• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bpf_jit_comp.c: BPF JIT compiler for PPC64
2  *
3  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4  *
5  * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 #include <linux/moduleloader.h>
13 #include <asm/cacheflush.h>
14 #include <linux/netdevice.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 
18 #include "bpf_jit.h"
19 
20 int bpf_jit_enable __read_mostly;
21 
bpf_flush_icache(void * start,void * end)22 static inline void bpf_flush_icache(void *start, void *end)
23 {
24 	smp_wmb();
25 	flush_icache_range((unsigned long)start, (unsigned long)end);
26 }
27 
bpf_jit_build_prologue(struct bpf_prog * fp,u32 * image,struct codegen_context * ctx)28 static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
29 				   struct codegen_context *ctx)
30 {
31 	int i;
32 	const struct sock_filter *filter = fp->insns;
33 
34 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
35 		/* Make stackframe */
36 		if (ctx->seen & SEEN_DATAREF) {
37 			/* If we call any helpers (for loads), save LR */
38 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
39 			PPC_STD(0, 1, 16);
40 
41 			/* Back up non-volatile regs. */
42 			PPC_STD(r_D, 1, -(8*(32-r_D)));
43 			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
44 		}
45 		if (ctx->seen & SEEN_MEM) {
46 			/*
47 			 * Conditionally save regs r15-r31 as some will be used
48 			 * for M[] data.
49 			 */
50 			for (i = r_M; i < (r_M+16); i++) {
51 				if (ctx->seen & (1 << (i-r_M)))
52 					PPC_STD(i, 1, -(8*(32-i)));
53 			}
54 		}
55 		EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
56 		     (-BPF_PPC_STACKFRAME & 0xfffc));
57 	}
58 
59 	if (ctx->seen & SEEN_DATAREF) {
60 		/*
61 		 * If this filter needs to access skb data,
62 		 * prepare r_D and r_HL:
63 		 *  r_HL = skb->len - skb->data_len
64 		 *  r_D	 = skb->data
65 		 */
66 		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
67 							 data_len));
68 		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
69 		PPC_SUB(r_HL, r_HL, r_scratch1);
70 		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
71 	}
72 
73 	if (ctx->seen & SEEN_XREG) {
74 		/*
75 		 * TODO: Could also detect whether first instr. sets X and
76 		 * avoid this (as below, with A).
77 		 */
78 		PPC_LI(r_X, 0);
79 	}
80 
81 	/* make sure we dont leak kernel information to user */
82 	if (bpf_needs_clear_a(&filter[0]))
83 		PPC_LI(r_A, 0);
84 }
85 
bpf_jit_build_epilogue(u32 * image,struct codegen_context * ctx)86 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
87 {
88 	int i;
89 
90 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
91 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
92 		if (ctx->seen & SEEN_DATAREF) {
93 			PPC_LD(0, 1, 16);
94 			PPC_MTLR(0);
95 			PPC_LD(r_D, 1, -(8*(32-r_D)));
96 			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
97 		}
98 		if (ctx->seen & SEEN_MEM) {
99 			/* Restore any saved non-vol registers */
100 			for (i = r_M; i < (r_M+16); i++) {
101 				if (ctx->seen & (1 << (i-r_M)))
102 					PPC_LD(i, 1, -(8*(32-i)));
103 			}
104 		}
105 	}
106 	/* The RETs have left a return value in R3. */
107 
108 	PPC_BLR();
109 }
110 
111 #define CHOOSE_LOAD_FUNC(K, func) \
112 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
113 
114 /* Assemble the body code between the prologue & epilogue. */
bpf_jit_build_body(struct bpf_prog * fp,u32 * image,struct codegen_context * ctx,unsigned int * addrs)115 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
116 			      struct codegen_context *ctx,
117 			      unsigned int *addrs)
118 {
119 	const struct sock_filter *filter = fp->insns;
120 	int flen = fp->len;
121 	u8 *func;
122 	unsigned int true_cond;
123 	int i;
124 
125 	/* Start of epilogue code */
126 	unsigned int exit_addr = addrs[flen];
127 
128 	for (i = 0; i < flen; i++) {
129 		unsigned int K = filter[i].k;
130 		u16 code = bpf_anc_helper(&filter[i]);
131 
132 		/*
133 		 * addrs[] maps a BPF bytecode address into a real offset from
134 		 * the start of the body code.
