IPOLL:
719 	case H_XIRR_X:
720 #endif
721 		return 1;
722 	}
723 
724 	/* See if it's in the real-mode table */
725 	return kvmppc_hcall_impl_hv_realmode(cmd);
726 }
727 
kvmppc_emulate_debug_inst(struct kvm_run * run,struct kvm_vcpu * vcpu)728 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
729 					struct kvm_vcpu *vcpu)
730 {
731 	u32 last_inst;
732 
733 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
734 					EMULATE_DONE) {
735 		/*
736 		 * Fetch failed, so return to guest and
737 		 * try executing it again.
738 		 */
739 		return RESUME_GUEST;
740 	}
741 
742 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
743 		run->exit_reason = KVM_EXIT_DEBUG;
744 		run->debug.arch.address = kvmppc_get_pc(vcpu);
745 		return RESUME_HOST;
746 	} else {
747 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
748 		return RESUME_GUEST;
749 	}
750 }
751 
kvmppc_handle_exit_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,struct task_struct * tsk)752 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
753 				 struct task_struct *tsk)
754 {
755 	int r = RESUME_HOST;
756 
757 	vcpu->stat.sum_exits++;
758 
759 	run->exit_reason = KVM_EXIT_UNKNOWN;
760 	run->ready_for_interrupt_injection = 1;
761 	switch (vcpu->arch.trap) {
762 	/* We're good on these - the host merely wanted to get our attention */
763 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
764 		vcpu->stat.dec_exits++;
765 		r = RESUME_GUEST;
766 		break;
767 	case BOOK3S_INTERRUPT_EXTERNAL:
768 	case BOOK3S_INTERRUPT_H_DOORBELL:
769 		vcpu->stat.ext_intr_exits++;
770 		r = RESUME_GUEST;
771 		break;
772 	case BOOK3S_INTERRUPT_PERFMON:
773 		r = RESUME_GUEST;
774 		break;
775 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
776 		/*
777 		 * Deliver a machine check interrupt to the guest.
778 		 * We have to do this, even if the host has handled the
779 		 * machine check, because machine checks use SRR0/1 and
780 		 * the interrupt might have trashed guest state in them.
781 		 */
782 		kvmppc_book3s_queue_irqprio(vcpu,
783 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
784 		r = RESUME_GUEST;
785 		break;
786 	case BOOK3S_INTERRUPT_PROGRAM:
787 	{
788 		ulong flags;
789 		/*
790 		 * Normally program interrupts are delivered directly
791 		 * to the guest by the hardware, but we can get here
792 		 * as a result of a hypervisor emulation interrupt
793 		 * (e40) getting turned into a 700 by BML RTAS.
794 		 */
795 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
796 		kvmppc_core_queue_program(vcpu, flags);
797 		r = RESUME_GUEST;
798 		break;
799 	}
800 	case BOOK3S_INTERRUPT_SYSCALL:
801 	{
802 		/* hcall - punt to userspace */
803 		int i;
804 
805 		/* hypercall with MSR_PR has already been handled in rmode,
806 		 * and never reaches here.
807 		 */
808 
809 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
810 		for (i = 0; i < 9; ++i)
811 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
812 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
813 		vcpu->arch.hcall_needed = 1;
814 		r = RESUME_HOST;
815 		break;
816 	}
817 	/*
818 	 * We get these next two if the guest accesses a page which it thinks
819 	 * it has mapped but which is not actually present, either because
820 	 * it is for an emulated I/O device or because the corresonding
821 	 * host page has been paged out.  Any other HDSI/HISI interrupts
822 	 * have been handled already.
823 	 */
824 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
825 		r = RESUME_PAGE_FAULT;
826 		break;
827 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
828 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
829 		vcpu->arch.fault_dsisr = 0;
830 		r = RESUME_PAGE_FAULT;
831 		break;
832 	/*
833 	 * This occurs if the guest executes an illegal instruction.
834 	 * If the guest debug is disabled, generate a program interrupt
835 	 * to the guest. If guest debug is enabled, we need to check
836 	 * whether the instruction is a software breakpoint instruction.
837 	 * Accordingly return to Guest or Host.
838 	 */
839 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
840 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
841 			r = kvmppc_emulate_debug_inst(run, vcpu);
842 		} else {
843 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
844 			r = RESUME_GUEST;
845 		}
846 		break;
847 	/*
848 	 * This occurs if the guest (kernel or userspace), does something that
849 	 * is prohibited by HFSCR.  We just generate a program interrupt to
850 	 * the guest.
851 	 */
852 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
853 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
854 		r = RESUME_GUEST;
855 		break;
856 	default:
857 		kvmppc_dump_regs(vcpu);
858 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
859 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
860 			vcpu->arch.shregs.msr);
861 		run->hw.hardware_exit_reason = vcpu->arch.trap;
862 		r = RESUME_HOST;
863 		break;
864 	}
865 
866 	return r;
867 }
868 
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)869 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
870 					    struct kvm_sregs *sregs)
871 {
872 	int i;
873 
874 	memset(sregs, 0, sizeof(struct kvm_sregs));
875 	sregs->pvr = vcpu->arch.pvr;
876 	for (i = 0; i < vcpu->arch.slb_max; i++) {
877 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
878 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
879 	}
880 
881 	return 0;
882 }
883 
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)884 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
885 					    struct kvm_sregs *sregs)
886 {
887 	int i, j;
888 
889 	/* Only accept the same PVR as the host's, since we can't spoof it */
890 	if (sregs->pvr != vcpu->arch.pvr)
891 		return -EINVAL;
892 
893 	j = 0;
894 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
895 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
896 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
897 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
898 			++j;
899 		}
900 	}
901 	vcpu->arch.slb_max = j;
902 
903 	return 0;
904 }
905 
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)906 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
907 		bool preserve_top32)
908 {
909 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
910 	u64 mask;
911 
912 	spin_lock(&vc->lock);
913 	/*
914 	 * If ILE (interrupt little-endian) has changed, update the
915 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
916 	 */
917 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
918 		struct kvm *kvm = vcpu->kvm;
919 		struct kvm_vcpu *vcpu;
920 		int i;
921 
922 		mutex_lock(&kvm->lock);
923 		kvm_for_each_vcpu(i, vcpu, kvm) {
924 			if (vcpu->arch.vcore != vc)
925 				continue;
926 			if (new_lpcr & LPCR_ILE)
927 				vcpu->arch.intr_msr |= MSR_LE;
928 			else
929 				vcpu->arch.intr_msr &= ~MSR_LE;
930 		}
931 		mutex_unlock(&kvm->lock);
932 	}
933 
934 	/*
935 	 * Userspace can only modify DPFD (default prefetch depth),
936 	 * ILE (interrupt little-endian) and TC (translation control).
