• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance counter callchain support - powerpc architecture code
3  *
4  * Copyright © 2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "../kernel/ppc32.h"
24 #endif
25 
26 
27 /*
28  * Is sp valid as the address of the next kernel stack frame after prev_sp?
29  * The next frame may be in a different stack area but should not go
30  * back down in the same stack area.
31  */
valid_next_sp(unsigned long sp,unsigned long prev_sp)32 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
33 {
34 	if (sp & 0xf)
35 		return 0;		/* must be 16-byte aligned */
36 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
37 		return 0;
38 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
39 		return 1;
40 	/*
41 	 * sp could decrease when we jump off an interrupt stack
42 	 * back to the regular process stack.
43 	 */
44 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
45 		return 1;
46 	return 0;
47 }
48 
49 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)50 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
51 {
52 	unsigned long sp, next_sp;
53 	unsigned long next_ip;
54 	unsigned long lr;
55 	long level = 0;
56 	unsigned long *fp;
57 
58 	lr = regs->link;
59 	sp = regs->gpr[1];
60 	perf_callchain_store(entry, perf_instruction_pointer(regs));
61 
62 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
63 		return;
64 
65 	for (;;) {
66 		fp = (unsigned long *) sp;
67 		next_sp = fp[0];
68 
69 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
70 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
71 			/*
72 			 * This looks like an interrupt frame for an
73 			 * interrupt that occurred in the kernel
74 			 */
75 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
76 			next_ip = regs->nip;
77 			lr = regs->link;
78 			level = 0;
79 			perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
80 
81 		} else {
82 			if (level == 0)
83 				next_ip = lr;
84 			else
85 				next_ip = fp[STACK_FRAME_LR_SAVE];
86 
87 			/*
88 			 * We can't tell which of the first two addresses
89 			 * we get are valid, but we can filter out the
90 			 * obviously bogus ones here.  We replace them
91 			 * with 0 rather than removing them entirely so
92 			 * that userspace can tell which is which.
93 			 */
94 			if ((level == 1 && next_ip == lr) ||
95 			    (level <= 1 && !kernel_text_address(next_ip)))
96 				next_ip = 0;
97 
98 			++level;
99 		}
100 
101 		perf_callchain_store(entry, next_ip);
102 		if (!valid_next_sp(next_sp, sp))
103 			return;
104 		sp = next_sp;
105 	}
106 }
107 
108 #ifdef CONFIG_PPC64
109 /*
110  * On 64-bit we don't want to invoke hash_page on user addresses from
111  * interrupt context, so if the access faults, we read the page tables
112  * to find which page (if any) is mapped and access it directly.
113  */
read_user_stack_slow(void __user * ptr,void * ret,int nb)114 static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
115 {
116 	pgd_t *pgdir;
117 	pte_t *ptep, pte;
118 	unsigned shift;
119 	unsigned long addr = (unsigned long) ptr;
120 	unsigned long offset;
121 	unsigned long pfn;
122 	void *kaddr;
123 
124 	pgdir = current->mm->pgd;
125 	if (!pgdir)
126 		return -EFAULT;
127 
128 	ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
129 	if (!shift)
130 		shift = PAGE_SHIFT;
131 
132 	/* align address to page boundary */
133 	offset = addr & ((1UL << shift) - 1);
134 	addr -= offset;
135 
136 	if (ptep == NULL)
137 		return -EFAULT;
138 	pte = *ptep;
139 	if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
140 		return -EFAULT;
141 	pfn = pte_pfn(pte);
142 	if (!page_is_ram(pfn))
143 		return -EFAULT;
144 
145 	/* no highmem to worry about here */
146 	kaddr = pfn_to_kaddr(pfn);
147 	memcpy(ret, kaddr + offset, nb);
148 	return 0;
149 }
150 
read_user_stack_64(unsigned long __user * ptr,unsigned long * ret)151 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
152 {
153 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
154 	    ((unsigned long)ptr & 7))
155 		return -EFAULT;
156 
157 	pagefault_disable();
158 	if (!__get_user_inatomic(*ret, ptr)) {
159 		pagefault_enable();
160 		return 0;
161 	}
162 	pagefault_enable();
163 
164 	return read_user_stack_slow(ptr, ret, 8);
165 }
166 
read_user_stack_32(unsigned int __user * ptr,unsigned int * ret)167 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
168 {
169 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
170 	    ((unsigned long)ptr & 3))
171 		return -EFAULT;
172 
173 	pagefault_disable();
174 	if (!__get_user_inatomic(*ret, ptr)) {
175 		pagefault_enable();
176 		return 0;
177 	}
178 	pagefault_enable();
179 
180 	return read_user_stack_slow(ptr, ret, 4);
181 }
182 
valid_user_sp(unsigned long sp,int is_64)183 static inline int valid_user_sp(unsigned long sp, int is_64)
184 {
185 	if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
186 		return 0;
187 	return 1;
188 }
189 
190 /*
191  * 64-bit user processes use the same stack frame for RT and non-RT signals.
