1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/uaccess.h>
26 #include <linux/export.h>
27
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
33
34
35 /*
36 * Initialization flow and process
37 * -------------------------------
38 *
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
41 *
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
51 *
52 */
53
54 static int pci_probe = 1;
55
56 /*
57 * This flag tells if the platform is TILEmpower that needs
58 * special configuration for the PLX switch chip.
59 */
60 int __write_once tile_plx_gen1;
61
62 static struct pci_controller controllers[TILE_NUM_PCIE];
63 static int num_controllers;
64 static int pci_scan_flags[TILE_NUM_PCIE];
65
66 static struct pci_ops tile_cfg_ops;
67
68
69 /*
70 * We don't need to worry about the alignment of resources.
71 */
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)72 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
73 resource_size_t size, resource_size_t align)
74 {
75 return res->start;
76 }
77 EXPORT_SYMBOL(pcibios_align_resource);
78
79 /*
80 * Open a FD to the hypervisor PCI device.
81 *
82 * controller_id is the controller number, config type is 0 or 1 for
83 * config0 or config1 operations.
84 */
tile_pcie_open(int controller_id,int config_type)85 static int tile_pcie_open(int controller_id, int config_type)
86 {
87 char filename[32];
88 int fd;
89
90 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
91
92 fd = hv_dev_open((HV_VirtAddr)filename, 0);
93
94 return fd;
95 }
96
97
98 /*
99 * Get the IRQ numbers from the HV and set up the handlers for them.
100 */
tile_init_irqs(int controller_id,struct pci_controller * controller)101 static int tile_init_irqs(int controller_id, struct pci_controller *controller)
102 {
103 char filename[32];
104 int fd;
105 int ret;
106 int x;
107 struct pcie_rc_config rc_config;
108
109 sprintf(filename, "pcie/%d/ctl", controller_id);
110 fd = hv_dev_open((HV_VirtAddr)filename, 0);
111 if (fd < 0) {
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113 return -1;
114 }
115 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117 hv_dev_close(fd);
118 if (ret != sizeof(rc_config)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config), ret);
121 return -1;
122 }
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller->irq_base = rc_config.intr;
125
126 for (x = 0; x < 4; x++)
127 tile_irq_activate(rc_config.intr + x,
128 TILE_IRQ_HW_CLEAR);
129
130 if (rc_config.plx_gen1)
131 controller->plx_gen1 = 1;
132
133 return 0;
134 }
135
136 /*
137 * First initialization entry point, called from setup_arch().
138 *
139 * Find valid controllers and fill in pci_controller structs for each
140 * of them.
141 *
142 * Returns the number of controllers discovered.
143 */
tile_pci_init(void)144 int __init tile_pci_init(void)
145 {
146 int i;
147
148 if (!pci_probe) {
149 pr_info("PCI: disabled by boot argument\n");
150 return 0;
151 }
152
153 pr_info("PCI: Searching for controllers...\n");
154
155 /* Re-init number of PCIe controllers to support hot-plug feature. */
156 num_controllers = 0;
157
158 /* Do any configuration we need before using the PCIe */
159
160 for (i = 0; i < TILE_NUM_PCIE; i++) {
161 /*
162 * To see whether we need a real config op based on
163 * the results of pcibios_init(), to support PCIe hot-plug.
164 */
165 if (pci_scan_flags[i] == 0) {
166 int hv_cfg_fd0 = -1;
167 int hv_cfg_fd1 = -1;
168 int hv_mem_fd = -1;
169 char name[32];
170 struct pci_controller *controller;
171
172 /*
173 * Open the fd to the HV. If it fails then this
174 * device doesn't exist.