937 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
938 	 */
939 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
940 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
941 		mask |= LPCR_AIL;
942 
943 	/* Broken 32-bit version of LPCR must not clear top bits */
944 	if (preserve_top32)
945 		mask &= 0xFFFFFFFF;
946 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
947 	spin_unlock(&vc->lock);
948 }
949 
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)950 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
951 				 union kvmppc_one_reg *val)
952 {
953 	int r = 0;
954 	long int i;
955 
956 	switch (id) {
957 	case KVM_REG_PPC_DEBUG_INST:
958 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
959 		break;
960 	case KVM_REG_PPC_HIOR:
961 		*val = get_reg_val(id, 0);
962 		break;
963 	case KVM_REG_PPC_DABR:
964 		*val = get_reg_val(id, vcpu->arch.dabr);
965 		break;
966 	case KVM_REG_PPC_DABRX:
967 		*val = get_reg_val(id, vcpu->arch.dabrx);
968 		break;
969 	case KVM_REG_PPC_DSCR:
970 		*val = get_reg_val(id, vcpu->arch.dscr);
971 		break;
972 	case KVM_REG_PPC_PURR:
973 		*val = get_reg_val(id, vcpu->arch.purr);
974 		break;
975 	case KVM_REG_PPC_SPURR:
976 		*val = get_reg_val(id, vcpu->arch.spurr);
977 		break;
978 	case KVM_REG_PPC_AMR:
979 		*val = get_reg_val(id, vcpu->arch.amr);
980 		break;
981 	case KVM_REG_PPC_UAMOR:
982 		*val = get_reg_val(id, vcpu->arch.uamor);
983 		break;
984 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
985 		i = id - KVM_REG_PPC_MMCR0;
986 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
987 		break;
988 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
989 		i = id - KVM_REG_PPC_PMC1;
990 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
991 		break;
992 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
993 		i = id - KVM_REG_PPC_SPMC1;
994 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
995 		break;
996 	case KVM_REG_PPC_SIAR:
997 		*val = get_reg_val(id, vcpu->arch.siar);
998 		break;
999 	case KVM_REG_PPC_SDAR:
1000 		*val = get_reg_val(id, vcpu->arch.sdar);
1001 		break;
1002 	case KVM_REG_PPC_SIER:
1003 		*val = get_reg_val(id, vcpu->arch.sier);
1004 		break;
1005 	case KVM_REG_PPC_IAMR:
1006 		*val = get_reg_val(id, vcpu->arch.iamr);
1007 		break;
1008 	case KVM_REG_PPC_PSPB:
1009 		*val = get_reg_val(id, vcpu->arch.pspb);
1010 		break;
1011 	case KVM_REG_PPC_DPDES:
1012 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1013 		break;
1014 	case KVM_REG_PPC_DAWR:
1015 		*val = get_reg_val(id, vcpu->arch.dawr);
1016 		break;
1017 	case KVM_REG_PPC_DAWRX:
1018 		*val = get_reg_val(id, vcpu->arch.dawrx);
1019 		break;
1020 	case KVM_REG_PPC_CIABR:
1021 		*val = get_reg_val(id, vcpu->arch.ciabr);
1022 		break;
1023 	case KVM_REG_PPC_CSIGR:
1024 		*val = get_reg_val(id, vcpu->arch.csigr);
1025 		break;
1026 	case KVM_REG_PPC_TACR:
1027 		*val = get_reg_val(id, vcpu->arch.tacr);
1028 		break;
1029 	case KVM_REG_PPC_TCSCR:
1030 		*val = get_reg_val(id, vcpu->arch.tcscr);
1031 		break;
1032 	case KVM_REG_PPC_PID:
1033 		*val = get_reg_val(id, vcpu->arch.pid);
1034 		break;
1035 	case KVM_REG_PPC_ACOP:
1036 		*val = get_reg_val(id, vcpu->arch.acop);
1037 		break;
1038 	case KVM_REG_PPC_WORT:
1039 		*val = get_reg_val(id, vcpu->arch.wort);
1040 		break;
1041 	case KVM_REG_PPC_VPA_ADDR:
1042 		spin_lock(&vcpu->arch.vpa_update_lock);
1043 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1044 		spin_unlock(&vcpu->arch.vpa_update_lock);
1045 		break;
1046 	case KVM_REG_PPC_VPA_SLB:
1047 		spin_lock(&vcpu->arch.vpa_update_lock);
1048 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1049 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1050 		spin_unlock(&vcpu->arch.vpa_update_lock);
1051 		break;
1052 	case KVM_REG_PPC_VPA_DTL:
1053 		spin_lock(&vcpu->arch.vpa_update_lock);
1054 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1055 		val->vpaval.length = vcpu->arch.dtl.len;
1056 		spin_unlock(&vcpu->arch.vpa_update_lock);
1057 		break;
1058 	case KVM_REG_PPC_TB_OFFSET:
1059 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1060 		break;
1061 	case KVM_REG_PPC_LPCR:
1062 	case KVM_REG_PPC_LPCR_64:
1063 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1064 		break;
1065 	case KVM_REG_PPC_PPR:
1066 		*val = get_reg_val(id, vcpu->arch.ppr);
1067 		break;
1068 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1069 	case KVM_REG_PPC_TFHAR:
1070 		*val = get_reg_val(id, vcpu->arch.tfhar);
1071 		break;
1072 	case KVM_REG_PPC_TFIAR:
1073 		*val = get_reg_val(id, vcpu->arch.tfiar);
1074 		break;
1075 	case KVM_REG_PPC_TEXASR:
1076 		*val = get_reg_val(id, vcpu->arch.texasr);
1077 		break;
1078 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1079 		i = id - KVM_REG_PPC_TM_GPR0;
1080 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1081 		break;
1082 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1083 	{
1084 		int j;
1085 		i = id - KVM_REG_PPC_TM_VSR0;
1086 		if (i < 32)
1087 			for (j = 0; j < TS_FPRWIDTH; j++)
1088 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1089 		else {
1090 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1091 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1092 			else
1093 				r = -ENXIO;
1094 		}
1095 		break;
1096 	}
1097 	case KVM_REG_PPC_TM_CR:
1098 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1099 		break;
1100 	case KVM_REG_PPC_TM_XER:
1101 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1102 		break;
1103 	case KVM_REG_PPC_TM_LR:
1104 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1105 		break;
1106 	case KVM_REG_PPC_TM_CTR:
1107 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1108 		break;
1109 	case KVM_REG_PPC_TM_FPSCR:
1110 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1111 		break;
1112 	case KVM_REG_PPC_TM_AMR:
1113 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1114 		break;
1115 	case KVM_REG_PPC_TM_PPR:
1116 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1117 		break;
1118 	case KVM_REG_PPC_TM_VRSAVE:
1119 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1120 		break;
1121 	case KVM_REG_PPC_TM_VSCR:
1122 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1123 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1124 		else
1125 			r = -ENXIO;
1126 		break;
1127 	case KVM_REG_PPC_TM_DSCR:
1128 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1129 		break;
1130 	case KVM_REG_PPC_TM_TAR:
1131 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1132 		break;
1133 #endif
1134 	case KVM_REG_PPC_ARCH_COMPAT:
1135 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1136 		break;
1137 	default:
1138 		r = -EINVAL;
1139 		break;
1140 	}
1141 
1142 	return r;
1143 }
1144 
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1145 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1146 				 union kvmppc_one_reg *val)
1147 {
1148 	int r = 0;
1149 	long int i;
1150 	unsigned long addr, len;
1151 
1152 	switch (id) {
1153 	case KVM_REG_PPC_HIOR:
1154 		/* Only allow this to be set to zero */
1155 		if (set_reg_val(id, *val))
1156 			r = -EINVAL;
1157 		break;
1158 	case KVM_REG_PPC_DABR:
1159 		vcpu->arch.dabr = set_reg_val(id, *val);
1160 		break;
1161 	case KVM_REG_PPC_DABRX:
1162 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1163 		break;
1164 	case KVM_REG_PPC_DSCR:
1165 		vcpu->arch.dscr = set_reg_val(id, *val);
1166 		break;
1167 	case KVM_REG_PPC_PURR:
1168 		vcpu->arch.purr = set_reg_val(id, *val);
1169 		break;
1170 	case KVM_REG_PPC_SPURR:
1171 		vcpu->arch.spurr = set_reg_val(id, *val);
1172 		break;
1173 	case KVM_REG_PPC_AMR:
1174 		vcpu->arch.amr = set_reg_val(id, *val);
1175 		break;
1176 	case KVM_REG_PPC_UAMOR:
1177 		vcpu->arch.uamor = set_reg_val(id, *val);
1178 		break;
1179 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1180 		i = id - KVM_REG_PPC_MMCR0;
1181 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1182 		break;
1183 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1184 		i = id - KVM_REG_PPC_PMC1;
1185 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1186 		break;
1187 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1188 		i = id - KVM_REG_PPC_SPMC1;
1189 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1190 		break;
1191 	case KVM_REG_PPC_SIAR:
1192 		vcpu->arch.siar = set_reg_val(id, *val);
1193 		break;
1194 	case KVM_REG_PPC_SDAR:
1195 		vcpu->arch.sdar = set_reg_val(id, *val);
1196 		break;
1197 	case KVM_REG_PPC_SIER:
1198 		vcpu->arch.sier = set_reg_val(id, *val);
1199 		break;
1200 	case KVM_REG_PPC_IAMR:
1201 		vcpu->arch.iamr = set_reg_val(id, *val);
1202 		break;
1203 	case KVM_REG_PPC_PSPB:
1204 		vcpu->arch.pspb = set_reg_val(id, *val);
1205 		break;
1206 	case KVM_REG_PPC_DPDES:
1207 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1208 		break;
1209 	case KVM_REG_PPC_DAWR:
1210 		vcpu->arch.dawr = set_reg_val(id, *val);
1211 		break;
1212 	case KVM_REG_PPC_DAWRX:
1213 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1214 		break;
1215 	case KVM_REG_PPC_CIABR:
1216 		vcpu->arch.ciabr = set_reg_val(id, *val);
1217 		/* Don't allow setting breakpoints in hypervisor code */
1218 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1219 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1220 		break;
1221 	case KVM_REG_PPC_CSIGR:
1222 		vcpu->arch.csigr = set_reg_val(id, *val);
1223 		break;
1224 	case KVM_REG_PPC_TACR:
1225 		vcpu->arch.tacr = set_reg_val(id, *val);
1226 		break;
1227 	case KVM_REG_PPC_TCSCR:
1228 		vcpu->arch.tcscr = set_reg_val(id, *val);
1229 		break;
1230 	case KVM_REG_PPC_PID:
1231 		vcpu->arch.pid = set_reg_val(id, *val);
1232 		break;
1233 	case KVM_REG_PPC_ACOP:
1234 		vcpu->arch.acop = set_reg_val(id, *val);
1235 		break;
1236 	case KVM_REG_PPC_WORT:
1237 		vcpu->arch.wort = set_reg_val(id, *val);