192  */
193 struct signal_frame_64 {
194 	char		dummy[__SIGNAL_FRAMESIZE];
195 	struct ucontext	uc;
196 	unsigned long	unused[2];
197 	unsigned int	tramp[6];
198 	struct siginfo	*pinfo;
199 	void		*puc;
200 	struct siginfo	info;
201 	char		abigap[288];
202 };
203 
is_sigreturn_64_address(unsigned long nip,unsigned long fp)204 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
205 {
206 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
207 		return 1;
208 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
209 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
210 		return 1;
211 	return 0;
212 }
213 
214 /*
215  * Do some sanity checking on the signal frame pointed to by sp.
216  * We check the pinfo and puc pointers in the frame.
217  */
sane_signal_64_frame(unsigned long sp)218 static int sane_signal_64_frame(unsigned long sp)
219 {
220 	struct signal_frame_64 __user *sf;
221 	unsigned long pinfo, puc;
222 
223 	sf = (struct signal_frame_64 __user *) sp;
224 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
225 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
226 		return 0;
227 	return pinfo == (unsigned long) &sf->info &&
228 		puc == (unsigned long) &sf->uc;
229 }
230 
perf_callchain_user_64(struct perf_callchain_entry * entry,struct pt_regs * regs)231 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
232 				   struct pt_regs *regs)
233 {
234 	unsigned long sp, next_sp;
235 	unsigned long next_ip;
236 	unsigned long lr;
237 	long level = 0;
238 	struct signal_frame_64 __user *sigframe;
239 	unsigned long __user *fp, *uregs;
240 
241 	next_ip = perf_instruction_pointer(regs);
242 	lr = regs->link;
243 	sp = regs->gpr[1];
244 	perf_callchain_store(entry, next_ip);
245 
246 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
247 		fp = (unsigned long __user *) sp;
248 		if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
249 			return;
250 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
251 			return;
252 
253 		/*
254 		 * Note: the next_sp - sp >= signal frame size check
255 		 * is true when next_sp < sp, which can happen when
256 		 * transitioning from an alternate signal stack to the
257 		 * normal stack.
258 		 */
259 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
260 		    (is_sigreturn_64_address(next_ip, sp) ||
261 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
262 		    sane_signal_64_frame(sp)) {
263 			/*
264 			 * This looks like an signal frame
265 			 */
266 			sigframe = (struct signal_frame_64 __user *) sp;
267 			uregs = sigframe->uc.uc_mcontext.gp_regs;
268 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
269 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
270 			    read_user_stack_64(&uregs[PT_R1], &sp))
271 				return;
272 			level = 0;
273 			perf_callchain_store(entry, PERF_CONTEXT_USER);
274 			perf_callchain_store(entry, next_ip);
275 			continue;
276 		}
277 
278 		if (level == 0)
279 			next_ip = lr;
280 		perf_callchain_store(entry, next_ip);
281 		++level;
282 		sp = next_sp;
283 	}
284 }
285 
current_is_64bit(void)286 static inline int current_is_64bit(void)
287 {
288 	/*
289 	 * We can't use test_thread_flag() here because we may be on an
290 	 * interrupt stack, and the thread flags don't get copied over
291 	 * from the thread_info on the main stack to the interrupt stack.
292 	 */
293 	return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
294 }
295 
296 #else  /* CONFIG_PPC64 */
297 /*
298  * On 32-bit we just access the address and let hash_page create a
299  * HPTE if necessary, so there is no need to fall back to reading
300  * the page tables.  Since this is called at interrupt level,
301  * do_page_fault() won't treat a DSI as a page fault.
