1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 */
13
14
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32
33 /*
34 * Set oops header version to distinguish between old and new format header.
35 * lnx,oops-log partition max size is 4000, header version > 4000 will
36 * help in identifying new header.
37 */
38 #define OOPS_HDR_VERSION 5000
39
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44
45 struct err_log_info {
46 __be32 error_type;
47 __be32 seq_num;
48 };
49
50 struct nvram_os_partition {
51 const char *name;
52 int req_size; /* desired size, in bytes */
53 int min_size; /* minimum acceptable size (0 means req_size) */
54 long size; /* size of data portion (excluding err_log_info) */
55 long index; /* offset of data portion of partition */
56 bool os_partition; /* partition initialized by OS, not FW */
57 };
58
59 static struct nvram_os_partition rtas_log_partition = {
60 .name = "ibm,rtas-log",
61 .req_size = 2079,
62 .min_size = 1055,
63 .index = -1,
64 .os_partition = true
65 };
66
67 static struct nvram_os_partition oops_log_partition = {
68 .name = "lnx,oops-log",
69 .req_size = 4000,
70 .min_size = 2000,
71 .index = -1,
72 .os_partition = true
73 };
74
75 static const char *pseries_nvram_os_partitions[] = {
76 "ibm,rtas-log",
77 "lnx,oops-log",
78 NULL
79 };
80
81 struct oops_log_info {
82 __be16 version;
83 __be16 report_length;
84 __be64 timestamp;
85 } __attribute__((packed));
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 .dump = oops_to_nvram
92 };
93
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
96 static unsigned long last_unread_rtas_event; /* timestamp */
97
98 /*
99 * For capturing and compressing an oops or panic report...
100
101 * big_oops_buf[] holds the uncompressed text we're capturing.
102 *
103 * oops_buf[] holds the compressed text, preceded by a oops header.
104 * oops header has u16 holding the version of oops header (to differentiate
105 * between old and new format header) followed by u16 holding the length of
106 * the compressed* text (*Or uncompressed, if compression fails.) and u64
107 * holding the timestamp. oops_buf[] gets written to NVRAM.
108 *
109 * oops_log_info points to the header. oops_data points to the compressed text.
110 *
111 * +- oops_buf
112 * | +- oops_data
113 * v v
114 * +-----------+-----------+-----------+------------------------+
115 * | version | length | timestamp | text |
116 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
117 * +-----------+-----------+-----------+------------------------+
118 * ^
119 * +- oops_log_info
120 *
121 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122 */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 .name = "of-config",
137 .index = -1,
138 .os_partition = false
139 };
140
141 static struct nvram_os_partition common_partition = {
142 .name = "common",
143 .index = -1,
144 .os_partition = false
145 };
146
147 static enum pstore_type_id nvram_type_ids[] = {
148 PSTORE_TYPE_DMESG,
149 PSTORE_TYPE_PPC_RTAS,
150 PSTORE_TYPE_PPC_OF,
151 PSTORE_TYPE_PPC_COMMON,
152 -1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157
pSeries_nvram_read(char * buf,size_t count,loff_t * index)158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 unsigned int i;
161 unsigned long len;
162 int done;
163 unsigned long flags;
164 char *p = buf;
165
166
167 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 return -ENODEV;
169
170 if (*index >= nvram_size)
171 return 0;
172
173 i = *index;
174 if (i + count > nvram_size)
175 count = nvram_size - i;
176
177 spin_lock_irqsave(&nvram_lock, flags);
178
179 for (; count != 0; count -= len) {
180 len = count;
181 if (len > NVRW_CNT)
182 len = NVRW_CNT;
183
184 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 len) != 0) || len != done) {
186 spin_unlock_irqrestore(&nvram_lock, flags);
187 return -EIO;
188 }
189
190 memcpy(p, nvram_buf, len);
191
192 p += len;
193 i += len;
194 }
195
196 spin_unlock_irqrestore(&nvram_lock, flags);
197
198 *index = i;
199 return p - buf;
200 }
201
pSeries_nvram_write(char * buf,size_t count,loff_t * index)202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 unsigned int i;
205 unsigned long len;
206 int done;
207 unsigned long flags;
208 const char *p = buf;
209
210 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 return -ENODEV;
212
213 if (*index >= nvram_size)
214 return 0;
215
216 i = *index;
217 if (i + count > nvram_size)
218 count = nvram_size - i;
219
220 spin_lock_irqsave(&nvram_lock, flags);
221
222 for (; count != 0; count -= len) {
223 len = count;
224 if (len > NVRW_CNT)
225 len = NVRW_CNT;
226
227 memcpy(nvram_buf, p, len);
228
229 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 len) != 0) || len != done) {
231 spin_unlock_irqrestore(&nvram_lock, flags);
232 return -EIO;