135 		 */
136 		addrs[i] = ctx->idx * 4;
137 
138 		switch (code) {
139 			/*** ALU ops ***/
140 		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
141 			ctx->seen |= SEEN_XREG;
142 			PPC_ADD(r_A, r_A, r_X);
143 			break;
144 		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
145 			if (!K)
146 				break;
147 			PPC_ADDI(r_A, r_A, IMM_L(K));
148 			if (K >= 32768)
149 				PPC_ADDIS(r_A, r_A, IMM_HA(K));
150 			break;
151 		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
152 			ctx->seen |= SEEN_XREG;
153 			PPC_SUB(r_A, r_A, r_X);
154 			break;
155 		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
156 			if (!K)
157 				break;
158 			PPC_ADDI(r_A, r_A, IMM_L(-K));
159 			if (K >= 32768)
160 				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
161 			break;
162 		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
163 			ctx->seen |= SEEN_XREG;
164 			PPC_MUL(r_A, r_A, r_X);
165 			break;
166 		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
167 			if (K < 32768)
168 				PPC_MULI(r_A, r_A, K);
169 			else {
170 				PPC_LI32(r_scratch1, K);
171 				PPC_MUL(r_A, r_A, r_scratch1);
172 			}
173 			break;
174 		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
175 			ctx->seen |= SEEN_XREG;
176 			PPC_CMPWI(r_X, 0);
177 			if (ctx->pc_ret0 != -1) {
178 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
179 			} else {
180 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
181 				PPC_LI(r_ret, 0);
182 				PPC_JMP(exit_addr);
183 			}
184 			PPC_DIVWU(r_scratch1, r_A, r_X);
185 			PPC_MUL(r_scratch1, r_X, r_scratch1);
186 			PPC_SUB(r_A, r_A, r_scratch1);
187 			break;
188 		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
189 			PPC_LI32(r_scratch2, K);
190 			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
191 			PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
192 			PPC_SUB(r_A, r_A, r_scratch1);
193 			break;
194 		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
195 			ctx->seen |= SEEN_XREG;
196 			PPC_CMPWI(r_X, 0);
197 			if (ctx->pc_ret0 != -1) {
198 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
199 			} else {
200 				/*
201 				 * Exit, returning 0; first pass hits here
202 				 * (longer worst-case code size).
203 				 */
204 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
205 				PPC_LI(r_ret, 0);
206 				PPC_JMP(exit_addr);
207 			}
208 			PPC_DIVWU(r_A, r_A, r_X);
209 			break;
210 		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
211 			if (K == 1)
212 				break;
213 			PPC_LI32(r_scratch1, K);
214 			PPC_DIVWU(r_A, r_A, r_scratch1);
215 			break;
216 		case BPF_ALU | BPF_AND | BPF_X:
217 			ctx->seen |= SEEN_XREG;
218 			PPC_AND(r_A, r_A, r_X);
219 			break;
220 		case BPF_ALU | BPF_AND | BPF_K:
221 			if (!IMM_H(K))
222 				PPC_ANDI(r_A, r_A, K);
223 			else {
224 				PPC_LI32(r_scratch1, K);
225 				PPC_AND(r_A, r_A, r_scratch1);
226 			}
227 			break;
228 		case BPF_ALU | BPF_OR | BPF_X:
229 			ctx->seen |= SEEN_XREG;
230 			PPC_OR(r_A, r_A, r_X);
231 			break;
232 		case BPF_ALU | BPF_OR | BPF_K:
233 			if (IMM_L(K))
234 				PPC_ORI(r_A, r_A, IMM_L(K));
235 			if (K >= 65536)
236 				PPC_ORIS(r_A, r_A, IMM_H(K));
237 			break;
238 		case BPF_ANC | SKF_AD_ALU_XOR_X:
239 		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
240 			ctx->seen |= SEEN_XREG;
241 			PPC_XOR(r_A, r_A, r_X);
242 			break;
243 		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
244 			if (IMM_L(K))
245 				PPC_XORI(r_A, r_A, IMM_L(K));
246 			if (K >= 65536)
247 				PPC_XORIS(r_A, r_A, IMM_H(K));
248 			break;
249 		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
