• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13 
14 
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29 
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32 
33 /*
34  * Set oops header version to distinguish between old and new format header.
35  * lnx,oops-log partition max size is 4000, header version > 4000 will
36  * help in identifying new header.
37  */
38 #define OOPS_HDR_VERSION 5000
39 
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44 
45 struct err_log_info {
46 	__be32 error_type;
47 	__be32 seq_num;
48 };
49 
50 struct nvram_os_partition {
51 	const char *name;
52 	int req_size;	/* desired size, in bytes */
53 	int min_size;	/* minimum acceptable size (0 means req_size) */
54 	long size;	/* size of data portion (excluding err_log_info) */
55 	long index;	/* offset of data portion of partition */
56 	bool os_partition; /* partition initialized by OS, not FW */
57 };
58 
59 static struct nvram_os_partition rtas_log_partition = {
60 	.name = "ibm,rtas-log",
61 	.req_size = 2079,
62 	.min_size = 1055,
63 	.index = -1,
64 	.os_partition = true
65 };
66 
67 static struct nvram_os_partition oops_log_partition = {
68 	.name = "lnx,oops-log",
69 	.req_size = 4000,
70 	.min_size = 2000,
71 	.index = -1,
72 	.os_partition = true
73 };
74 
75 static const char *pseries_nvram_os_partitions[] = {
76 	"ibm,rtas-log",
77 	"lnx,oops-log",
78 	NULL
79 };
80 
81 struct oops_log_info {
82 	__be16 version;
83 	__be16 report_length;
84 	__be64 timestamp;
85 } __attribute__((packed));
86 
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 			  enum kmsg_dump_reason reason);
89 
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 	.dump = oops_to_nvram
92 };
93 
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5		/* seconds */
96 static unsigned long last_unread_rtas_event;	/* timestamp */
97 
98 /*
99  * For capturing and compressing an oops or panic report...
100 
101  * big_oops_buf[] holds the uncompressed text we're capturing.
102  *
103  * oops_buf[] holds the compressed text, preceded by a oops header.
104  * oops header has u16 holding the version of oops header (to differentiate
105  * between old and new format header) followed by u16 holding the length of
106  * the compressed* text (*Or uncompressed, if compression fails.) and u64
107  * holding the timestamp. oops_buf[] gets written to NVRAM.
108  *
109  * oops_log_info points to the header. oops_data points to the compressed text.
110  *
111  * +- oops_buf
112  * |                                   +- oops_data
113  * v                                   v
114  * +-----------+-----------+-----------+------------------------+
115  * | version   | length    | timestamp | text                   |
116  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
117  * +-----------+-----------+-----------+------------------------+
118  * ^
119  * +- oops_log_info
120  *
121  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122  */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127 
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133 
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 	.name = "of-config",
137 	.index = -1,
138 	.os_partition = false
139 };
140 
141 static struct nvram_os_partition common_partition = {
142 	.name = "common",
143 	.index = -1,
144 	.os_partition = false
145 };
146 
147 static enum pstore_type_id nvram_type_ids[] = {
148 	PSTORE_TYPE_DMESG,
149 	PSTORE_TYPE_PPC_RTAS,
150 	PSTORE_TYPE_PPC_OF,
151 	PSTORE_TYPE_PPC_COMMON,
152 	-1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157 
pSeries_nvram_read(char * buf,size_t count,loff_t * index)158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 	unsigned int i;
161 	unsigned long len;
162 	int done;
163 	unsigned long flags;
164 	char *p = buf;
165 
166 
167 	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 		return -ENODEV;
169 