233 }
234
235 p += len;
236 i += len;
237 }
238 spin_unlock_irqrestore(&nvram_lock, flags);
239
240 *index = i;
241 return p - buf;
242 }
243
pSeries_nvram_get_size(void)244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 return nvram_size ? nvram_size : -ENODEV;
247 }
248
249
250 /* nvram_write_os_partition, nvram_write_error_log
251 *
252 * We need to buffer the error logs into nvram to ensure that we have
253 * the failure information to decode. If we have a severe error there
254 * is no way to guarantee that the OS or the machine is in a state to
255 * get back to user land and write the error to disk. For example if
256 * the SCSI device driver causes a Machine Check by writing to a bad
257 * IO address, there is no way of guaranteeing that the device driver
258 * is in any state that is would also be able to write the error data
259 * captured to disk, thus we buffer it in NVRAM for analysis on the
260 * next boot.
261 *
262 * In NVRAM the partition containing the error log buffer will looks like:
263 * Header (in bytes):
264 * +-----------+----------+--------+------------+------------------+
265 * | signature | checksum | length | name | data |
266 * |0 |1 |2 3|4 15|16 length-1|
267 * +-----------+----------+--------+------------+------------------+
268 *
269 * The 'data' section would look like (in bytes):
270 * +--------------+------------+-----------------------------------+
271 * | event_logged | sequence # | error log |
272 * |0 3|4 7|8 error_log_size-1|
273 * +--------------+------------+-----------------------------------+
274 *
275 * event_logged: 0 if event has not been logged to syslog, 1 if it has
276 * sequence #: The unique sequence # for each event. (until it wraps)
277 * error log: The error log from event_scan
278 */
nvram_write_os_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)279 static int nvram_write_os_partition(struct nvram_os_partition *part,
280 char *buff, int length,
281 unsigned int err_type,
282 unsigned int error_log_cnt)
283 {
284 int rc;
285 loff_t tmp_index;
286 struct err_log_info info;
287
288 if (part->index == -1) {
289 return -ESPIPE;
290 }
291
292 if (length > part->size) {
293 length = part->size;
294 }
295
296 info.error_type = cpu_to_be32(err_type);
297 info.seq_num = cpu_to_be32(error_log_cnt);
298
299 tmp_index = part->index;
300
301 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
302 if (rc <= 0) {
303 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
304 return rc;
305 }
306
307 rc = ppc_md.nvram_write(buff, length, &tmp_index);
308 if (rc <= 0) {
309 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
310 return rc;
311 }
312
313 return 0;
314 }
315
nvram_write_error_log(char * buff,int length,unsigned int err_type,unsigned int error_log_cnt)316 int nvram_write_error_log(char * buff, int length,
317 unsigned int err_type, unsigned int error_log_cnt)
318 {
319 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
320 err_type, error_log_cnt);
321 if (!rc) {
322 last_unread_rtas_event = get_seconds();
323 #ifdef CONFIG_PSTORE
324 last_rtas_event = get_seconds();
325 #endif
326 }
327
328 return rc;
329 }
330
331 /* nvram_read_partition
332 *
333 * Reads nvram partition for at most 'length'
334 */
nvram_read_partition(struct nvram_os_partition * part,char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)335 static int nvram_read_partition(struct nvram_os_partition *part, char *buff,
336 int length, unsigned int *err_type,
337 unsigned int *error_log_cnt)
338 {
339 int rc;
340 loff_t tmp_index;
341 struct err_log_info info;
342
343 if (part->index == -1)
344 return -1;
345
346 if (length > part->size)
347 length = part->size;
348
349 tmp_index = part->index;
350
351 if (part->os_partition) {
352 rc = ppc_md.nvram_read((char *)&info,
353 sizeof(struct err_log_info),
354 &tmp_index);
355 if (rc <= 0) {
356 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
357 return rc;
358 }
359 }
360
361 rc = ppc_md.nvram_read(buff, length, &tmp_index);
362 if (rc <= 0) {
363 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
364 return rc;
365 }
366
367 if (part->os_partition) {
368 *error_log_cnt = be32_to_cpu(info.seq_num);
369 *err_type = be32_to_cpu(info.error_type);
370 }
371
372 return 0;
373 }
374
375 /* nvram_read_error_log
376 *
377 * Reads nvram for error log for at most 'length'
378 */
nvram_read_error_log(char * buff,int length,unsigned int * err_type,unsigned int * error_log_cnt)379 int nvram_read_error_log(char *buff, int length,
380 unsigned int *err_type, unsigned int *error_log_cnt)
381 {
382 return nvram_read_partition(&rtas_log_partition, buff, length,
383 err_type, error_log_cnt);
384 }
385
386 /* This doesn't actually zero anything, but it sets the event_logged
387 * word to tell that this event is safely in syslog.