175 */
176 hv_cfg_fd0 = tile_pcie_open(i, 0);
177 if (hv_cfg_fd0 < 0)
178 continue;
179 hv_cfg_fd1 = tile_pcie_open(i, 1);
180 if (hv_cfg_fd1 < 0) {
181 pr_err("PCI: Couldn't open config fd to HV "
182 "for controller %d\n", i);
183 goto err_cont;
184 }
185
186 sprintf(name, "pcie/%d/mem", i);
187 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
188 if (hv_mem_fd < 0) {
189 pr_err("PCI: Could not open mem fd to HV!\n");
190 goto err_cont;
191 }
192
193 pr_info("PCI: Found PCI controller #%d\n", i);
194
195 controller = &controllers[i];
196
197 controller->index = i;
198 controller->hv_cfg_fd[0] = hv_cfg_fd0;
199 controller->hv_cfg_fd[1] = hv_cfg_fd1;
200 controller->hv_mem_fd = hv_mem_fd;
201 controller->last_busno = 0xff;
202 controller->ops = &tile_cfg_ops;
203
204 num_controllers++;
205 continue;
206
207 err_cont:
208 if (hv_cfg_fd0 >= 0)
209 hv_dev_close(hv_cfg_fd0);
210 if (hv_cfg_fd1 >= 0)
211 hv_dev_close(hv_cfg_fd1);
212 if (hv_mem_fd >= 0)
213 hv_dev_close(hv_mem_fd);
214 continue;
215 }
216 }
217
218 /*
219 * Before using the PCIe, see if we need to do any platform-specific
220 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
221 */
222 for (i = 0; i < num_controllers; i++) {
223 struct pci_controller *controller = &controllers[i];
224
225 if (controller->plx_gen1)
226 tile_plx_gen1 = 1;
227 }
228
229 return num_controllers;
230 }
231
232 /*
233 * (pin - 1) converts from the PCI standard's [1:4] convention to
234 * a normal [0:3] range.
235 */
tile_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)236 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
237 {
238 struct pci_controller *controller =
239 (struct pci_controller *)dev->sysdata;
240 return (pin - 1) + controller->irq_base;
241 }
242
243
fixup_read_and_payload_sizes(void)244 static void fixup_read_and_payload_sizes(void)
245 {
246 struct pci_dev *dev = NULL;
247 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
248 int max_read_size = 0x2; /* Limit to 512 byte reads. */
249 u16 new_values;
250
251 /* Scan for the smallest maximum payload size. */
252 for_each_pci_dev(dev) {
253 if (!pci_is_pcie(dev))
254 continue;
255
256 if (dev->pcie_mpss < smallest_max_payload)
257 smallest_max_payload = dev->pcie_mpss;
258 }
259
260 /* Now, set the max_payload_size for all devices to that value. */
261 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
262 for_each_pci_dev(dev)
263 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
264 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
265 new_values);
266 }
267
268
269 /*
270 * Second PCI initialization entry point, called by subsys_initcall.
271 *
272 * The controllers have been set up by the time we get here, by a call to
273 * tile_pci_init.
274 */
pcibios_init(void)275 int __init pcibios_init(void)
276 {
277 int i;
278
279 pr_info("PCI: Probing PCI hardware\n");
280
281 /*
282 * Delay a bit in case devices aren't ready. Some devices are
283 * known to require at least 20ms here, but we use a more
284 * conservative value.
285 */
286 msleep(250);
287
288 /* Scan all of the recorded PCI controllers. */
289 for (i = 0; i < TILE_NUM_PCIE; i++) {
290 /*
291 * Do real pcibios init ops if the controller is initialized
292 * by tile_pci_init() successfully and not initialized by
293 * pcibios_init() yet to support PCIe hot-plug.
294 */
295 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
296 struct pci_controller *controller = &controllers[i];
297 struct pci_bus *bus;
298 LIST_HEAD(resources);
299
300 if (tile_init_irqs(i, controller)) {
301 pr_err("PCI: Could not initialize IRQs\n");
302 continue;
303 }
304
305 pr_info("PCI: initializing controller #%d\n", i);
306
307 pci_add_resource(&resources, &ioport_resource);
308 pci_add_resource(&resources, &iomem_resource);
309 bus = pci_scan_root_bus(NULL, 0, controller->ops,
310 controller, &resources);
311 controller->root_bus = bus;
312 controller->last_busno = bus->busn_res.end;
313 }
314 }
315
316 /* Do machine dependent PCI interrupt routing */
317 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
318
319 /*
320 * This comes from the generic Linux PCI driver.
321 *
322 * It allocates all of the resources (I/O memory, etc)
323 * associated with the devices read in above.