170 	if (*index >= nvram_size)
171 		return 0;
172 
173 	i = *index;
174 	if (i + count > nvram_size)
175 		count = nvram_size - i;
176 
177 	spin_lock_irqsave(&nvram_lock, flags);
178 
179 	for (; count != 0; count -= len) {
180 		len = count;
181 		if (len > NVRW_CNT)
182 			len = NVRW_CNT;
183 
184 		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 			       len) != 0) || len != done) {
186 			spin_unlock_irqrestore(&nvram_lock, flags);
187 			return -EIO;
188 		}
189 
190 		memcpy(p, nvram_buf, len);
191 
192 		p += len;
193 		i += len;
194 	}
195 
196 	spin_unlock_irqrestore(&nvram_lock, flags);
197 
198 	*index = i;
199 	return p - buf;
200 }
201 
pSeries_nvram_write(char * buf,size_t count,loff_t * index)202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 	unsigned int i;
205 	unsigned long len;
206 	int done;
207 	unsigned long flags;
208 	const char *p = buf;
209 
210 	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 		return -ENODEV;
212 
213 	if (*index >= nvram_size)
214 		return 0;
215 
216 	i = *index;
217 	if (i + count > nvram_size)
218 		count = nvram_size - i;
219 
220 	spin_lock_irqsave(&nvram_lock, flags);
221 
222 	for (; count != 0; count -= len) {
223 		len = count;
224 		if (len > NVRW_CNT)
225 			len = NVRW_CNT;
226 
227 		memcpy(nvram_buf, p, len);
228 
229 		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 			       len) != 0) || len != done) {
231 			spin_unlock_irqrestore(&nvram_lock, flags);
232 			return -EIO;
233 		}
234 
235 		p += len;
236 		i += len;
237 	}
238 	spin_unlock_irqrestore(&nvram_lock, flags);
239 
240 	*index = i;
241 	return p - buf;
242 }
243 
pSeries_nvram_get_size(void)244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 	return nvram_size ? nvram_size : -ENODEV;
247 }
248 
249 
250 /* nvram_write_os_partition, nvram_write_error_log
251  *
252  * We need to buffer the error logs into nvram to ensure that we have
253  * the failure information to decode.  If we have a severe error there
254  * is no way to guarantee that the OS or the machine is in a state to
255  * get back to user land and write the error to disk.  For example if
256  * the SCSI device driver causes a Machine Check by writing to a bad
257  * IO address, there is no way of guaranteeing that the device driver
258  * is in any state that is would also be able to write the error data
259  * captured to disk, thus we buffer it in NVRAM for analysis on the
260  * next boot.
261  *
262  * In NVRAM the partition containing the error log buffer will looks like:
263  * Header (in bytes):
264  * +-----------+----------+--------+------------+------------------+
265  * | signature | checksum | length | name       | data             |
266  * |0          |1         |2      3|4         15|16        length-1|
267  * +-----------+----------+--------+------------+------------------+
268  *
269  * The 'data' section would look like (in bytes):
270  * +--------------+------------+-----------------------------------+
271  * | event_logged | sequence # | error log                         |
272  * |0            3|4          7|8                  error_log_size-1|
273  * +--------------+------------+-----------------------------------+
274  *
275  * event_logged: 0 if event has not been logged to syslog, 1 if it has
276  * sequence #: The unique sequence # for each event. (until it wraps)
277  * error log: The error log from event_scan
278  */
nvram_write_os_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)279 static int nvram_write_os_partition(struct nvram_os_partition *part,
280 				    char *buff, int length,
281 				    unsigned int err_type,
282 				    unsigned int error_log_cnt)
283 {
284 	int rc;
285 	loff_t tmp_index;
286 	struct err_log_info info;
287 
288 	if (part->index == -1) {
289 		return -ESPIPE;
290 	}
291 
292 	if (length > part->size) {
293 		length = part->size;
294 	}
295 