388 */
nvram_clear_error_log(void)389 int nvram_clear_error_log(void)
390 {
391 loff_t tmp_index;
392 int clear_word = ERR_FLAG_ALREADY_LOGGED;
393 int rc;
394
395 if (rtas_log_partition.index == -1)
396 return -1;
397
398 tmp_index = rtas_log_partition.index;
399
400 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
401 if (rc <= 0) {
402 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
403 return rc;
404 }
405 last_unread_rtas_event = 0;
406
407 return 0;
408 }
409
410 /* pseries_nvram_init_os_partition
411 *
412 * This sets up a partition with an "OS" signature.
413 *
414 * The general strategy is the following:
415 * 1.) If a partition with the indicated name already exists...
416 * - If it's large enough, use it.
417 * - Otherwise, recycle it and keep going.
418 * 2.) Search for a free partition that is large enough.
419 * 3.) If there's not a free partition large enough, recycle any obsolete
420 * OS partitions and try again.
421 * 4.) Will first try getting a chunk that will satisfy the requested size.
422 * 5.) If a chunk of the requested size cannot be allocated, then try finding
423 * a chunk that will satisfy the minum needed.
424 *
425 * Returns 0 on success, else -1.
426 */
pseries_nvram_init_os_partition(struct nvram_os_partition * part)427 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
428 *part)
429 {
430 loff_t p;
431 int size;
432
433 /* Look for ours */
434 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
435
436 /* Found one but too small, remove it */
437 if (p && size < part->min_size) {
438 pr_info("nvram: Found too small %s partition,"
439 " removing it...\n", part->name);
440 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
441 p = 0;
442 }
443
444 /* Create one if we didn't find */
445 if (!p) {
446 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
447 part->req_size, part->min_size);
448 if (p == -ENOSPC) {
449 pr_info("nvram: No room to create %s partition, "
450 "deleting any obsolete OS partitions...\n",
451 part->name);
452 nvram_remove_partition(NULL, NVRAM_SIG_OS,
453 pseries_nvram_os_partitions);
454 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
455 part->req_size, part->min_size);
456 }
457 }
458
459 if (p <= 0) {
460 pr_err("nvram: Failed to find or create %s"
461 " partition, err %d\n", part->name, (int)p);
462 return -1;
463 }
464
465 part->index = p;
466 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
467
468 return 0;
469 }
470
471 /*
472 * Are we using the ibm,rtas-log for oops/panic reports? And if so,
473 * would logging this oops/panic overwrite an RTAS event that rtas_errd
474 * hasn't had a chance to read and process? Return 1 if so, else 0.