1238 		break;
1239 	case KVM_REG_PPC_VPA_ADDR:
1240 		addr = set_reg_val(id, *val);
1241 		r = -EINVAL;
1242 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1243 			      vcpu->arch.dtl.next_gpa))
1244 			break;
1245 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1246 		break;
1247 	case KVM_REG_PPC_VPA_SLB:
1248 		addr = val->vpaval.addr;
1249 		len = val->vpaval.length;
1250 		r = -EINVAL;
1251 		if (addr && !vcpu->arch.vpa.next_gpa)
1252 			break;
1253 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1254 		break;
1255 	case KVM_REG_PPC_VPA_DTL:
1256 		addr = val->vpaval.addr;
1257 		len = val->vpaval.length;
1258 		r = -EINVAL;
1259 		if (addr && (len < sizeof(struct dtl_entry) ||
1260 			     !vcpu->arch.vpa.next_gpa))
1261 			break;
1262 		len -= len % sizeof(struct dtl_entry);
1263 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1264 		break;
1265 	case KVM_REG_PPC_TB_OFFSET:
1266 		/* round up to multiple of 2^24 */
1267 		vcpu->arch.vcore->tb_offset =
1268 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1269 		break;
1270 	case KVM_REG_PPC_LPCR:
1271 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1272 		break;
1273 	case KVM_REG_PPC_LPCR_64:
1274 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1275 		break;
1276 	case KVM_REG_PPC_PPR:
1277 		vcpu->arch.ppr = set_reg_val(id, *val);
1278 		break;
1279 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1280 	case KVM_REG_PPC_TFHAR:
1281 		vcpu->arch.tfhar = set_reg_val(id, *val);
1282 		break;
1283 	case KVM_REG_PPC_TFIAR:
1284 		vcpu->arch.tfiar = set_reg_val(id, *val);
1285 		break;
1286 	case KVM_REG_PPC_TEXASR:
1287 		vcpu->arch.texasr = set_reg_val(id, *val);
1288 		break;
1289 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1290 		i = id - KVM_REG_PPC_TM_GPR0;
1291 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1292 		break;
1293 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1294 	{
1295 		int j;
1296 		i = id - KVM_REG_PPC_TM_VSR0;
1297 		if (i < 32)
1298 			for (j = 0; j < TS_FPRWIDTH; j++)
1299 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1300 		else
1301 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1302 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1303 			else
1304 				r = -ENXIO;
1305 		break;
1306 	}
1307 	case KVM_REG_PPC_TM_CR:
1308 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1309 		break;
1310 	case KVM_REG_PPC_TM_XER:
1311 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1312 		break;
1313 	case KVM_REG_PPC_TM_LR:
1314 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1315 		break;
1316 	case KVM_REG_PPC_TM_CTR:
1317 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1318 		break;
1319 	case KVM_REG_PPC_TM_FPSCR:
1320 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1321 		break;
1322 	case KVM_REG_PPC_TM_AMR:
1323 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1324 		break;
1325 	case KVM_REG_PPC_TM_PPR:
1326 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1327 		break;
1328 	case KVM_REG_PPC_TM_VRSAVE:
1329 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1330 		break;
1331 	case KVM_REG_PPC_TM_VSCR:
1332 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1333 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1334 		else
1335 			r = - ENXIO;
1336 		break;
1337 	case KVM_REG_PPC_TM_DSCR:
1338 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1339 		break;
1340 	case KVM_REG_PPC_TM_TAR:
1341 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1342 		break;
1343 #endif
1344 	case KVM_REG_PPC_ARCH_COMPAT:
1345 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1346 		break;
1347 	default:
1348 		r = -EINVAL;
1349 		break;
1350 	}
1351 
1352 	return r;
1353 }
1354 
kvmppc_vcore_create(struct kvm * kvm,int core)1355 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1356 {
1357 	struct kvmppc_vcore *vcore;
1358 
1359 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1360 
1361 	if (vcore == NULL)
1362 		return NULL;
1363 
1364 	INIT_LIST_HEAD(&vcore->runnable_threads);
1365 	spin_lock_init(&vcore->lock);
1366 	init_waitqueue_head(&vcore->wq);
1367 	vcore->preempt_tb = TB_NIL;
1368 	vcore->lpcr = kvm->arch.lpcr;
1369 	vcore->first_vcpuid = core * threads_per_subcore;
1370 	vcore->kvm = kvm;
1371 
1372 	vcore->mpp_buffer_is_valid = false;
1373 
1374 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1375 		vcore->mpp_buffer = (void *)__get_free_pages(
1376 			GFP_KERNEL|__GFP_ZERO,
1377 			MPP_BUFFER_ORDER);
1378 
1379 	return vcore;
1380 }
1381 
kvmppc_core_vcpu_create_hv(struct kvm * kvm,unsigned int id)1382 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1383 						   unsigned int id)
1384 {
1385 	struct kvm_vcpu *vcpu;
1386 	int err = -EINVAL;
1387 	int core;
1388 	struct kvmppc_vcore *vcore;
1389 
1390 	core = id / threads_per_subcore;
1391 	if (core >= KVM_MAX_VCORES)
1392 		goto out;
1393 
1394 	err = -ENOMEM;
1395 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1396 	if (!vcpu)
1397 		goto out;
1398 
1399 	err = kvm_vcpu_init(vcpu, kvm, id);
1400 	if (err)
1401 		goto free_vcpu;
1402 
1403 	vcpu->arch.shared = &vcpu->arch.shregs;
1404 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1405 	/*
1406 	 * The shared struct is never shared on HV,
1407 	 * so we can always use host endianness
1408 	 */
1409 #ifdef __BIG_ENDIAN__
1410 	vcpu->arch.shared_big_endian = true;
1411 #else
1412 	vcpu->arch.shared_big_endian = false;
1413 #endif
1414 #endif
1415 	vcpu->arch.mmcr[0] = MMCR0_FC;
1416 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1417 	/* default to host PVR, since we can't spoof it */
1418 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1419 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1420 	spin_lock_init(&vcpu->arch.tbacct_lock);
1421 	vcpu->arch.busy_preempt = TB_NIL;
1422 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1423 
1424 	kvmppc_mmu_book3s_hv_init(vcpu);
1425 
1426 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1427 
1428 	init_waitqueue_head(&vcpu->arch.cpu_run);
1429 
1430 	mutex_lock(&kvm->lock);
1431 	vcore = kvm->arch.vcores[core];
1432 	if (!vcore) {
1433 		vcore = kvmppc_vcore_create(kvm, core);
1434 		kvm->arch.vcores[core] = vcore;
1435 		kvm->arch.online_vcores++;
1436 	}
1437 	mutex_unlock(&kvm->lock);
1438 
1439 	if (!vcore)
1440 		goto free_vcpu;
1441 
1442 	spin_lock(&vcore->lock);
1443 	++vcore->num_threads;
1444 	spin_unlock(&vcore->lock);
1445 	vcpu->arch.vcore = vcore;
1446 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1447 
1448 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1449 	kvmppc_sanity_check(vcpu);
1450 
1451 	return vcpu;
1452 
1453 free_vcpu:
1454 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1455 out:
1456 	return ERR_PTR(err);
1457 }
1458 
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)1459 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1460 {
1461 	if (vpa->pinned_addr)
1462 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1463 					vpa->dirty);
1464 }
1465 
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)1466 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1467 {
1468 	spin_lock(&vcpu->arch.vpa_update_lock);
1469 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1470 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1471 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1472 	spin_unlock(&vcpu->arch.vpa_update_lock);
1473 	kvm_vcpu_uninit(vcpu);
1474 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1475 }
1476 
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)1477 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1478 {
1479 	/* Indicate we want to get back into the guest */
1480 	return 1;
1481 }
1482 
kvmppc_set_timer(struct kvm_vcpu * vcpu)1483 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1484 {
1485 	unsigned long dec_nsec, now;
1486 
1487 	now = get_tb();
1488 	if (now > vcpu->arch.dec_expires) {
1489 		/* decrementer has already gone negative */
1490 		kvmppc_core_queue_dec(vcpu);
1491 		kvmppc_core_prepare_to_enter(vcpu);
1492 		return;
1493 	}
1494 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1495 		   / tb_ticks_per_sec;
1496 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1497 		      HRTIMER_MODE_REL);
1498 	vcpu->arch.timer_running = 1;
1499 }
1500 
kvmppc_end_cede(struct kvm_vcpu * vcpu)1501 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1502 {
1503 	vcpu->arch.ceded = 0;
1504 	if (vcpu->arch.timer_running) {
1505 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1506 		vcpu->arch.timer_running = 0;
1507 	}
1508 }
1509 
1510 extern void __kvmppc_vcore_entry(void);
1511 
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)1512 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1513 				   struct kvm_vcpu *vcpu)
1514 {
1515 	u64 now;
1516 
1517 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1518 		return;
1519 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1520 	now = mftb();
1521 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1522 		vcpu->arch.stolen_logged;
1523 	vcpu->arch.busy_preempt = now;
1524 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1525 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1526 	--vc->n_runnable;
1527 	list_del(&vcpu->arch.run_list);
1528 }
1529 
kvmppc_grab_hwthread(int cpu)1530 static int kvmppc_grab_hwthread(int cpu)
1531 {
1532 	struct paca_struct *tpaca;
1533 	long timeout = 10000;
1534 
1535 	tpaca = &paca[cpu];
1536 
1537 	/* Ensure the thread won't go into the kernel if it wakes */
1538 	tpaca->kvm_hstate.hwthread_req = 1;
1539 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1540 
1541 	/*
1542 	 * If the thread is already executing in the kernel (e.g. handling
1543 	 * a stray interrupt), wait for it to get back to nap mode.