296 	info.error_type = cpu_to_be32(err_type);
297 	info.seq_num = cpu_to_be32(error_log_cnt);
298 
299 	tmp_index = part->index;
300 
301 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
302 	if (rc <= 0) {
303 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
304 		return rc;
305 	}
306 
307 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
308 	if (rc <= 0) {
309 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
310 		return rc;
311 	}
312 
313 	return 0;
314 }
315 
nvram_write_error_log(char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)316 int nvram_write_error_log(char * buff, int length,
317                           unsigned int err_type, unsigned int error_log_cnt)
318 {
319 	int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
320 						err_type, error_log_cnt);
321 	if (!rc) {
322 		last_unread_rtas_event = get_seconds();
323 #ifdef CONFIG_PSTORE
324 		last_rtas_event = get_seconds();
325 #endif
326 	}
327 
328 	return rc;
329 }
330 
331 /* nvram_read_partition
332  *
333  * Reads nvram partition for at most 'length'
334  */
nvram_read_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)335 static int nvram_read_partition(struct nvram_os_partition *part, char *buff,
336 				int length, unsigned int *err_type,
337 				unsigned int *error_log_cnt)
338 {
339 	int rc;
340 	loff_t tmp_index;
341 	struct err_log_info info;
342 
343 	if (part->index == -1)
344 		return -1;
345 
346 	if (length > part->size)
347 		length = part->size;
348 
349 	tmp_index = part->index;
350 
351 	if (part->os_partition) {
352 		rc = ppc_md.nvram_read((char *)&info,
353 					sizeof(struct err_log_info),
354 					&tmp_index);
355 		if (rc <= 0) {
356 			pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
357 			return rc;
358 		}
359 	}
360 
361 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
362 	if (rc <= 0) {
363 		pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
364 		return rc;
365 	}
366 
367 	if (part->os_partition) {
368 		*error_log_cnt = be32_to_cpu(info.seq_num);
369 		*err_type = be32_to_cpu(info.error_type);
370 	}
371 
372 	return 0;
373 }
374 
375 /* nvram_read_error_log
376  *
377  * Reads nvram for error log for at most 'length'
378  */
nvram_read_error_log(char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)379 int nvram_read_error_log(char *buff, int length,
380 			unsigned int *err_type, unsigned int *error_log_cnt)
381 {
382 	return nvram_read_partition(&rtas_log_partition, buff, length,
383 						err_type, error_log_cnt);
384 }
385 
386 /* This doesn't actually zero anything, but it sets the event_logged
387  * word to tell that this event is safely in syslog.
388  */
nvram_clear_error_log(void)389 int nvram_clear_error_log(void)
390 {
391 	loff_t tmp_index;
392 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
393 	int rc;
394 
395 	if (rtas_log_partition.index == -1)
396 		return -1;
397 
398 	tmp_index = rtas_log_partition.index;
399 
400 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
401 	if (rc <= 0) {
402 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
403 		return rc;
404 	}
405 	last_unread_rtas_event = 0;
406 
407 	return 0;
408 }
409 
410 /* pseries_nvram_init_os_partition
411  *
412  * This sets up a partition with an "OS" signature.
413  *
414  * The general strategy is the following:
415  * 1.) If a partition with the indicated name already exists...
416  *	- If it's large enough, use it.
417  *	- Otherwise, recycle it and keep going.
418  * 2.) Search for a free partition that is large enough.
419  * 3.) If there's not a free partition large enough, recycle any obsolete
420  * OS partitions and try again.
421  * 4.) Will first try getting a chunk that will satisfy the requested size.
422  * 5.) If a chunk of the requested size cannot be allocated, then try finding
423  * a chunk that will satisfy the minum needed.
424  *
425  * Returns 0 on success, else -1.