324 */
325 pci_assign_unassigned_resources();
326
327 /* Configure the max_read_size and max_payload_size values. */
328 fixup_read_and_payload_sizes();
329
330 /* Record the I/O resources in the PCI controller structure. */
331 for (i = 0; i < TILE_NUM_PCIE; i++) {
332 /*
333 * Do real pcibios init ops if the controller is initialized
334 * by tile_pci_init() successfully and not initialized by
335 * pcibios_init() yet to support PCIe hot-plug.
336 */
337 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
338 struct pci_bus *root_bus = controllers[i].root_bus;
339 struct pci_bus *next_bus;
340 struct pci_dev *dev;
341
342 list_for_each_entry(dev, &root_bus->devices, bus_list) {
343 /*
344 * Find the PCI host controller, ie. the 1st
345 * bridge.
346 */
347 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
348 (PCI_SLOT(dev->devfn) == 0)) {
349 next_bus = dev->subordinate;
350 controllers[i].mem_resources[0] =
351 *next_bus->resource[0];
352 controllers[i].mem_resources[1] =
353 *next_bus->resource[1];
354 controllers[i].mem_resources[2] =
355 *next_bus->resource[2];
356
357 /* Setup flags. */
358 pci_scan_flags[i] = 1;
359
360 break;
361 }
362 }
363 }
364 }
365
366 return 0;
367 }
368 subsys_initcall(pcibios_init);
369
370 /*
371 * No bus fixups needed.
372 */
pcibios_fixup_bus(struct pci_bus * bus)373 void pcibios_fixup_bus(struct pci_bus *bus)
374 {
375 /* Nothing needs to be done. */
376 }
377
pcibios_set_master(struct pci_dev * dev)378 void pcibios_set_master(struct pci_dev *dev)
379 {
380 /* No special bus mastering setup handling. */
381 }
382
383 /* Process any "pci=" kernel boot arguments. */
pcibios_setup(char * str)384 char *__init pcibios_setup(char *str)
385 {
386 if (!strcmp(str, "off")) {
387 pci_probe = 0;
388 return NULL;
389 }
390 return str;
391 }
392
393 /*
394 * Enable memory and/or address decoding, as appropriate, for the
395 * device described by the 'dev' struct.
396 *
397 * This is called from the generic PCI layer, and can be called
398 * for bridges or endpoints.
399 */
pcibios_enable_device(struct pci_dev * dev,int mask)400 int pcibios_enable_device(struct pci_dev *dev, int mask)
401 {
402 u16 cmd, old_cmd;
403 u8 header_type;
404 int i;
405 struct resource *r;
406
407 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
408
409 pci_read_config_word(dev, PCI_COMMAND, &cmd);
410 old_cmd = cmd;
411 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
412 /*
413 * For bridges, we enable both memory and I/O decoding
414 * in call cases.
415 */
416 cmd |= PCI_COMMAND_IO;
417 cmd |= PCI_COMMAND_MEMORY;
418 } else {
419 /*
420 * For endpoints, we enable memory and/or I/O decoding
421 * only if they have a memory resource of that type.
422 */
423 for (i = 0; i < 6; i++) {
424 r = &dev->resource[i];
425 if (r->flags & IORESOURCE_UNSET) {
426 pr_err("PCI: Device %s not available "
427 "because of resource collisions\n",
428 pci_name(dev));
429 return -EINVAL;
430 }
431 if (r->flags & IORESOURCE_IO)
432 cmd |= PCI_COMMAND_IO;
433 if (r->flags & IORESOURCE_MEM)
434 cmd |= PCI_COMMAND_MEMORY;
435 }
436 }
437
438 /*
439 * We only write the command if it changed.
440 */
441 if (cmd != old_cmd)
442 pci_write_config_word(dev, PCI_COMMAND, cmd);
443 return 0;
444 }
445
446 /****************************************************************
447 *
448 * Tile PCI config space read/write routines
449 *
450 ****************************************************************/
451
452 /*
453 * These are the normal read and write ops
454 * These are expanded with macros from pci_bus_read_config_byte() etc.
455 *
456 * devfn is the combined PCI slot & function.
457 *
458 * offset is in bytes, from the start of config space for the
459 * specified bus & slot.
460 */
461
tile_cfg_read(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 * val)462 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
463 int size, u32 *val)
464 {
465 struct pci_controller *controller = bus->sysdata;
466 int busnum = bus->number & 0xff;
467 int slot = (devfn >> 3) & 0x1f;
468 int function = devfn & 0x7;
469 u32 addr;
470 int config_mode = 1;
471
472 /*
473 * There is no bridge between the Tile and bus 0, so we
474 * use config0 to talk to bus 0.