1544 	 * The smp_mb() is to ensure that our setting of hwthread_req
1545 	 * is visible before we look at hwthread_state, so if this
1546 	 * races with the code at system_reset_pSeries and the thread
1547 	 * misses our setting of hwthread_req, we are sure to see its
1548 	 * setting of hwthread_state, and vice versa.
1549 	 */
1550 	smp_mb();
1551 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1552 		if (--timeout <= 0) {
1553 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1554 			return -EBUSY;
1555 		}
1556 		udelay(1);
1557 	}
1558 	return 0;
1559 }
1560 
kvmppc_release_hwthread(int cpu)1561 static void kvmppc_release_hwthread(int cpu)
1562 {
1563 	struct paca_struct *tpaca;
1564 
1565 	tpaca = &paca[cpu];
1566 	tpaca->kvm_hstate.hwthread_req = 0;
1567 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1568 }
1569 
kvmppc_start_thread(struct kvm_vcpu * vcpu)1570 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1571 {
1572 	int cpu;
1573 	struct paca_struct *tpaca;
1574 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1575 
1576 	if (vcpu->arch.timer_running) {
1577 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1578 		vcpu->arch.timer_running = 0;
1579 	}
1580 	cpu = vc->pcpu + vcpu->arch.ptid;
1581 	tpaca = &paca[cpu];
1582 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1583 	tpaca->kvm_hstate.kvm_vcore = vc;
1584 	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1585 	vcpu->cpu = vc->pcpu;
1586 	smp_wmb();
1587 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1588 	if (cpu != smp_processor_id()) {
1589 		xics_wake_cpu(cpu);
1590 		if (vcpu->arch.ptid)
1591 			++vc->n_woken;
1592 	}
1593 #endif
1594 }
1595 
kvmppc_wait_for_nap(struct kvmppc_vcore * vc)1596 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1597 {
1598 	int i;
1599 
1600 	HMT_low();
1601 	i = 0;
1602 	while (vc->nap_count < vc->n_woken) {
1603 		if (++i >= 1000000) {
1604 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1605 			       vc->nap_count, vc->n_woken);
1606 			break;
1607 		}
1608 		cpu_relax();
1609 	}
1610 	HMT_medium();
1611 }
1612 
1613 /*
1614  * Check that we are on thread 0 and that any other threads in
1615  * this core are off-line.  Then grab the threads so they can't
1616  * enter the kernel.
1617  */
on_primary_thread(void)1618 static int on_primary_thread(void)
1619 {
1620 	int cpu = smp_processor_id();
1621 	int thr;
1622 
1623 	/* Are we on a primary subcore? */
1624 	if (cpu_thread_in_subcore(cpu))
1625 		return 0;
1626 
1627 	thr = 0;
1628 	while (++thr < threads_per_subcore)
1629 		if (cpu_online(cpu + thr))
1630 			return 0;
1631 
1632 	/* Grab all hw threads so they can't go into the kernel */
1633 	for (thr = 1; thr < threads_per_subcore; ++thr) {
1634 		if (kvmppc_grab_hwthread(cpu + thr)) {
1635 			/* Couldn't grab one; let the others go */
1636 			do {
1637 				kvmppc_release_hwthread(cpu + thr);
1638 			} while (--thr > 0);
1639 			return 0;
1640 		}
1641 	}
1642 	return 1;
1643 }
1644 
kvmppc_start_saving_l2_cache(struct kvmppc_vcore * vc)1645 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1646 {
1647 	phys_addr_t phy_addr, mpp_addr;
1648 
1649 	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1650 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1651 
1652 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1653 	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1654 
1655 	vc->mpp_buffer_is_valid = true;
1656 }
1657 
kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore * vc)1658 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1659 {
1660 	phys_addr_t phy_addr, mpp_addr;
1661 
1662 	phy_addr = virt_to_phys(vc->mpp_buffer);
1663 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1664 
1665 	/* We must abort any in-progress save operations to ensure
1666 	 * the table is valid so that prefetch engine knows when to
1667 	 * stop prefetching. */
1668 	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1669 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1670 }
1671 
1672 /*
1673  * Run a set of guest threads on a physical core.
1674  * Called with vc->lock held.
1675  */
kvmppc_run_core(struct kvmppc_vcore * vc)1676 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1677 {
1678 	struct kvm_vcpu *vcpu, *vnext;
1679 	long ret;
1680 	u64 now;
1681 	int i, need_vpa_update;
1682 	int srcu_idx;
1683 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1684 
1685 	/* don't start if any threads have a signal pending */
1686 	need_vpa_update = 0;
1687 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1688 		if (signal_pending(vcpu->arch.run_task))
1689 			return;
1690 		if (vcpu->arch.vpa.update_pending ||
1691 		    vcpu->arch.slb_shadow.update_pending ||
1692 		    vcpu->arch.dtl.update_pending)
1693 			vcpus_to_update[need_vpa_update++] = vcpu;
1694 	}
1695 
1696 	/*
1697 	 * Initialize *vc, in particular vc->vcore_state, so we can
1698 	 * drop the vcore lock if necessary.
1699 	 */
1700 	vc->n_woken = 0;
1701 	vc->nap_count = 0;
1702 	vc->entry_exit_count = 0;
1703 	vc->vcore_state = VCORE_STARTING;
1704 	vc->in_guest = 0;
1705 	vc->napping_threads = 0;
1706 
1707 	/*
1708 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1709 	 * which can't be called with any spinlocks held.
1710 	 */
1711 	if (need_vpa_update) {
1712 		spin_unlock(&vc->lock);
1713 		for (i = 0; i < need_vpa_update; ++i)
1714 			kvmppc_update_vpas(vcpus_to_update[i]);
1715 		spin_lock(&vc->lock);
1716 	}
1717 
1718 	/*
1719 	 * Make sure we are running on primary threads, and that secondary
1720 	 * threads are offline.  Also check if the number of threads in this
1721 	 * guest are greater than the current system threads per guest.
