• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
36 
37 #define K(x) ((x) << (PAGE_SHIFT-10))
38 
39 /*
40  * The normal show_free_areas() is too verbose on Tile, with dozens
41  * of processors and often four NUMA zones each with high and lowmem.
42  */
show_mem(unsigned int filter)43 void show_mem(unsigned int filter)
44 {
45 	struct zone *zone;
46 
47 	pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
48 	       " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 	       " pagecache:%lu swap:%lu\n",
50 	       (global_page_state(NR_ACTIVE_ANON) +
51 		global_page_state(NR_ACTIVE_FILE)),
52 	       (global_page_state(NR_INACTIVE_ANON) +
53 		global_page_state(NR_INACTIVE_FILE)),
54 	       global_page_state(NR_FILE_DIRTY),
55 	       global_page_state(NR_WRITEBACK),
56 	       global_page_state(NR_UNSTABLE_NFS),
57 	       global_page_state(NR_FREE_PAGES),
58 	       (global_page_state(NR_SLAB_RECLAIMABLE) +
59 		global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 	       global_page_state(NR_FILE_MAPPED),
61 	       global_page_state(NR_PAGETABLE),
62 	       global_page_state(NR_BOUNCE),
63 	       global_page_state(NR_FILE_PAGES),
64 	       get_nr_swap_pages());
65 
66 	for_each_zone(zone) {
67 		unsigned long flags, order, total = 0, largest_order = -1;
68 
69 		if (!populated_zone(zone))
70 			continue;
71 
72 		spin_lock_irqsave(&zone->lock, flags);
73 		for (order = 0; order < MAX_ORDER; order++) {
74 			int nr = zone->free_area[order].nr_free;
75 			total += nr << order;
76 			if (nr)
77 				largest_order = order;
78 		}
79 		spin_unlock_irqrestore(&zone->lock, flags);
80 		pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 		       zone_to_nid(zone), zone->name,
82 		       K(total), largest_order ? K(1UL) << largest_order : 0);
83 	}
84 }
85 
86 /**
87  * shatter_huge_page() - ensure a given address is mapped by a small page.
88  *
89  * This function converts a huge PTE mapping kernel LOWMEM into a bunch
90  * of small PTEs with the same caching.  No cache flush required, but we
91  * must do a global TLB flush.
92  *
93  * Any caller that wishes to modify a kernel mapping that might
94  * have been made with a huge page should call this function,
95  * since doing so properly avoids race conditions with installing the
96  * newly-shattered page and then flushing all the TLB entries.
97  *
98  * @addr: Address at which to shatter any existing huge page.
99  */
shatter_huge_page(unsigned long addr)100 void shatter_huge_page(unsigned long addr)
101 {
102 	pgd_t *pgd;
103 	pud_t *pud;
104 	pmd_t *pmd;
105 	unsigned long flags = 0;  /* happy compiler */
106 #ifdef __PAGETABLE_PMD_FOLDED
107 	struct list_head *pos;
108 #endif
109 
110 	/* Get a pointer to the pmd entry that we need to change. */
111 	addr &= HPAGE_MASK;
112 	BUG_ON(pgd_addr_invalid(addr));
113 	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
114 	pgd = swapper_pg_dir + pgd_index(addr);
115 	pud = pud_offset(pgd, addr);
116 	BUG_ON(!pud_present(*pud));
117 	pmd = pmd_offset(pud, addr);
118 	BUG_ON(!pmd_present(*pmd));
119 	if (!pmd_huge_page(*pmd))
120 		return;
121 
122 	spin_lock_irqsave(&init_mm.page_table_lock, flags);
123 	if (!pmd_huge_page(*pmd)) {
124 		/* Lost the race to convert the huge page. */
125 		spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
126 		return;
127 	}
128 
129 	/* Shatter the huge page into the preallocated L2 page table. */
130 	pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
131 
132 #ifdef __PAGETABLE_PMD_FOLDED
133 	/* Walk every pgd on the system and update the pmd there. */
134 	spin_lock(&pgd_lock);
135 	list_for_each(pos, &pgd_list) {
136 		pmd_t *copy_pmd;
137 		pgd = list_to_pgd(pos) + pgd_index(addr);
138 		pud = pud_offset(pgd, addr);
139 		copy_pmd = pmd_offset(pud, addr);
140 		__set_pmd(copy_pmd, *pmd);
141 	}
142 	spin_unlock(&pgd_lock);
143 #endif
144 
145 	/* Tell every cpu to notice the change. */
146 	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
147 		     cpu_possible_mask, NULL, 0);
148 
149 	/* Hold the lock until the TLB flush is finished to avoid races. */
150 	spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
151 }
152 
153 /*
154  * List of all pgd's needed so it can invalidate entries in both cached
155  * and uncached pgd's. This is essentially codepath-based locking
156  * against pageattr.c; it is the unique case in which a valid change
157  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
158  * vmalloc faults work because attached pagetables are never freed.