302  */
read_user_stack_32(unsigned int __user * ptr,unsigned int * ret)303 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
304 {
305 	int rc;
306 
307 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
308 	    ((unsigned long)ptr & 3))
309 		return -EFAULT;
310 
311 	pagefault_disable();
312 	rc = __get_user_inatomic(*ret, ptr);
313 	pagefault_enable();
314 
315 	return rc;
316 }
317 
perf_callchain_user_64(struct perf_callchain_entry * entry,struct pt_regs * regs)318 static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
319 					  struct pt_regs *regs)
320 {
321 }
322 
current_is_64bit(void)323 static inline int current_is_64bit(void)
324 {
325 	return 0;
326 }
327 
valid_user_sp(unsigned long sp,int is_64)328 static inline int valid_user_sp(unsigned long sp, int is_64)
329 {
330 	if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
331 		return 0;
332 	return 1;
333 }
334 
335 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
336 #define sigcontext32		sigcontext
337 #define mcontext32		mcontext
338 #define ucontext32		ucontext
339 #define compat_siginfo_t	struct siginfo
340 
341 #endif /* CONFIG_PPC64 */
342 
343 /*
344  * Layout for non-RT signal frames
345  */
346 struct signal_frame_32 {
347 	char			dummy[__SIGNAL_FRAMESIZE32];
348 	struct sigcontext32	sctx;
349 	struct mcontext32	mctx;
350 	int			abigap[56];
351 };
352 
353 /*
354  * Layout for RT signal frames
355  */
356 struct rt_signal_frame_32 {
357 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
358 	compat_siginfo_t	info;
359 	struct ucontext32	uc;
360 	int			abigap[56];
361 };
362 
is_sigreturn_32_address(unsigned int nip,unsigned int fp)363 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
364 {
365 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
366 		return 1;
367 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
368 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
369 		return 1;
370 	return 0;
371 }
372 
is_rt_sigreturn_32_address(unsigned int nip,unsigned int fp)373 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
374 {
375 	if (nip == fp + offsetof(struct rt_signal_frame_32,
376 				 uc.uc_mcontext.mc_pad))
377 		return 1;
378 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
379 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
380 		return 1;
381 	return 0;
382 }
383 
sane_signal_32_frame(unsigned int sp)384 static int sane_signal_32_frame(unsigned int sp)
385 {
386 	struct signal_frame_32 __user *sf;
387 	unsigned int regs;
388 
389 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
390 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
391 		return 0;
392 	return regs == (unsigned long) &sf->mctx;
393 }
394 
sane_rt_signal_32_frame(unsigned int sp)395 static int sane_rt_signal_32_frame(unsigned int sp)
396 {
397 	struct rt_signal_frame_32 __user *sf;
398 	unsigned int regs;
399 
400 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
401 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
402 		return 0;
403 	return regs == (unsigned long) &sf->uc.uc_mcontext;
404 }
405 
signal_frame_32_regs(unsigned int sp,unsigned int next_sp,unsigned int next_ip)406 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
407 				unsigned int next_sp, unsigned int next_ip)
408 {
409 	struct mcontext32 __user *mctx = NULL;
410 	struct signal_frame_32 __user *sf;
411 	struct rt_signal_frame_32 __user *rt_sf;
412 
413 	/*
414 	 * Note: the next_sp - sp >= signal frame size check
415 	 * is true when next_sp < sp, for example, when
416 	 * transitioning from an alternate signal stack to the
417 	 * normal stack.
418 	 */
419 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
420 	    is_sigreturn_32_address(next_ip, sp) &&
421 	    sane_signal_32_frame(sp)) {
422 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
423 		mctx = &sf->mctx;
424 	}
425 
426 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
427 	    is_rt_sigreturn_32_address(next_ip, sp) &&
428 	    sane_rt_signal_32_frame(sp)) {
429 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
430 		mctx = &rt_sf->uc.uc_mcontext;
431 	}
432 
433 	if (!mctx)
434 		return NULL;
435 	return mctx->mc_gregs;
436 }
437 
perf_callchain_user_32(struct perf_callchain_entry * entry,struct pt_regs * regs)438 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
439 				   struct pt_regs *regs)
440 {
441 	unsigned int sp, next_sp;
442 	unsigned int next_ip;
443 	unsigned int lr;
444 	long level = 0;
445 	unsigned int __user *fp, *uregs;
446 
447 	next_ip = perf_instruction_pointer(regs);
448 	lr = regs->link;
449 	sp = regs->gpr[1];
450 	perf_callchain_store(entry, next_ip);
451 
452 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
453 		fp = (unsigned int __user *) (unsigned long) sp;
454 		if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
455 			return;
456 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
457 			return;
458 
459 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
460 		if (!uregs && level <= 1)
461 			uregs = signal_frame_32_regs(sp, next_sp, lr);
462 		if (uregs) {
463 			/*
464 			 * This looks like an signal frame, so restart
465 			 * the stack trace with the values in it.
466 			 */
467 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
468 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
469 			    read_user_stack_32(&uregs[PT_R1], &sp))
470 				return;
471 			level = 0;
472 			perf_callchain_store(entry, PERF_CONTEXT_USER);
473 			perf_callchain_store(entry, next_ip);
474 			continue;
475 		}
476 
477 		if (level == 0)
478 			next_ip = lr;
479 		perf_callchain_store(entry, next_ip);
480 		++level;
481 		sp = next_sp;
482 	}
483 }
484 
485 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)486 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
487 {
488 	if (current_is_64bit())
489 		perf_callchain_user_64(entry, regs);
490 	else
491 		perf_callchain_user_32(entry, regs);
492 }
493