1722 	 */
1723 	if ((threads_per_core > 1) &&
1724 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1725 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1726 			vcpu->arch.ret = -EBUSY;
1727 		goto out;
1728 	}
1729 
1730 
1731 	vc->pcpu = smp_processor_id();
1732 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1733 		kvmppc_start_thread(vcpu);
1734 		kvmppc_create_dtl_entry(vcpu, vc);
1735 	}
1736 
1737 	/* Set this explicitly in case thread 0 doesn't have a vcpu */
1738 	get_paca()->kvm_hstate.kvm_vcore = vc;
1739 	get_paca()->kvm_hstate.ptid = 0;
1740 
1741 	vc->vcore_state = VCORE_RUNNING;
1742 	preempt_disable();
1743 	spin_unlock(&vc->lock);
1744 
1745 	kvm_guest_enter();
1746 
1747 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1748 
1749 	if (vc->mpp_buffer_is_valid)
1750 		kvmppc_start_restoring_l2_cache(vc);
1751 
1752 	__kvmppc_vcore_entry();
1753 
1754 	spin_lock(&vc->lock);
1755 
1756 	if (vc->mpp_buffer)
1757 		kvmppc_start_saving_l2_cache(vc);
1758 
1759 	/* disable sending of IPIs on virtual external irqs */
1760 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1761 		vcpu->cpu = -1;
1762 	/* wait for secondary threads to finish writing their state to memory */
1763 	if (vc->nap_count < vc->n_woken)
1764 		kvmppc_wait_for_nap(vc);
1765 	for (i = 0; i < threads_per_subcore; ++i)
1766 		kvmppc_release_hwthread(vc->pcpu + i);
1767 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1768 	vc->vcore_state = VCORE_EXITING;
1769 	spin_unlock(&vc->lock);
1770 
1771 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1772 
1773 	/* make sure updates to secondary vcpu structs are visible now */
1774 	smp_mb();
1775 	kvm_guest_exit();
1776 
1777 	preempt_enable();
1778 	cond_resched();
1779 
1780 	spin_lock(&vc->lock);
1781 	now = get_tb();
1782 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1783 		/* cancel pending dec exception if dec is positive */
1784 		if (now < vcpu->arch.dec_expires &&
1785 		    kvmppc_core_pending_dec(vcpu))
1786 			kvmppc_core_dequeue_dec(vcpu);
1787 
1788 		ret = RESUME_GUEST;
1789 		if (vcpu->arch.trap)
1790 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1791 						    vcpu->arch.run_task);
1792 
1793 		vcpu->arch.ret = ret;
1794 		vcpu->arch.trap = 0;
1795 
1796 		if (vcpu->arch.ceded) {
1797 			if (!is_kvmppc_resume_guest(ret))
1798 				kvmppc_end_cede(vcpu);
1799 			else
1800 				kvmppc_set_timer(vcpu);
1801 		}
1802 	}
1803 
1804  out:
1805 	vc->vcore_state = VCORE_INACTIVE;
1806 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1807 				 arch.run_list) {
1808 		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1809 			kvmppc_remove_runnable(vc, vcpu);
1810 			wake_up(&vcpu->arch.cpu_run);
1811 		}
1812 	}
1813 }
1814 
1815 /*
1816  * Wait for some other vcpu thread to execute us, and
1817  * wake us up when we need to handle something in the host.
1818  */
kvmppc_wait_for_exec(struct kvm_vcpu * vcpu,int wait_state)1819 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1820 {
1821 	DEFINE_WAIT(wait);
1822 
1823 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1824 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1825 		schedule();
1826 	finish_wait(&vcpu->arch.cpu_run, &wait);
1827 }
1828 
1829 /*
1830  * All the vcpus in this vcore are idle, so wait for a decrementer
1831  * or external interrupt to one of the vcpus.  vc->lock is held.
1832  */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)1833 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1834 {
1835 	DEFINE_WAIT(wait);
1836 
1837 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1838 	vc->vcore_state = VCORE_SLEEPING;
1839 	spin_unlock(&vc->lock);
1840 	schedule();
1841 	finish_wait(&vc->wq, &wait);
1842 	spin_lock(&vc->lock);
1843 	vc->vcore_state = VCORE_INACTIVE;
1844 }
1845 
kvmppc_run_vcpu(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)1846 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1847 {
1848 	int n_ceded;
1849 	struct kvmppc_vcore *vc;
1850 	struct kvm_vcpu *v, *vn;
1851 
1852 	kvm_run->exit_reason = 0;
1853 	vcpu->arch.ret = RESUME_GUEST;
1854 	vcpu->arch.trap = 0;
1855 	kvmppc_update_vpas(vcpu);
1856 
1857 	/*
1858 	 * Synchronize with other threads in this virtual core
1859 	 */
1860 	vc = vcpu->arch.vcore;
1861 	spin_lock(&vc->lock);
1862 	vcpu->arch.ceded = 0;
1863 	vcpu->arch.run_task = current;
1864 	vcpu->arch.kvm_run = kvm_run;
1865 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1866 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1867 	vcpu->arch.busy_preempt = TB_NIL;
1868 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1869 	++vc->n_runnable;
1870 
1871 	/*
1872 	 * This happens the first time this is called for a vcpu.
1873 	 * If the vcore is already running, we may be able to start
1874 	 * this thread straight away and have it join in.
1875 	 */
1876 	if (!signal_pending(current)) {
1877 		if (vc->vcore_state == VCORE_RUNNING &&
1878 		    VCORE_EXIT_COUNT(vc) == 0) {
1879 			kvmppc_create_dtl_entry(vcpu, vc);
1880 			kvmppc_start_thread(vcpu);
1881 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1882 			wake_up(&vc->wq);
1883 		}
1884 
1885 	}
1886 
1887 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1888 	       !signal_pending(current)) {
1889 		if (vc->vcore_state != VCORE_INACTIVE) {
1890 			spin_unlock(&vc->lock);
1891 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1892 			spin_lock(&vc->lock);
1893 			continue;
1894 		}
1895 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1896 					 arch.run_list) {
1897 			kvmppc_core_prepare_to_enter(v);
1898 			if (signal_pending(v->arch.run_task)) {
1899 				kvmppc_remove_runnable(vc, v);
1900 				v->stat.signal_exits++;
1901 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1902 				v->arch.ret = -EINTR;
1903 				wake_up(&v->arch.cpu_run);
1904 			}
1905 		}
1906 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1907 			break;
1908 		vc->runner = vcpu;
1909 		n_ceded = 0;
1910 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1911 			if (!v->arch.pending_exceptions)
1912 				n_ceded += v->arch.ceded;
1913 			else
1914 				v->arch.ceded = 0;
1915 		}
1916 		if (n_ceded == vc->n_runnable)
1917 			kvmppc_vcore_blocked(vc);
1918 		else
1919 			kvmppc_run_core(vc);
1920 		vc->runner = NULL;
1921 	}
1922 
1923 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1924 	       (vc->vcore_state == VCORE_RUNNING ||
1925 		vc->vcore_state == VCORE_EXITING)) {
1926 		spin_unlock(&vc->lock);
1927 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1928 		spin_lock(&vc->lock);
1929 	}
1930 
1931 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1932 		kvmppc_remove_runnable(vc, vcpu);
1933 		vcpu->stat.signal_exits++;
1934 		kvm_run->exit_reason = KVM_EXIT_INTR;
1935 		vcpu->arch.ret = -EINTR;
1936 	}
1937 
1938 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1939 		/* Wake up some vcpu to run the core */
1940 		v = list_first_entry(&vc->runnable_threads,
1941 				     struct kvm_vcpu, arch.run_list);
1942 		wake_up(&v->arch.cpu_run);
1943 	}
1944 
1945 	spin_unlock(&vc->lock);
1946 	return vcpu->arch.ret;
1947 }
1948 
kvmppc_vcpu_run_hv(struct kvm_run * run,struct kvm_vcpu * vcpu)1949 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1950 {
1951 	int r;
1952 	int srcu_idx;
1953 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
1954 	unsigned long user_tar = 0;
1955 	unsigned long proc_fscr = 0;
1956 	unsigned int user_vrsave;
1957 
1958 	if (!vcpu->arch.sane) {
1959 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1960 		return -EINVAL;
1961 	}
1962 
1963 	/*
1964 	 * Don't allow entry with a suspended transaction, because
1965 	 * the guest entry/exit code will lose it.
1966 	 * If the guest has TM enabled, save away their TM-related SPRs
1967 	 * (they will get restored by the TM unavailable interrupt).