426  */
pseries_nvram_init_os_partition(struct nvram_os_partition * part)427 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
428 									*part)
429 {
430 	loff_t p;
431 	int size;
432 
433 	/* Look for ours */
434 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
435 
436 	/* Found one but too small, remove it */
437 	if (p && size < part->min_size) {
438 		pr_info("nvram: Found too small %s partition,"
439 					" removing it...\n", part->name);
440 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
441 		p = 0;
442 	}
443 
444 	/* Create one if we didn't find */
445 	if (!p) {
446 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
447 					part->req_size, part->min_size);
448 		if (p == -ENOSPC) {
449 			pr_info("nvram: No room to create %s partition, "
450 				"deleting any obsolete OS partitions...\n",
451 				part->name);
452 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
453 						pseries_nvram_os_partitions);
454 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
455 					part->req_size, part->min_size);
456 		}
457 	}
458 
459 	if (p <= 0) {
460 		pr_err("nvram: Failed to find or create %s"
461 		       " partition, err %d\n", part->name, (int)p);
462 		return -1;
463 	}
464 
465 	part->index = p;
466 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
467 
468 	return 0;
469 }
470 
471 /*
472  * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
473  * would logging this oops/panic overwrite an RTAS event that rtas_errd
474  * hasn't had a chance to read and process?  Return 1 if so, else 0.
475  *
476  * We assume that if rtas_errd hasn't read the RTAS event in
477  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
478  */
clobbering_unread_rtas_event(void)479 static int clobbering_unread_rtas_event(void)
480 {
481 	return (oops_log_partition.index == rtas_log_partition.index
482 		&& last_unread_rtas_event
483 		&& get_seconds() - last_unread_rtas_event <=
484 						NVRAM_RTAS_READ_TIMEOUT);
485 }
486 
487 /* Derived from logfs_compress() */
nvram_compress(const void * in,void * out,size_t inlen,size_t outlen)488 static int nvram_compress(const void *in, void *out, size_t inlen,
489 							size_t outlen)
490 {
491 	int err, ret;
492 
493 	ret = -EIO;
494 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
495 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
496 	if (err != Z_OK)
497 		goto error;
498 
499 	stream.next_in = in;
500 	stream.avail_in = inlen;
501 	stream.total_in = 0;
502 	stream.next_out = out;
503 	stream.avail_out = outlen;
504 	stream.total_out = 0;
505 
506 	err = zlib_deflate(&stream, Z_FINISH);
507 	if (err != Z_STREAM_END)
508 		goto error;
509 
510 	err = zlib_deflateEnd(&stream);
511 	if (err != Z_OK)
512 		goto error;
513 
514 	if (stream.total_out >= stream.total_in)
515 		goto error;
516 
517 	ret = stream.total_out;
518 error:
519 	return ret;
520 }
521 
522 /* Compress the text from big_oops_buf into oops_buf. */
zip_oops(size_t text_len)523 static int zip_oops(size_t text_len)
524 {
525 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
526 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
527 								oops_data_sz);
528 	if (zipped_len < 0) {
529 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
530 		pr_err("nvram: logging uncompressed oops/panic report\n");
531 		return -1;
532 	}
533 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
534 	oops_hdr->report_length = cpu_to_be16(zipped_len);
535 	oops_hdr->timestamp = cpu_to_be64(get_seconds());
536 	return 0;
537 }
538 
539 #ifdef CONFIG_PSTORE
nvram_pstore_open(struct pstore_info * psi)540 static int nvram_pstore_open(struct pstore_info *psi)
541 {
542 	/* Reset the iterator to start reading partitions again */
543 	read_type = -1;
544 	return 0;
545 }
546 
547 /**
548  * nvram_pstore_write - pstore write callback for nvram
549  * @type:               Type of message logged
550  * @reason:             reason behind dump (oops/panic)
551  * @id:                 identifier to indicate the write performed
552  * @part:               pstore writes data to registered buffer in parts,
553  *                      part number will indicate the same.
554  * @count:              Indicates oops count
555  * @compressed:         Flag to indicate the log is compressed
556  * @size:               number of bytes written to the registered buffer
557  * @psi:                registered pstore_info structure
558  *
559  * Called by pstore_dump() when an oops or panic report is logged in the
560  * printk buffer.
561  * Returns 0 on successful write.