250 			ctx->seen |= SEEN_XREG;
251 			PPC_SLW(r_A, r_A, r_X);
252 			break;
253 		case BPF_ALU | BPF_LSH | BPF_K:
254 			if (K == 0)
255 				break;
256 			else
257 				PPC_SLWI(r_A, r_A, K);
258 			break;
259 		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
260 			ctx->seen |= SEEN_XREG;
261 			PPC_SRW(r_A, r_A, r_X);
262 			break;
263 		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
264 			if (K == 0)
265 				break;
266 			else
267 				PPC_SRWI(r_A, r_A, K);
268 			break;
269 		case BPF_ALU | BPF_NEG:
270 			PPC_NEG(r_A, r_A);
271 			break;
272 		case BPF_RET | BPF_K:
273 			PPC_LI32(r_ret, K);
274 			if (!K) {
275 				if (ctx->pc_ret0 == -1)
276 					ctx->pc_ret0 = i;
277 			}
278 			/*
279 			 * If this isn't the very last instruction, branch to
280 			 * the epilogue if we've stuff to clean up.  Otherwise,
281 			 * if there's nothing to tidy, just return.  If we /are/
282 			 * the last instruction, we're about to fall through to
283 			 * the epilogue to return.
284 			 */
285 			if (i != flen - 1) {
286 				/*
287 				 * Note: 'seen' is properly valid only on pass
288 				 * #2.	Both parts of this conditional are the
289 				 * same instruction size though, meaning the
290 				 * first pass will still correctly determine the
291 				 * code size/addresses.
292 				 */
293 				if (ctx->seen)
294 					PPC_JMP(exit_addr);
295 				else
296 					PPC_BLR();
297 			}
298 			break;
299 		case BPF_RET | BPF_A:
300 			PPC_MR(r_ret, r_A);
301 			if (i != flen - 1) {
302 				if (ctx->seen)
303 					PPC_JMP(exit_addr);
304 				else
305 					PPC_BLR();
306 			}
307 			break;
308 		case BPF_MISC | BPF_TAX: /* X = A */
309 			PPC_MR(r_X, r_A);
310 			break;
311 		case BPF_MISC | BPF_TXA: /* A = X */
312 			ctx->seen |= SEEN_XREG;
313 			PPC_MR(r_A, r_X);
314 			break;
315 
316 			/*** Constant loads/M[] access ***/
317 		case BPF_LD | BPF_IMM: /* A = K */
318 			PPC_LI32(r_A, K);
319 			break;
320 		case BPF_LDX | BPF_IMM: /* X = K */
321 			PPC_LI32(r_X, K);
322 			break;
323 		case BPF_LD | BPF_MEM: /* A = mem[K] */
324 			PPC_MR(r_A, r_M + (K & 0xf));
325 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
326 			break;
327 		case BPF_LDX | BPF_MEM: /* X = mem[K] */
328 			PPC_MR(r_X, r_M + (K & 0xf));
329 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
330 			break;
331 		case BPF_ST: /* mem[K] = A */
332 			PPC_MR(r_M + (K & 0xf), r_A);
333 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
334 			break;
335 		case BPF_STX: /* mem[K] = X */
336 			PPC_MR(r_M + (K & 0xf), r_X);
337 			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
338 			break;
339 		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
340 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
341 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
342 			break;
343 		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
344 			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
345 			break;
346 
347 			/*** Ancillary info loads ***/
348 		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
349 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
350 						  protocol) != 2);
351 			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
352 							    protocol));
353 			break;
354 		case BPF_ANC | SKF_AD_IFINDEX:
355 			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
356 								dev));
357 			PPC_CMPDI(r_scratch1, 0);
358 			if (ctx->pc_ret0 != -1) {
359 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
360 			} else {
361 				/* Exit, returning 0; first pass hits here. */
362 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