1968 	 */
1969 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1970 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1971 	    (current->thread.regs->msr & MSR_TM)) {
1972 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
1973 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1974 			run->fail_entry.hardware_entry_failure_reason = 0;
1975 			return -EINVAL;
1976 		}
1977 		/* Enable TM so we can read the TM SPRs */
1978 		mtmsr(mfmsr() | MSR_TM);
1979 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1980 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1981 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1982 	}
1983 #endif
1984 
1985 	kvmppc_core_prepare_to_enter(vcpu);
1986 
1987 	/* No need to go into the guest when all we'll do is come back out */
1988 	if (signal_pending(current)) {
1989 		run->exit_reason = KVM_EXIT_INTR;
1990 		return -EINTR;
1991 	}
1992 
1993 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1994 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1995 	smp_mb();
1996 
1997 	/* On the first time here, set up HTAB and VRMA or RMA */
1998 	if (!vcpu->kvm->arch.rma_setup_done) {
1999 		r = kvmppc_hv_setup_htab_rma(vcpu);
2000 		if (r)
2001 			goto out;
2002 	}
2003 
2004 	flush_fp_to_thread(current);
2005 	flush_altivec_to_thread(current);
2006 	flush_vsx_to_thread(current);
2007 
2008 	/* Save userspace EBB and other register values */
2009 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
2010 		ebb_regs[0] = mfspr(SPRN_EBBHR);
2011 		ebb_regs[1] = mfspr(SPRN_EBBRR);
2012 		ebb_regs[2] = mfspr(SPRN_BESCR);
2013 		user_tar = mfspr(SPRN_TAR);
2014 		proc_fscr = mfspr(SPRN_FSCR);
2015 	}
2016 	user_vrsave = mfspr(SPRN_VRSAVE);
2017 
2018 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2019 	vcpu->arch.pgdir = current->mm->pgd;
2020 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2021 
2022 	do {
2023 		r = kvmppc_run_vcpu(run, vcpu);
2024 
2025 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2026 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2027 			r = kvmppc_pseries_do_hcall(vcpu);
2028 			kvmppc_core_prepare_to_enter(vcpu);
2029 		} else if (r == RESUME_PAGE_FAULT) {
2030 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2031 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2032 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2033 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2034 		}
2035 	} while (is_kvmppc_resume_guest(r));
2036 
2037 	/* Restore userspace EBB and other register values */
2038 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
2039 		mtspr(SPRN_EBBHR, ebb_regs[0]);
2040 		mtspr(SPRN_EBBRR, ebb_regs[1]);
2041 		mtspr(SPRN_BESCR, ebb_regs[2]);
2042 		mtspr(SPRN_TAR, user_tar);
2043 		mtspr(SPRN_FSCR, proc_fscr);
2044 	}
2045 	mtspr(SPRN_VRSAVE, user_vrsave);
2046 
2047 	/*
2048 	 * Since we don't do lazy TM reload, we need to reload
2049 	 * the TM registers here.
2050 	 */
2051 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2052 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
2053 	    (current->thread.regs->msr & MSR_TM)) {
2054 		mtspr(SPRN_TFHAR, current->thread.tm_tfhar);
2055 		mtspr(SPRN_TFIAR, current->thread.tm_tfiar);
2056 		mtspr(SPRN_TEXASR, current->thread.tm_texasr);
2057 	}
2058 #endif
2059 
2060  out:
2061 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2062 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2063 	return r;
2064 }
2065 
2066 
2067 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
2068    Assumes POWER7 or PPC970. */
lpcr_rmls(unsigned long rma_size)2069 static inline int lpcr_rmls(unsigned long rma_size)
2070 {
2071 	switch (rma_size) {
2072 	case 32ul << 20:	/* 32 MB */
2073 		if (cpu_has_feature(CPU_FTR_ARCH_206))
2074 			return 8;	/* only supported on POWER7 */
2075 		return -1;
2076 	case 64ul << 20:	/* 64 MB */
2077 		return 3;
2078 	case 128ul << 20:	/* 128 MB */
2079 		return 7;
2080 	case 256ul << 20:	/* 256 MB */
2081 		return 4;
2082 	case 1ul << 30:		/* 1 GB */
2083 		return 2;
2084 	case 16ul << 30:	/* 16 GB */
2085 		return 1;
2086 	case 256ul << 30:	/* 256 GB */
2087 		return 0;
2088 	default:
2089 		return -1;
2090 	}
2091 }
2092 
kvm_rma_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2093 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2094 {
2095 	struct page *page;
2096 	struct kvm_rma_info *ri = vma->vm_file->private_data;
2097 
2098 	if (vmf->pgoff >= kvm_rma_pages)
2099 		return VM_FAULT_SIGBUS;
2100 
2101 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
2102 	get_page(page);
2103 	vmf->page = page;
2104 	return 0;
2105 }
2106 
2107 static const struct vm_operations_struct kvm_rma_vm_ops = {
2108 	.fault = kvm_rma_fault,
2109 };
2110 
kvm_rma_mmap(struct file * file,struct vm_area_struct * vma)2111 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
2112 {
2113 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2114 	vma->vm_ops = &kvm_rma_vm_ops;
2115 	return 0;
2116 }
2117 
kvm_rma_release(struct inode * inode,struct file * filp)2118 static int kvm_rma_release(struct inode *inode, struct file *filp)
2119 {
2120 	struct kvm_rma_info *ri = filp->private_data;
2121 
2122 	kvm_release_rma(ri);
2123 	return 0;
2124 }
2125 
2126 static const struct file_operations kvm_rma_fops = {
2127 	.mmap           = kvm_rma_mmap,
2128 	.release	= kvm_rma_release,
2129 };
2130 
kvm_vm_ioctl_allocate_rma(struct kvm * kvm,struct kvm_allocate_rma * ret)2131 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
2132 				      struct kvm_allocate_rma *ret)
2133 {
2134 	long fd;
2135 	struct kvm_rma_info *ri;
2136 	/*
2137 	 * Only do this on PPC970 in HV mode
2138 	 */
2139 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2140 	    !cpu_has_feature(CPU_FTR_ARCH_201))
2141 		return -EINVAL;
2142 
2143 	if (!kvm_rma_pages)
2144 		return -EINVAL;
2145 
2146 	ri = kvm_alloc_rma();
2147 	if (!ri)
2148 		return -ENOMEM;
2149 
2150 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
2151 	if (fd < 0)
2152 		kvm_release_rma(ri);
2153 
2154 	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
2155 	return fd;
2156 }
2157 
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int linux_psize)2158 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2159 				     int linux_psize)
2160 {
2161 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2162 
2163 	if (!def->shift)
2164 		return;
2165 	(*sps)->page_shift = def->shift;
2166 	(*sps)->slb_enc = def->sllp;
2167 	(*sps)->enc[0].page_shift = def->shift;
2168 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2169 	/*
2170 	 * Add 16MB MPSS support if host supports it
2171 	 */
2172 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2173 		(*sps)->enc[1].page_shift = 24;
2174 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2175 	}
2176 	(*sps)++;
2177 }
2178 
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)2179 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2180 					 struct kvm_ppc_smmu_info *info)
2181 {
2182 	struct kvm_ppc_one_seg_page_size *sps;
2183 
2184 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2185 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2186 		info->flags |= KVM_PPC_1T_SEGMENTS;
2187 	info->slb_size = mmu_slb_size;
2188 
2189 	/* We only support these sizes for now, and no muti-size segments */
2190 	sps = &info->sps[0];
2191 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2192 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2193 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2194 
2195 	return 0;
2196 }
2197 
2198 /*
2199  * Get (and clear) the dirty memory log for a memory slot.