562  */
nvram_pstore_write(enum pstore_type_id type,enum kmsg_dump_reason reason,u64 * id,unsigned int part,int count,bool compressed,size_t size,struct pstore_info * psi)563 static int nvram_pstore_write(enum pstore_type_id type,
564 				enum kmsg_dump_reason reason,
565 				u64 *id, unsigned int part, int count,
566 				bool compressed, size_t size,
567 				struct pstore_info *psi)
568 {
569 	int rc;
570 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
571 	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
572 
573 	/* part 1 has the recent messages from printk buffer */
574 	if (part > 1 || type != PSTORE_TYPE_DMESG ||
575 				clobbering_unread_rtas_event())
576 		return -1;
577 
578 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
579 	oops_hdr->report_length = cpu_to_be16(size);
580 	oops_hdr->timestamp = cpu_to_be64(get_seconds());
581 
582 	if (compressed)
583 		err_type = ERR_TYPE_KERNEL_PANIC_GZ;
584 
585 	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
586 		(int) (sizeof(*oops_hdr) + size), err_type, count);
587 
588 	if (rc != 0)
589 		return rc;
590 
591 	*id = part;
592 	return 0;
593 }
594 
595 /*
596  * Reads the oops/panic report, rtas, of-config and common partition.
597  * Returns the length of the data we read from each partition.
598  * Returns 0 if we've been called before.
599  */
nvram_pstore_read(u64 * id,enum pstore_type_id * type,int * count,struct timespec * time,char ** buf,bool * compressed,struct pstore_info * psi)600 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
601 				int *count, struct timespec *time, char **buf,
602 				bool *compressed, struct pstore_info *psi)
603 {
604 	struct oops_log_info *oops_hdr;
605 	unsigned int err_type, id_no, size = 0;
606 	struct nvram_os_partition *part = NULL;
607 	char *buff = NULL;
608 	int sig = 0;
609 	loff_t p;
610 
611 	read_type++;
612 
613 	switch (nvram_type_ids[read_type]) {
614 	case PSTORE_TYPE_DMESG:
615 		part = &oops_log_partition;
616 		*type = PSTORE_TYPE_DMESG;
617 		break;
618 	case PSTORE_TYPE_PPC_RTAS:
619 		part = &rtas_log_partition;
620 		*type = PSTORE_TYPE_PPC_RTAS;
621 		time->tv_sec = last_rtas_event;
622 		time->tv_nsec = 0;
623 		break;
624 	case PSTORE_TYPE_PPC_OF:
625 		sig = NVRAM_SIG_OF;
626 		part = &of_config_partition;
627 		*type = PSTORE_TYPE_PPC_OF;
628 		*id = PSTORE_TYPE_PPC_OF;
629 		time->tv_sec = 0;
630 		time->tv_nsec = 0;
631 		break;
632 	case PSTORE_TYPE_PPC_COMMON:
633 		sig = NVRAM_SIG_SYS;
634 		part = &common_partition;
635 		*type = PSTORE_TYPE_PPC_COMMON;
636 		*id = PSTORE_TYPE_PPC_COMMON;
637 		time->tv_sec = 0;
638 		time->tv_nsec = 0;
639 		break;
640 	default:
641 		return 0;
642 	}
643 
644 	if (!part->os_partition) {
645 		p = nvram_find_partition(part->name, sig, &size);
646 		if (p <= 0) {
647 			pr_err("nvram: Failed to find partition %s, "
648 				"err %d\n", part->name, (int)p);
649 			return 0;
650 		}
651 		part->index = p;
652 		part->size = size;
653 	}
654 
655 	buff = kmalloc(part->size, GFP_KERNEL);