475 *
476 * We assume that if rtas_errd hasn't read the RTAS event in
477 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
478 */
clobbering_unread_rtas_event(void)479 static int clobbering_unread_rtas_event(void)
480 {
481 return (oops_log_partition.index == rtas_log_partition.index
482 && last_unread_rtas_event
483 && get_seconds() - last_unread_rtas_event <=
484 NVRAM_RTAS_READ_TIMEOUT);
485 }
486
487 /* Derived from logfs_compress() */
nvram_compress(const void * in,void * out,size_t inlen,size_t outlen)488 static int nvram_compress(const void *in, void *out, size_t inlen,
489 size_t outlen)
490 {
491 int err, ret;
492
493 ret = -EIO;
494 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
495 MEM_LEVEL, Z_DEFAULT_STRATEGY);
496 if (err != Z_OK)
497 goto error;
498
499 stream.next_in = in;
500 stream.avail_in = inlen;
501 stream.total_in = 0;
502 stream.next_out = out;
503 stream.avail_out = outlen;
504 stream.total_out = 0;
505
506 err = zlib_deflate(&stream, Z_FINISH);
507 if (err != Z_STREAM_END)
508 goto error;
509
510 err = zlib_deflateEnd(&stream);
511 if (err != Z_OK)
512 goto error;
513
514 if (stream.total_out >= stream.total_in)
515 goto error;
516
517 ret = stream.total_out;
518 error:
519 return ret;
520 }
521
522 /* Compress the text from big_oops_buf into oops_buf. */
zip_oops(size_t text_len)523 static int zip_oops(size_t text_len)
524 {
525 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
526 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
527 oops_data_sz);
528 if (zipped_len < 0) {
529 pr_err("nvram: compression failed; returned %d\n", zipped_len);
530 pr_err("nvram: logging uncompressed oops/panic report\n");
531 return -1;
532 }
533 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
534 oops_hdr->report_length = cpu_to_be16(zipped_len);
535 oops_hdr->timestamp = cpu_to_be64(get_seconds());
536 return 0;
537 }
538
539 #ifdef CONFIG_PSTORE
nvram_pstore_open(struct pstore_info * psi)540 static int nvram_pstore_open(struct pstore_info *psi)
541 {
542 /* Reset the iterator to start reading partitions again */
543 read_type = -1;
544 return 0;
545 }
546
547 /**
548 * nvram_pstore_write - pstore write callback for nvram
549 * @type: Type of message logged
550 * @reason: reason behind dump (oops/panic)
551 * @id: identifier to indicate the write performed
552 * @part: pstore writes data to registered buffer in parts,
553 * part number will indicate the same.
554 * @count: Indicates oops count
555 * @compressed: Flag to indicate the log is compressed
556 * @size: number of bytes written to the registered buffer
557 * @psi: registered pstore_info structure
558 *
559 * Called by pstore_dump() when an oops or panic report is logged in the
560 * printk buffer.
561 * Returns 0 on successful write.
562 */
nvram_pstore_write(enum pstore_type_id type,enum kmsg_dump_reason reason,u64 * id,unsigned int part,int count,bool compressed,size_t size,struct pstore_info * psi)563 static int nvram_pstore_write(enum pstore_type_id type,
564 enum kmsg_dump_reason reason,
565 u64 *id, unsigned int part, int count,
566 bool compressed, size_t size,
567 struct pstore_info *psi)
568 {
569 int rc;
570 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
571 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
572
573 /* part 1 has the recent messages from printk buffer */
574 if (part > 1 || type != PSTORE_TYPE_DMESG ||
575 clobbering_unread_rtas_event())
576 return -1;
577
578 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
579 oops_hdr->report_length = cpu_to_be16(size);
580 oops_hdr->timestamp = cpu_to_be64(get_seconds());
581
582 if (compressed)
583 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
584
585 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
586 (int) (sizeof(*oops_hdr) + size), err_type, count);
587
588 if (rc != 0)
589 return rc;
590
591 *id = part;
592 return 0;
593 }
594
595 /*
596 * Reads the oops/panic report, rtas, of-config and common partition.
597 * Returns the length of the data we read from each partition.
598 * Returns 0 if we've been called before.