2200  */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)2201 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2202 					 struct kvm_dirty_log *log)
2203 {
2204 	struct kvm_memory_slot *memslot;
2205 	int r;
2206 	unsigned long n;
2207 
2208 	mutex_lock(&kvm->slots_lock);
2209 
2210 	r = -EINVAL;
2211 	if (log->slot >= KVM_USER_MEM_SLOTS)
2212 		goto out;
2213 
2214 	memslot = id_to_memslot(kvm->memslots, log->slot);
2215 	r = -ENOENT;
2216 	if (!memslot->dirty_bitmap)
2217 		goto out;
2218 
2219 	n = kvm_dirty_bitmap_bytes(memslot);
2220 	memset(memslot->dirty_bitmap, 0, n);
2221 
2222 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2223 	if (r)
2224 		goto out;
2225 
2226 	r = -EFAULT;
2227 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2228 		goto out;
2229 
2230 	r = 0;
2231 out:
2232 	mutex_unlock(&kvm->slots_lock);
2233 	return r;
2234 }
2235 
unpin_slot(struct kvm_memory_slot * memslot)2236 static void unpin_slot(struct kvm_memory_slot *memslot)
2237 {
2238 	unsigned long *physp;
2239 	unsigned long j, npages, pfn;
2240 	struct page *page;
2241 
2242 	physp = memslot->arch.slot_phys;
2243 	npages = memslot->npages;
2244 	if (!physp)
2245 		return;
2246 	for (j = 0; j < npages; j++) {
2247 		if (!(physp[j] & KVMPPC_GOT_PAGE))
2248 			continue;
2249 		pfn = physp[j] >> PAGE_SHIFT;
2250 		page = pfn_to_page(pfn);
2251 		SetPageDirty(page);
2252 		put_page(page);
2253 	}
2254 }
2255 
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2256 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2257 					struct kvm_memory_slot *dont)
2258 {
2259 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2260 		vfree(free->arch.rmap);
2261 		free->arch.rmap = NULL;
2262 	}
2263 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
2264 		unpin_slot(free);
2265 		vfree(free->arch.slot_phys);
2266 		free->arch.slot_phys = NULL;
2267 	}
2268 }
2269 
kvmppc_core_create_memslot_hv(struct kvm_memory_slot * slot,unsigned long npages)2270 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2271 					 unsigned long npages)
2272 {
2273 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2274 	if (!slot->arch.rmap)
2275 		return -ENOMEM;
2276 	slot->arch.slot_phys = NULL;
2277 
2278 	return 0;
2279 }
2280 
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem)2281 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2282 					struct kvm_memory_slot *memslot,
2283 					struct kvm_userspace_memory_region *mem)
2284 {
2285 	unsigned long *phys;
2286 
2287 	/* Allocate a slot_phys array if needed */
2288 	phys = memslot->arch.slot_phys;
2289 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
2290 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
2291 		if (!phys)
2292 			return -ENOMEM;
2293 		memslot->arch.slot_phys = phys;
2294 	}
2295 
2296 	return 0;
2297 }
2298 
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old)2299 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2300 				struct kvm_userspace_memory_region *mem,
2301 				const struct kvm_memory_slot *old)
2302 {
2303 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2304 	struct kvm_memory_slot *memslot;
2305 
2306 	if (npages && old->npages) {
2307 		/*
2308 		 * If modifying a memslot, reset all the rmap dirty bits.
2309 		 * If this is a new memslot, we don't need to do anything
2310 		 * since the rmap array starts out as all zeroes,
2311 		 * i.e. no pages are dirty.
2312 		 */
2313 		memslot = id_to_memslot(kvm->memslots, mem->slot);
2314 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2315 	}
2316 }
2317 
2318 /*
2319  * Update LPCR values in kvm->arch and in vcores.
2320  * Caller must hold kvm->lock.
2321  */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)2322 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2323 {
2324 	long int i;
2325 	u32 cores_done = 0;
2326 
2327 	if ((kvm->arch.lpcr & mask) == lpcr)
2328 		return;
2329 
2330 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2331 
2332 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2333 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2334 		if (!vc)
2335 			continue;
2336 		spin_lock(&vc->lock);
2337 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2338 		spin_unlock(&vc->lock);
2339 		if (++cores_done >= kvm->arch.online_vcores)
2340 			break;
2341 	}
2342 }
2343 
kvmppc_mmu_destroy_hv(struct kvm_vcpu * vcpu)2344 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2345 {
2346 	return;
2347 }
2348 
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)2349 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2350 {
2351 	int err = 0;
2352 	struct kvm *kvm = vcpu->kvm;
2353 	struct kvm_rma_info *ri = NULL;
2354 	unsigned long hva;
2355 	struct kvm_memory_slot *memslot;
2356 	struct vm_area_struct *vma;
2357 	unsigned long lpcr = 0, senc;
2358 	unsigned long lpcr_mask = 0;
2359 	unsigned long psize, porder;
2360 	unsigned long rma_size;
2361 	unsigned long rmls;
2362 	unsigned long *physp;
2363 	unsigned long i, npages;
2364 	int srcu_idx;
2365 
2366 	mutex_lock(&kvm->lock);
2367 	if (kvm->arch.rma_setup_done)
2368 		goto out;	/* another vcpu beat us to it */
2369 
2370 	/* Allocate hashed page table (if not done already) and reset it */
2371 	if (!kvm->arch.hpt_virt) {
2372 		err = kvmppc_alloc_hpt(kvm, NULL);
2373 		if (err) {
2374 			pr_err("KVM: Couldn't alloc HPT\n");
2375 			goto out;
2376 		}
2377 	}
2378 
2379 	/* Look up the memslot for guest physical address 0 */
2380 	srcu_idx = srcu_read_lock(&kvm->srcu);
2381 	memslot = gfn_to_memslot(kvm, 0);
2382 
2383 	/* We must have some memory at 0 by now */
2384 	err = -EINVAL;
2385 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2386 		goto out_srcu;
2387 
2388 	/* Look up the VMA for the start of this memory slot */
2389 	hva = memslot->userspace_addr;
2390 	down_read(&current->mm->mmap_sem);
2391 	vma = find_vma(current->mm, hva);
2392 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2393 		goto up_out;
2394 
2395 	psize = vma_kernel_pagesize(vma);
2396 	porder = __ilog2(psize);
2397 
2398 	/* Is this one of our preallocated RMAs? */
2399 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2400 	    hva == vma->vm_start)
2401 		ri = vma->vm_file->private_data;
2402 
2403 	up_read(&current->mm->mmap_sem);
2404 
2405 	if (!ri) {
2406 		/* On POWER7, use VRMA; on PPC970, give up */
2407 		err = -EPERM;
2408 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2409 			pr_err("KVM: CPU requires an RMO\n");
2410 			goto out_srcu;
2411 		}
2412 
2413 		/* We can handle 4k, 64k or 16M pages in the VRMA */
2414 		err = -EINVAL;
2415 		if (!(psize == 0x1000 || psize == 0x10000 ||
2416 		      psize == 0x1000000))
2417 			goto out_srcu;
2418 
2419 		/* Update VRMASD field in the LPCR */
2420 		senc = slb_pgsize_encoding(psize);
2421 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2422 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2423 		lpcr_mask = LPCR_VRMASD;
2424 		/* the -4 is to account for senc values starting at 0x10 */
2425 		lpcr = senc << (LPCR_VRMASD_SH - 4);
2426 
2427 		/* Create HPTEs in the hash page table for the VRMA */
2428 		kvmppc_map_vrma(vcpu, memslot, porder);
2429 
2430 	} else {
2431 		/* Set up to use an RMO region */
2432 		rma_size = kvm_rma_pages;
2433 		if (rma_size > memslot->npages)
2434 			rma_size = memslot->npages;
2435 		rma_size <<= PAGE_SHIFT;
2436 		rmls = lpcr_rmls(rma_size);
2437 		err = -EINVAL;
2438 		if ((long)rmls < 0) {
2439 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2440 			goto out_srcu;
2441 		}
2442 		atomic_inc(&ri->use_count);
2443 		kvm->arch.rma = ri;
2444 
2445 		/* Update LPCR and RMOR */
2446 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2447 			/* PPC970; insert RMLS value (split field) in HID4 */
2448 			lpcr_mask = (1ul << HID4_RMLS0_SH) |
2449 				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
2450 			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2451 				((rmls & 3) << HID4_RMLS2_SH);
2452 			/* RMOR is also in HID4 */
2453 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2454 				<< HID4_RMOR_SH;
2455 		} else {
2456 			/* POWER7 */
2457 			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2458 			lpcr = rmls << LPCR_RMLS_SH;
2459 			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2460 		}
2461 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2462 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2463 
2464 		/* Initialize phys addrs of pages in RMO */
2465 		npages = kvm_rma_pages;
2466 		porder = __ilog2(npages);
2467 		physp = memslot->arch.slot_phys;
2468 		if (physp) {
2469 			if (npages > memslot->npages)
2470 				npages = memslot->npages;
2471 			spin_lock(&kvm->arch.slot_phys_lock);
2472 			for (i = 0; i < npages; ++i)
2473 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2474 					porder;
2475 			spin_unlock(&kvm->arch.slot_phys_lock);
2476 		}
2477 	}
2478 
2479 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2480 
2481 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2482 	smp_wmb();
2483 	kvm->arch.rma_setup_done = 1;
2484 	err = 0;
2485  out_srcu:
2486 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2487  out:
2488 	mutex_unlock(&kvm->lock);
2489 	return err;
2490 
2491  up_out:
2492 	up_read(&current->mm->mmap_sem);
2493 	goto out_srcu;
2494 }
2495 
kvmppc_core_init_vm_hv(struct kvm * kvm)2496 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2497 {
2498 	unsigned long lpcr, lpid;
2499 
2500 	/* Allocate the guest's logical partition ID */
2501 
2502 	lpid = kvmppc_alloc_lpid();
2503 	if ((long)lpid < 0)
2504 		return -ENOMEM;
2505 	kvm->arch.lpid = lpid;
2506 
2507 	/*
2508 	 * Since we don't flush the TLB when tearing down a VM,
2509 	 * and this lpid might have previously been used,
2510 	 * make sure we flush on each core before running the new VM.