656 
657 	if (!buff)
658 		return -ENOMEM;
659 
660 	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
661 		kfree(buff);
662 		return 0;
663 	}
664 
665 	*count = 0;
666 
667 	if (part->os_partition)
668 		*id = id_no;
669 
670 	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
671 		size_t length, hdr_size;
672 
673 		oops_hdr = (struct oops_log_info *)buff;
674 		if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
675 			/* Old format oops header had 2-byte record size */
676 			hdr_size = sizeof(u16);
677 			length = be16_to_cpu(oops_hdr->version);
678 			time->tv_sec = 0;
679 			time->tv_nsec = 0;
680 		} else {
681 			hdr_size = sizeof(*oops_hdr);
682 			length = be16_to_cpu(oops_hdr->report_length);
683 			time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
684 			time->tv_nsec = 0;
685 		}
686 		*buf = kmalloc(length, GFP_KERNEL);
687 		if (*buf == NULL)
688 			return -ENOMEM;
689 		memcpy(*buf, buff + hdr_size, length);
690 		kfree(buff);
691 
692 		if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
693 			*compressed = true;
694 		else
695 			*compressed = false;
696 		return length;
697 	}
698 
699 	*buf = buff;
700 	return part->size;
701 }
702 
703 static struct pstore_info nvram_pstore_info = {
704 	.owner = THIS_MODULE,
705 	.name = "nvram",
706 	.open = nvram_pstore_open,
707 	.read = nvram_pstore_read,
708 	.write = nvram_pstore_write,
709 };
710 
nvram_pstore_init(void)711 static int nvram_pstore_init(void)
712 {
713 	int rc = 0;
714 
715 	nvram_pstore_info.buf = oops_data;
716 	nvram_pstore_info.bufsize = oops_data_sz;
717 
718 	rc = pstore_register(&nvram_pstore_info);
719 	if (rc != 0)
720 		pr_err("nvram: pstore_register() failed, defaults to "
721 				"kmsg_dump; returned %d\n", rc);
722 
723 	return rc;
724 }
725 #else
nvram_pstore_init(void)726 static int nvram_pstore_init(void)
727 {
728 	return -1;
729 }
730 #endif
731 
nvram_init_oops_partition(int rtas_partition_exists)732 static void __init nvram_init_oops_partition(int rtas_partition_exists)
733 {
734 	int rc;
735 
736 	rc = pseries_nvram_init_os_partition(&oops_log_partition);
737 	if (rc != 0) {
738 		if (!rtas_partition_exists)
739 			return;
740 		pr_notice("nvram: Using %s partition to log both"
741 			" RTAS errors and oops/panic reports\n",
742 			rtas_log_partition.name);
743 		memcpy(&oops_log_partition, &rtas_log_partition,
744 						sizeof(rtas_log_partition));
745 	}
746 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
747 	if (!oops_buf) {
748 		pr_err("nvram: No memory for %s partition\n",
749 						oops_log_partition.name);
750 		return;
751 	}
752 	oops_data = oops_buf + sizeof(struct oops_log_info);
753 	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
754 
755 	rc = nvram_pstore_init();
756 
757 	if (!rc)
758 		return;
759 
760 	/*
761 	 * Figure compression (preceded by elimination of each line's <n>
762 	 * severity prefix) will reduce the oops/panic report to at most
763 	 * 45% of its original size.