599 */
nvram_pstore_read(u64 * id,enum pstore_type_id * type,int * count,struct timespec * time,char ** buf,bool * compressed,struct pstore_info * psi)600 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
601 int *count, struct timespec *time, char **buf,
602 bool *compressed, struct pstore_info *psi)
603 {
604 struct oops_log_info *oops_hdr;
605 unsigned int err_type, id_no, size = 0;
606 struct nvram_os_partition *part = NULL;
607 char *buff = NULL;
608 int sig = 0;
609 loff_t p;
610
611 read_type++;
612
613 switch (nvram_type_ids[read_type]) {
614 case PSTORE_TYPE_DMESG:
615 part = &oops_log_partition;
616 *type = PSTORE_TYPE_DMESG;
617 break;
618 case PSTORE_TYPE_PPC_RTAS:
619 part = &rtas_log_partition;
620 *type = PSTORE_TYPE_PPC_RTAS;
621 time->tv_sec = last_rtas_event;
622 time->tv_nsec = 0;
623 break;
624 case PSTORE_TYPE_PPC_OF:
625 sig = NVRAM_SIG_OF;
626 part = &of_config_partition;
627 *type = PSTORE_TYPE_PPC_OF;
628 *id = PSTORE_TYPE_PPC_OF;
629 time->tv_sec = 0;
630 time->tv_nsec = 0;
631 break;
632 case PSTORE_TYPE_PPC_COMMON:
633 sig = NVRAM_SIG_SYS;
634 part = &common_partition;
635 *type = PSTORE_TYPE_PPC_COMMON;
636 *id = PSTORE_TYPE_PPC_COMMON;
637 time->tv_sec = 0;
638 time->tv_nsec = 0;
639 break;
640 default:
641 return 0;
642 }
643
644 if (!part->os_partition) {
645 p = nvram_find_partition(part->name, sig, &size);
646 if (p <= 0) {
647 pr_err("nvram: Failed to find partition %s, "
648 "err %d\n", part->name, (int)p);
649 return 0;
650 }
651 part->index = p;
652 part->size = size;
653 }
654
655 buff = kmalloc(part->size, GFP_KERNEL);
656
657 if (!buff)
658 return -ENOMEM;
659
660 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
661 kfree(buff);
662 return 0;
663 }
664
665 *count = 0;
666
667 if (part->os_partition)
668 *id = id_no;
669
670 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
671 size_t length, hdr_size;
672
673 oops_hdr = (struct oops_log_info *)buff;
674 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
675 /* Old format oops header had 2-byte record size */
676 hdr_size = sizeof(u16);
677 length = be16_to_cpu(oops_hdr->version);
678 time->tv_sec = 0;
679 time->tv_nsec = 0;
680 } else {
681 hdr_size = sizeof(*oops_hdr);
682 length = be16_to_cpu(oops_hdr->report_length);
683 time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
684 time->tv_nsec = 0;
685 }
686 *buf = kmalloc(length, GFP_KERNEL);
687 if (*buf == NULL)
688 return -ENOMEM;
689 memcpy(*buf, buff + hdr_size, length);
690 kfree(buff);
691
692 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
693 *compressed = true;
694 else
695 *compressed = false;
696 return length;
697 }
698
699 *buf = buff;
700 return part->size;
701 }
702
703 static struct pstore_info nvram_pstore_info = {
704 .owner = THIS_MODULE,
705 .name = "nvram",
706 .open = nvram_pstore_open,
707 .read = nvram_pstore_read,
708 .write = nvram_pstore_write,
709 };
710
nvram_pstore_init(void)711 static int nvram_pstore_init(void)
712 {
713 int rc = 0;
714
715 nvram_pstore_info.buf = oops_data;
716 nvram_pstore_info.bufsize = oops_data_sz;
717
718 rc = pstore_register(&nvram_pstore_info);
719 if (rc != 0)
720 pr_err("nvram: pstore_register() failed, defaults to "
721 "kmsg_dump; returned %d\n", rc);
722
723 return rc;
724 }
725 #else
nvram_pstore_init(void)726 static int nvram_pstore_init(void)
727 {
728 return -1;
729 }
730 #endif
731
nvram_init_oops_partition(int rtas_partition_exists)732 static void __init nvram_init_oops_partition(int rtas_partition_exists)
733 {
734 int rc;
735
736 rc = pseries_nvram_init_os_partition(&oops_log_partition);
737 if (rc != 0) {
738 if (!rtas_partition_exists)
739 return;
740 pr_notice("nvram: Using %s partition to log both"
741 " RTAS errors and oops/panic reports\n",
742 rtas_log_partition.name);
743 memcpy(&oops_log_partition, &rtas_log_partition,
744 sizeof(rtas_log_partition));
745 }
746 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
747 if (!oops_buf) {
748 pr_err("nvram: No memory for %s partition\n",
749 oops_log_partition.name);
750 return;
751 }
752 oops_data = oops_buf + sizeof(struct oops_log_info);
753 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
754
755 rc = nvram_pstore_init();
756
757 if (!rc)
758 return;
759
760 /*
761 * Figure compression (preceded by elimination of each line's <n>
762 * severity prefix) will reduce the oops/panic report to at most
763 * 45% of its original size.