475 *
476 * If we're talking to a bus other than zero then we
477 * must have found a bridge.
478 */
479 if (busnum == 0) {
480 /*
481 * We fake an empty slot for (busnum == 0) && (slot > 0),
482 * since there is only one slot on bus 0.
483 */
484 if (slot) {
485 *val = 0xFFFFFFFF;
486 return 0;
487 }
488 config_mode = 0;
489 }
490
491 addr = busnum << 20; /* Bus in 27:20 */
492 addr |= slot << 15; /* Slot (device) in 19:15 */
493 addr |= function << 12; /* Function is in 14:12 */
494 addr |= (offset & 0xFFF); /* byte address in 0:11 */
495
496 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
497 (HV_VirtAddr)(val), size, addr);
498 }
499
500
501 /*
502 * See tile_cfg_read() for relevant comments.
503 * Note that "val" is the value to write, not a pointer to that value.
504 */
tile_cfg_write(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 val)505 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
506 int size, u32 val)
507 {
508 struct pci_controller *controller = bus->sysdata;
509 int busnum = bus->number & 0xff;
510 int slot = (devfn >> 3) & 0x1f;
511 int function = devfn & 0x7;
512 u32 addr;
513 int config_mode = 1;
514 HV_VirtAddr valp = (HV_VirtAddr)&val;
515
516 /*
517 * For bus 0 slot 0 we use config 0 accesses.
518 */
519 if (busnum == 0) {
520 /*
521 * We fake an empty slot for (busnum == 0) && (slot > 0),
522 * since there is only one slot on bus 0.
523 */
524 if (slot)
525 return 0;
526 config_mode = 0;
527 }
528
529 addr = busnum << 20; /* Bus in 27:20 */
530 addr |= slot << 15; /* Slot (device) in 19:15 */
531 addr |= function << 12; /* Function is in 14:12 */
532 addr |= (offset & 0xFFF); /* byte address in 0:11 */
533
534 #ifdef __BIG_ENDIAN
535 /* Point to the correct part of the 32-bit "val". */
536 valp += 4 - size;
537 #endif
538
539 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
540 valp, size, addr);
541 }
542
543
544 static struct pci_ops tile_cfg_ops = {
545 .read = tile_cfg_read,
546 .write = tile_cfg_write,
547 };
548
549
550 /*
551 * In the following, each PCI controller's mem_resources[1]
552 * represents its (non-prefetchable) PCI memory resource.
553 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
554 * prefetchable PCI memory resources, respectively.
555 * For more details, see pci_setup_bridge() in setup-bus.c.
556 * By comparing the target PCI memory address against the
557 * end address of controller 0, we can determine the controller
558 * that should accept the PCI memory access.
559 */
560 #define TILE_READ(size, type) \
561 type _tile_read##size(unsigned long addr) \
562 { \
563 type val; \
564 int idx = 0; \
565 if (addr > controllers[0].mem_resources[1].end && \
566 addr > controllers[0].mem_resources[2].end) \
567 idx = 1; \
568 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
569 (HV_VirtAddr)(&val), sizeof(type), addr)) \
570 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
571 sizeof(type), addr); \
572 return val; \
573 } \
574 EXPORT_SYMBOL(_tile_read##size)
575
576 TILE_READ(b, u8);
577 TILE_READ(w, u16);
578 TILE_READ(l, u32);
579 TILE_READ(q, u64);
580
581 #define TILE_WRITE(size, type) \
582 void _tile_write##size(type val, unsigned long addr) \
583 { \
584 int idx = 0; \
585 if (addr > controllers[0].mem_resources[1].end && \
586 addr > controllers[0].mem_resources[2].end) \
587 idx = 1; \
588 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
589 (HV_VirtAddr)(&val), sizeof(type), addr)) \
590 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
591 sizeof(type), addr); \
592 } \
593 EXPORT_SYMBOL(_tile_write##size)
594
595 TILE_WRITE(b, u8);
596 TILE_WRITE(w, u16);
597 TILE_WRITE(l, u32);
598 TILE_WRITE(q, u64);
599