363 				PPC_LI(r_ret, 0);
364 				PPC_JMP(exit_addr);
365 			}
366 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
367 						  ifindex) != 4);
368 			PPC_LWZ_OFFS(r_A, r_scratch1,
369 				     offsetof(struct net_device, ifindex));
370 			break;
371 		case BPF_ANC | SKF_AD_MARK:
372 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
373 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
374 							  mark));
375 			break;
376 		case BPF_ANC | SKF_AD_RXHASH:
377 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
378 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
379 							  hash));
380 			break;
381 		case BPF_ANC | SKF_AD_VLAN_TAG:
382 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
383 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
384 			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
385 
386 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
387 							  vlan_tci));
388 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
389 				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
390 			} else {
391 				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
392 				PPC_SRWI(r_A, r_A, 12);
393 			}
394 			break;
395 		case BPF_ANC | SKF_AD_QUEUE:
396 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
397 						  queue_mapping) != 2);
398 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
399 							  queue_mapping));
400 			break;
401 		case BPF_ANC | SKF_AD_CPU:
402 #ifdef CONFIG_SMP
403 			/*
404 			 * PACA ptr is r13:
405 			 * raw_smp_processor_id() = local_paca->paca_index
406 			 */
407 			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
408 						  paca_index) != 2);
409 			PPC_LHZ_OFFS(r_A, 13,
410 				     offsetof(struct paca_struct, paca_index));
411 #else
412 			PPC_LI(r_A, 0);
413 #endif
414 			break;
415 
416 			/*** Absolute loads from packet header/data ***/
417 		case BPF_LD | BPF_W | BPF_ABS:
418 			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
419 			goto common_load;
420 		case BPF_LD | BPF_H | BPF_ABS:
421 			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
422 			goto common_load;
423 		case BPF_LD | BPF_B | BPF_ABS:
424 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
425 		common_load:
426 			/* Load from [K]. */
427 			ctx->seen |= SEEN_DATAREF;
428 			PPC_LI64(r_scratch1, func);
429 			PPC_MTLR(r_scratch1);
430 			PPC_LI32(r_addr, K);
431 			PPC_BLRL();
432 			/*
433 			 * Helper returns 'lt' condition on error, and an
434 			 * appropriate return value in r3
435 			 */
436 			PPC_BCC(COND_LT, exit_addr);
437 			break;
438 
439 			/*** Indirect loads from packet header/data ***/
440 		case BPF_LD | BPF_W | BPF_IND:
441 			func = sk_load_word;
442 			goto common_load_ind;
443 		case BPF_LD | BPF_H | BPF_IND:
444 			func = sk_load_half;
445 			goto common_load_ind;
446 		case BPF_LD | BPF_B | BPF_IND:
447 			func = sk_load_byte;
448 		common_load_ind:
449 			/*
450 			 * Load from [X + K].  Negative offsets are tested for
451 			 * in the helper functions.
452 			 */
453 			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
454 			PPC_LI64(r_scratch1, func);
455 			PPC_MTLR(r_scratch1);
456 			PPC_ADDI(r_addr, r_X, IMM_L(K));
457 			if (K >= 32768)
458 				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
459 			PPC_BLRL();
460 			/* If error, cr0.LT set */
461 			PPC_BCC(COND_LT, exit_addr);
462 			break;
463 
464 		case BPF_LDX | BPF_B | BPF_MSH:
465 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
466 			goto common_load;
467 			break;
468 
469 			/*** Jump and branches ***/
470 		case BPF_JMP | BPF_JA:
471 			if (K != 0)
472 				PPC_JMP(addrs[i + 1 + K]);
473 			break;
474 
475 		case BPF_JMP | BPF_JGT | BPF_K:
476 		case BPF_JMP | BPF_JGT | BPF_X:
477 			true_cond = COND_GT;
478 			goto cond_branch;
479 		case BPF_JMP | BPF_JGE | BPF_K:
480 		case BPF_JMP | BPF_JGE | BPF_X:
481 			true_cond = COND_GE;
482 			goto cond_branch;
483 		case BPF_JMP | BPF_JEQ | BPF_K:
484 		case BPF_JMP | BPF_JEQ | BPF_X:
485 			true_cond = COND_EQ;
486 			goto cond_branch;
487 		case BPF_JMP | BPF_JSET | BPF_K:
488 		case BPF_JMP | BPF_JSET | BPF_X:
489 			true_cond = COND_NE;
490 			/* Fall through */
491 		cond_branch:
492 			/* same targets, can avoid doing the test :) */
493 			if (filter[i].jt == filter[i].jf) {
494 				if (filter[i].jt > 0)
495 					PPC_JMP(addrs[i + 1 + filter[i].jt]);
496 				break;
497 			}
498 
499 			switch (code) {
500 			case BPF_JMP | BPF_JGT | BPF_X:
501 			case BPF_JMP | BPF_JGE | BPF_X:
502 			case BPF_JMP | BPF_JEQ | BPF_X:
503 				ctx->seen |= SEEN_XREG;
504 				PPC_CMPLW(r_A, r_X);
505 				break;
506 			case BPF_JMP | BPF_JSET | BPF_X:
507 				ctx->seen |= SEEN_XREG;
508 				PPC_AND_DOT(r_scratch1, r_A, r_X);
509 				break;
510 			case BPF_JMP | BPF_JEQ | BPF_K:
511 			case BPF_JMP | BPF_JGT | BPF_K:
512 			case BPF_JMP | BPF_JGE | BPF_K:
513 				if (K < 32768)
514 					PPC_CMPLWI(r_A, K);
515 				else {
516 					PPC_LI32(r_scratch1, K);
517 					PPC_CMPLW(r_A, r_scratch1);
518 				}
519 				break;
520 			case BPF_JMP | BPF_JSET | BPF_K:
521 				if (K < 32768)
522 					/* PPC_ANDI is /only/ dot-form */
523 					PPC_ANDI(r_scratch1, r_A, K);
524 				else {
525 					PPC_LI32(r_scratch1, K);
526 					PPC_AND_DOT(r_scratch1, r_A,
527 						    r_scratch1);
528 				}
529 				break;
530 			}
531 			/* Sometimes branches are constructed "backward", with
532 			 * the false path being the branch and true path being
533 			 * a fallthrough to the next instruction.
534 			 */
535 			if (filter[i].jt == 0)
536 				/* Swap the sense of the branch */
537 				PPC_BCC(true_cond ^ COND_CMP_TRUE,
538 					addrs[i + 1 + filter[i].jf]);
539 			else {
540 				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
541 				if (filter[i].jf != 0)
542 					PPC_JMP(addrs[i + 1 + filter[i].jf]);
543 			}
544 			break;
545 		default:
546 			/* The filter contains something cruel & unusual.
547 			 * We don't handle it, but also there shouldn't be
548 			 * anything missing from our list.
549 			 */
550 			if (printk_ratelimit())
551 				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
552 				       filter[i].code, i);
553 			return -ENOTSUPP;
554 		}
555 
556 	}
557 	/* Set end-of-body-code address for exit. */
558 	addrs[i] = ctx->idx * 4;
559 
560 	return 0;
561 }
562 
bpf_jit_compile(struct bpf_prog * fp)563 void bpf_jit_compile(struct bpf_prog *fp)
564 {
565 	unsigned int proglen;
566 	unsigned int alloclen;
567 	u32 *image = NULL;
568 	u32 *code_base;
569 	unsigned int *addrs;
570 	struct codegen_context cgctx;
571 	int pass;
572 	int flen = fp->len;
573 
574 	if (!bpf_jit_enable)
575 		return;
576 
577 	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
578 	if (addrs == NULL)
579 		return;
580 
581 	/*
582 	 * There are multiple assembly passes as the generated code will change
583 	 * size as it settles down, figuring out the max branch offsets/exit
584 	 * paths required.
585 	 *
586 	 * The range of standard conditional branches is +/- 32Kbytes.	Since
587 	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
588 	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
589 	 * used, distinct from short branches.