764 */
765 big_oops_buf_sz = (oops_data_sz * 100) / 45;
766 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
767 if (big_oops_buf) {
768 stream.workspace = kmalloc(zlib_deflate_workspacesize(
769 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
770 if (!stream.workspace) {
771 pr_err("nvram: No memory for compression workspace; "
772 "skipping compression of %s partition data\n",
773 oops_log_partition.name);
774 kfree(big_oops_buf);
775 big_oops_buf = NULL;
776 }
777 } else {
778 pr_err("No memory for uncompressed %s data; "
779 "skipping compression\n", oops_log_partition.name);
780 stream.workspace = NULL;
781 }
782
783 rc = kmsg_dump_register(&nvram_kmsg_dumper);
784 if (rc != 0) {
785 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
786 kfree(oops_buf);
787 kfree(big_oops_buf);
788 kfree(stream.workspace);
789 }
790 }
791
pseries_nvram_init_log_partitions(void)792 static int __init pseries_nvram_init_log_partitions(void)
793 {
794 int rc;
795
796 /* Scan nvram for partitions */
797 nvram_scan_partitions();
798
799 rc = pseries_nvram_init_os_partition(&rtas_log_partition);
800 nvram_init_oops_partition(rc == 0);
801 return 0;
802 }
803 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
804
pSeries_nvram_init(void)805 int __init pSeries_nvram_init(void)
806 {
807 struct device_node *nvram;
808 const __be32 *nbytes_p;
809 unsigned int proplen;
810
811 nvram = of_find_node_by_type(NULL, "nvram");
812 if (nvram == NULL)
813 return -ENODEV;
814
815 nbytes_p = of_get_property(nvram, "#bytes", &proplen);
816 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
817 of_node_put(nvram);
818 return -EIO;
819 }
820
821 nvram_size = be32_to_cpup(nbytes_p);
822
823 nvram_fetch = rtas_token("nvram-fetch");
824 nvram_store = rtas_token("nvram-store");
825 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
826 of_node_put(nvram);
827
828 ppc_md.nvram_read = pSeries_nvram_read;
829 ppc_md.nvram_write = pSeries_nvram_write;
830 ppc_md.nvram_size = pSeries_nvram_get_size;
831
832 return 0;
833 }
834
835
836 /*
837 * This is our kmsg_dump callback, called after an oops or panic report
838 * has been written to the printk buffer. We want to capture as much
839 * of the printk buffer as possible. First, capture as much as we can
840 * that we think will compress sufficiently to fit in the lnx,oops-log
841 * partition. If that's too much, go back and capture uncompressed text.
842 */
oops_to_nvram(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)843 static void oops_to_nvram(struct kmsg_dumper *dumper,
844 enum kmsg_dump_reason reason)
845 {
846 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
847 static unsigned int oops_count = 0;
848 static bool panicking = false;
849 static DEFINE_SPINLOCK(lock);
850 unsigned long flags;
851 size_t text_len;
852 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
853 int rc = -1;
854
855 switch (reason) {
856 case KMSG_DUMP_RESTART:
857 case KMSG_DUMP_HALT:
858 case KMSG_DUMP_POWEROFF:
859 /* These are almost always orderly shutdowns. */
860 return;
861 case KMSG_DUMP_OOPS:
862 break;
863 case KMSG_DUMP_PANIC:
864 panicking = true;
865 break;
866 case KMSG_DUMP_EMERG:
867 if (panicking)
868 /* Panic report already captured. */
869 return;
870 break;
871 default:
872 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
873 __func__, (int) reason);
874 return;
875 }
876
877 if (clobbering_unread_rtas_event())
878 return;
879
880 if (!spin_trylock_irqsave(&lock, flags))
881 return;
882
883 if (big_oops_buf) {
884 kmsg_dump_get_buffer(dumper, false,
885 big_oops_buf, big_oops_buf_sz, &text_len);
886 rc = zip_oops(text_len);
887 }
888 if (rc != 0) {
889 kmsg_dump_rewind(dumper);
890 kmsg_dump_get_buffer(dumper, false,
891 oops_data, oops_data_sz, &text_len);
892 err_type = ERR_TYPE_KERNEL_PANIC;
893 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
894 oops_hdr->report_length = cpu_to_be16(text_len);
895 oops_hdr->timestamp = cpu_to_be64(get_seconds());
896 }
897
898 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
899 (int) (sizeof(*oops_hdr) + text_len), err_type,
900 ++oops_count);
901
902 spin_unlock_irqrestore(&lock, flags);
903 }
904