2511 	 */
2512 	cpumask_setall(&kvm->arch.need_tlb_flush);
2513 
2514 	/* Start out with the default set of hcalls enabled */
2515 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2516 	       sizeof(kvm->arch.enabled_hcalls));
2517 
2518 	kvm->arch.rma = NULL;
2519 
2520 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2521 
2522 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2523 		/* PPC970; HID4 is effectively the LPCR */
2524 		kvm->arch.host_lpid = 0;
2525 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2526 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2527 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2528 			((lpid & 0xf) << HID4_LPID5_SH);
2529 	} else {
2530 		/* POWER7; init LPCR for virtual RMA mode */
2531 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
2532 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2533 		lpcr &= LPCR_PECE | LPCR_LPES;
2534 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2535 			LPCR_VPM0 | LPCR_VPM1;
2536 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2537 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2538 		/* On POWER8 turn on online bit to enable PURR/SPURR */
2539 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
2540 			lpcr |= LPCR_ONL;
2541 	}
2542 	kvm->arch.lpcr = lpcr;
2543 
2544 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2545 	spin_lock_init(&kvm->arch.slot_phys_lock);
2546 
2547 	/*
2548 	 * Track that we now have a HV mode VM active. This blocks secondary
2549 	 * CPU threads from coming online.
2550 	 */
2551 	kvm_hv_vm_activated();
2552 
2553 	return 0;
2554 }
2555 
kvmppc_free_vcores(struct kvm * kvm)2556 static void kvmppc_free_vcores(struct kvm *kvm)
2557 {
2558 	long int i;
2559 
2560 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2561 		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2562 			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2563 			free_pages((unsigned long)vc->mpp_buffer,
2564 				   MPP_BUFFER_ORDER);
2565 		}
2566 		kfree(kvm->arch.vcores[i]);
2567 	}
2568 	kvm->arch.online_vcores = 0;
2569 }
2570 
kvmppc_core_destroy_vm_hv(struct kvm * kvm)2571 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2572 {
2573 	kvm_hv_vm_deactivated();
2574 
2575 	kvmppc_free_vcores(kvm);
2576 	if (kvm->arch.rma) {
2577 		kvm_release_rma(kvm->arch.rma);
2578 		kvm->arch.rma = NULL;
2579 	}
2580 
2581 	kvmppc_free_hpt(kvm);
2582 }
2583 
2584 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int inst,int * advance)2585 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2586 				     unsigned int inst, int *advance)
2587 {
2588 	return EMULATE_FAIL;
2589 }
2590 
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)2591 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2592 					ulong spr_val)
2593 {
2594 	return EMULATE_FAIL;
2595 }
2596 
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)2597 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2598 					ulong *spr_val)
2599 {
2600 	return EMULATE_FAIL;
2601 }
2602 
kvmppc_core_check_processor_compat_hv(void)2603 static int kvmppc_core_check_processor_compat_hv(void)
2604 {
2605 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2606 		return -EIO;
2607 	return 0;
2608 }
2609 
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)2610 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2611 				 unsigned int ioctl, unsigned long arg)
2612 {
2613 	struct kvm *kvm __maybe_unused = filp->private_data;
2614 	void __user *argp = (void __user *)arg;
2615 	long r;
2616 
2617 	switch (ioctl) {
2618 
2619 	case KVM_ALLOCATE_RMA: {
2620 		struct kvm_allocate_rma rma;
2621 		struct kvm *kvm = filp->private_data;
2622 
2623 		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2624 		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2625 			r = -EFAULT;
2626 		break;
2627 	}
2628 
2629 	case KVM_PPC_ALLOCATE_HTAB: {
2630 		u32 htab_order;
2631 
2632 		r = -EFAULT;
2633 		if (get_user(htab_order, (u32 __user *)argp))
2634 			break;
2635 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2636 		if (r)
2637 			break;
2638 		r = -EFAULT;
2639 		if (put_user(htab_order, (u32 __user *)argp))
2640 			break;
2641 		r = 0;
2642 		break;
2643 	}
2644 
2645 	case KVM_PPC_GET_HTAB_FD: {
2646 		struct kvm_get_htab_fd ghf;
2647 
2648 		r = -EFAULT;
2649 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
2650 			break;
2651 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2652 		break;
2653 	}
2654 
2655 	default:
2656 		r = -ENOTTY;
2657 	}
2658 
2659 	return r;
2660 }
2661 
2662 /*
2663  * List of hcall numbers to enable by default.
2664  * For compatibility with old userspace, we enable by default
2665  * all hcalls that were implemented before the hcall-enabling
2666  * facility was added.  Note this list should not include H_RTAS.
2667  */
2668 static unsigned int default_hcall_list[] = {
2669 	H_REMOVE,
2670 	H_ENTER,
2671 	H_READ,
2672 	H_PROTECT,
2673 	H_BULK_REMOVE,
2674 	H_GET_TCE,
2675 	H_PUT_TCE,
2676 	H_SET_DABR,
2677 	H_SET_XDABR,
2678 	H_CEDE,
2679 	H_PROD,
2680 	H_CONFER,
2681 	H_REGISTER_VPA,
2682 #ifdef CONFIG_KVM_XICS
2683 	H_EOI,
2684 	H_CPPR,
2685 	H_IPI,
2686 	H_IPOLL,
2687 	H_XIRR,
2688 	H_XIRR_X,
2689 #endif
2690 	0
2691 };
2692 
init_default_hcalls(void)2693 static void init_default_hcalls(void)
2694 {
2695 	int i;
2696 	unsigned int hcall;
2697 
2698 	for (i = 0; default_hcall_list[i]; ++i) {
2699 		hcall = default_hcall_list[i];
2700 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2701 		__set_bit(hcall / 4, default_enabled_hcalls);
2702 	}
2703 }
2704 
2705 static struct kvmppc_ops kvm_ops_hv = {
2706 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2707 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2708 	.get_one_reg = kvmppc_get_one_reg_hv,
2709 	.set_one_reg = kvmppc_set_one_reg_hv,
2710 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
2711 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
2712 	.set_msr     = kvmppc_set_msr_hv,
2713 	.vcpu_run    = kvmppc_vcpu_run_hv,
2714 	.vcpu_create = kvmppc_core_vcpu_create_hv,
2715 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
2716 	.check_requests = kvmppc_core_check_requests_hv,
2717 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2718 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
2719 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2720 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2721 	.unmap_hva = kvm_unmap_hva_hv,
2722 	.unmap_hva_range = kvm_unmap_hva_range_hv,
2723 	.age_hva  = kvm_age_hva_hv,
2724 	.test_age_hva = kvm_test_age_hva_hv,
2725 	.set_spte_hva = kvm_set_spte_hva_hv,
2726 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
2727 	.free_memslot = kvmppc_core_free_memslot_hv,
2728 	.create_memslot = kvmppc_core_create_memslot_hv,
2729 	.init_vm =  kvmppc_core_init_vm_hv,
2730 	.destroy_vm = kvmppc_core_destroy_vm_hv,
2731 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2732 	.emulate_op = kvmppc_core_emulate_op_hv,
2733 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2734 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2735 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2736 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2737 	.hcall_implemented = kvmppc_hcall_impl_hv,
2738 };
2739 
kvmppc_book3s_init_hv(void)2740 static int kvmppc_book3s_init_hv(void)
2741 {
2742 	int r;
2743 	/*
2744 	 * FIXME!! Do we need to check on all cpus ?
2745 	 */
2746 	r = kvmppc_core_check_processor_compat_hv();
2747 	if (r < 0)
2748 		return -ENODEV;
2749 
2750 	kvm_ops_hv.owner = THIS_MODULE;
2751 	kvmppc_hv_ops = &kvm_ops_hv;
2752 
2753 	init_default_hcalls();
2754 
2755 	r = kvmppc_mmu_hv_init();
2756 	return r;
2757 }
2758 
kvmppc_book3s_exit_hv(void)2759 static void kvmppc_book3s_exit_hv(void)
2760 {
2761 	kvmppc_hv_ops = NULL;
2762 }
2763 
2764 module_init(kvmppc_book3s_init_hv);
2765 module_exit(kvmppc_book3s_exit_hv);
2766 MODULE_LICENSE("GPL");
2767 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2768 MODULE_ALIAS("devname:kvm");
2769