764 	 */
765 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
766 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
767 	if (big_oops_buf) {
768 		stream.workspace =  kmalloc(zlib_deflate_workspacesize(
769 					WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
770 		if (!stream.workspace) {
771 			pr_err("nvram: No memory for compression workspace; "
772 				"skipping compression of %s partition data\n",
773 				oops_log_partition.name);
774 			kfree(big_oops_buf);
775 			big_oops_buf = NULL;
776 		}
777 	} else {
778 		pr_err("No memory for uncompressed %s data; "
779 			"skipping compression\n", oops_log_partition.name);
780 		stream.workspace = NULL;
781 	}
782 
783 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
784 	if (rc != 0) {
785 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
786 		kfree(oops_buf);
787 		kfree(big_oops_buf);
788 		kfree(stream.workspace);
789 	}
790 }
791 
pseries_nvram_init_log_partitions(void)792 static int __init pseries_nvram_init_log_partitions(void)
793 {
794 	int rc;
795 
796 	/* Scan nvram for partitions */
797 	nvram_scan_partitions();
798 
799 	rc = pseries_nvram_init_os_partition(&rtas_log_partition);
800 	nvram_init_oops_partition(rc == 0);
801 	return 0;
802 }
803 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
804 
pSeries_nvram_init(void)805 int __init pSeries_nvram_init(void)
806 {
807 	struct device_node *nvram;
808 	const __be32 *nbytes_p;
809 	unsigned int proplen;
810 
811 	nvram = of_find_node_by_type(NULL, "nvram");
812 	if (nvram == NULL)
813 		return -ENODEV;
814 
815 	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
816 	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
817 		of_node_put(nvram);
818 		return -EIO;
819 	}
820 
821 	nvram_size = be32_to_cpup(nbytes_p);
822 
823 	nvram_fetch = rtas_token("nvram-fetch");
824 	nvram_store = rtas_token("nvram-store");
825 	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
826 	of_node_put(nvram);
827 
828 	ppc_md.nvram_read	= pSeries_nvram_read;
829 	ppc_md.nvram_write	= pSeries_nvram_write;
830 	ppc_md.nvram_size	= pSeries_nvram_get_size;
831 
832 	return 0;
833 }
834 
835 
836 /*
837  * This is our kmsg_dump callback, called after an oops or panic report
838  * has been written to the printk buffer.  We want to capture as much
839  * of the printk buffer as possible.  First, capture as much as we can
840  * that we think will compress sufficiently to fit in the lnx,oops-log
841  * partition.  If that's too much, go back and capture uncompressed text.
842  */
oops_to_nvram(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)843 static void oops_to_nvram(struct kmsg_dumper *dumper,
844 			  enum kmsg_dump_reason reason)
845 {
846 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
847 	static unsigned int oops_count = 0;
848 	static bool panicking = false;
849 	static DEFINE_SPINLOCK(lock);
850 	unsigned long flags;
851 	size_t text_len;
852 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
853 	int rc = -1;
854 
855 	switch (reason) {
856 	case KMSG_DUMP_RESTART:
857 	case KMSG_DUMP_HALT:
858 	case KMSG_DUMP_POWEROFF:
859 		/* These are almost always orderly shutdowns. */
860 		return;
861 	case KMSG_DUMP_OOPS:
862 		break;
863 	case KMSG_DUMP_PANIC:
864 		panicking = true;
865 		break;
866 	case KMSG_DUMP_EMERG:
867 		if (panicking)
868 			/* Panic report already captured. */
869 			return;
870 		break;
871 	default:
872 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
873 		       __func__, (int) reason);
874 		return;
875 	}
876 
877 	if (clobbering_unread_rtas_event())
878 		return;
879 
880 	if (!spin_trylock_irqsave(&lock, flags))
881 		return;
882 
883 	if (big_oops_buf) {
884 		kmsg_dump_get_buffer(dumper, false,
885 				     big_oops_buf, big_oops_buf_sz, &text_len);
886 		rc = zip_oops(text_len);
887 	}
888 	if (rc != 0) {
889 		kmsg_dump_rewind(dumper);
890 		kmsg_dump_get_buffer(dumper, false,
891 				     oops_data, oops_data_sz, &text_len);
892 		err_type = ERR_TYPE_KERNEL_PANIC;
893 		oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
894 		oops_hdr->report_length = cpu_to_be16(text_len);
895 		oops_hdr->timestamp = cpu_to_be64(get_seconds());
896 	}
897 
898 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
899 		(int) (sizeof(*oops_hdr) + text_len), err_type,
900 		++oops_count);
901 
902 	spin_unlock_irqrestore(&lock, flags);
903 }
904