590 	 *
591 	 * Current:
592 	 *
593 	 * For now, both branch types assemble to 2 words (short branches padded
594 	 * with a NOP); this is less efficient, but assembly will always complete
595 	 * after exactly 3 passes:
596 	 *
597 	 * First pass: No code buffer; Program is "faux-generated" -- no code
598 	 * emitted but maximum size of output determined (and addrs[] filled
599 	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
600 	 * All generation choices assumed to be 'worst-case', e.g. branches all
601 	 * far (2 instructions), return path code reduction not available, etc.
602 	 *
603 	 * Second pass: Code buffer allocated with size determined previously.
604 	 * Prologue generated to support features we have seen used.  Exit paths
605 	 * determined and addrs[] is filled in again, as code may be slightly
606 	 * smaller as a result.
607 	 *
608 	 * Third pass: Code generated 'for real', and branch destinations
609 	 * determined from now-accurate addrs[] map.
610 	 *
611 	 * Ideal:
612 	 *
613 	 * If we optimise this, near branches will be shorter.	On the
614 	 * first assembly pass, we should err on the side of caution and
615 	 * generate the biggest code.  On subsequent passes, branches will be
616 	 * generated short or long and code size will reduce.  With smaller
617 	 * code, more branches may fall into the short category, and code will
618 	 * reduce more.
619 	 *
620 	 * Finally, if we see one pass generate code the same size as the
621 	 * previous pass we have converged and should now generate code for
622 	 * real.  Allocating at the end will also save the memory that would
623 	 * otherwise be wasted by the (small) current code shrinkage.
624 	 * Preferably, we should do a small number of passes (e.g. 5) and if we
625 	 * haven't converged by then, get impatient and force code to generate
626 	 * as-is, even if the odd branch would be left long.  The chances of a
627 	 * long jump are tiny with all but the most enormous of BPF filter
628 	 * inputs, so we should usually converge on the third pass.
629 	 */
630 
631 	cgctx.idx = 0;
632 	cgctx.seen = 0;
633 	cgctx.pc_ret0 = -1;
634 	/* Scouting faux-generate pass 0 */
635 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
636 		/* We hit something illegal or unsupported. */
637 		goto out;
638 
639 	/*
640 	 * Pretend to build prologue, given the features we've seen.  This will
641 	 * update ctgtx.idx as it pretends to output instructions, then we can
642 	 * calculate total size from idx.
643 	 */
644 	bpf_jit_build_prologue(fp, 0, &cgctx);
645 	bpf_jit_build_epilogue(0, &cgctx);
646 
647 	proglen = cgctx.idx * 4;
648 	alloclen = proglen + FUNCTION_DESCR_SIZE;
649 	image = module_alloc(alloclen);
650 	if (!image)
651 		goto out;
652 
653 	code_base = image + (FUNCTION_DESCR_SIZE/4);
654 
655 	/* Code generation passes 1-2 */
656 	for (pass = 1; pass < 3; pass++) {
657 		/* Now build the prologue, body code & epilogue for real. */
658 		cgctx.idx = 0;
659 		bpf_jit_build_prologue(fp, code_base, &cgctx);
660 		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
661 		bpf_jit_build_epilogue(code_base, &cgctx);
662 
663 		if (bpf_jit_enable > 1)
664 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
665 				proglen - (cgctx.idx * 4), cgctx.seen);
666 	}
667 
668 	if (bpf_jit_enable > 1)
669 		/* Note that we output the base address of the code_base
670 		 * rather than image, since opcodes are in code_base.
671 		 */
672 		bpf_jit_dump(flen, proglen, pass, code_base);
673 
674 	if (image) {
675 		bpf_flush_icache(code_base, code_base + (proglen/4));
676 		/* Function descriptor nastiness: Address + TOC */
677 		((u64 *)image)[0] = (u64)code_base;
678 		((u64 *)image)[1] = local_paca->kernel_toc;
679 		fp->bpf_func = (void *)image;
680 		fp->jited = true;
681 	}
682 out:
683 	kfree(addrs);
684 	return;
685 }
686 
bpf_jit_free(struct bpf_prog * fp)687 void bpf_jit_free(struct bpf_prog *fp)
688 {
689 	if (fp->jited)
690 		module_free(NULL, fp->bpf_func);
691 
692 	bpf_prog_unlock_free(fp);
693 }
694