159  *
160  * The lock is always taken with interrupts disabled, unlike on x86
161  * and other platforms, because we need to take the lock in
162  * shatter_huge_page(), which may be called from an interrupt context.
163  * We are not at risk from the tlbflush IPI deadlock that was seen on
164  * x86, since we use the flush_remote() API to have the hypervisor do
165  * the TLB flushes regardless of irq disabling.
166  */
167 DEFINE_SPINLOCK(pgd_lock);
168 LIST_HEAD(pgd_list);
169 
pgd_list_add(pgd_t * pgd)170 static inline void pgd_list_add(pgd_t *pgd)
171 {
172 	list_add(pgd_to_list(pgd), &pgd_list);
173 }
174 
pgd_list_del(pgd_t * pgd)175 static inline void pgd_list_del(pgd_t *pgd)
176 {
177 	list_del(pgd_to_list(pgd));
178 }
179 
180 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
181 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
182 
pgd_ctor(pgd_t * pgd)183 static void pgd_ctor(pgd_t *pgd)
184 {
185 	unsigned long flags;
186 
187 	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
188 	spin_lock_irqsave(&pgd_lock, flags);
189 
190 #ifndef __tilegx__
191 	/*
192 	 * Check that the user interrupt vector has no L2.
193 	 * It never should for the swapper, and new page tables
194 	 * should always start with an empty user interrupt vector.
195 	 */
196 	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
197 #endif
198 
199 	memcpy(pgd + KERNEL_PGD_INDEX_START,
200 	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
201 	       KERNEL_PGD_PTRS * sizeof(pgd_t));
202 
203 	pgd_list_add(pgd);
204 	spin_unlock_irqrestore(&pgd_lock, flags);
205 }
206 
pgd_dtor(pgd_t * pgd)207 static void pgd_dtor(pgd_t *pgd)
208 {
209 	unsigned long flags; /* can be called from interrupt context */
210 
211 	spin_lock_irqsave(&pgd_lock, flags);
212 	pgd_list_del(pgd);
213 	spin_unlock_irqrestore(&pgd_lock, flags);
214 }
215 
pgd_alloc(struct mm_struct * mm)216 pgd_t *pgd_alloc(struct mm_struct *mm)
217 {
218 	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
219 	if (pgd)
220 		pgd_ctor(pgd);
221 	return pgd;
222 }
223 
pgd_free(struct mm_struct * mm,pgd_t * pgd)224 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
225 {
226 	pgd_dtor(pgd);
227 	kmem_cache_free(pgd_cache, pgd);
228 }
229 
230 
231 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
232 
pgtable_alloc_one(struct mm_struct * mm,unsigned long address,int order)233 struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
234 			       int order)
235 {
236 	gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
237 	struct page *p;
238 	int i;
239 
240 	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
241 	if (p == NULL)
242 		return NULL;
243 
244 	if (!pgtable_page_ctor(p)) {
245 		__free_pages(p, L2_USER_PGTABLE_ORDER);
246 		return NULL;
247 	}
248 
249 	/*
250 	 * Make every page have a page_count() of one, not just the first.
251 	 * We don't use __GFP_COMP since it doesn't look like it works
252 	 * correctly with tlb_remove_page().
253 	 */
254 	for (i = 1; i < order; ++i) {
255 		init_page_count(p+i);
256 		inc_zone_page_state(p+i, NR_PAGETABLE);
257 	}
258 
259 	return p;
260 }
261 
262 /*
263  * Free page immediately (used in __pte_alloc if we raced with another
264  * process).  We have to correct whatever pte_alloc_one() did before
265  * returning the pages to the allocator.
266  */
pgtable_free(struct mm_struct * mm,struct page * p,int order)267 void pgtable_free(struct mm_struct *mm, struct page *p, int order)
268 {
269 	int i;
270 
271 	pgtable_page_dtor(p);
272 	__free_page(p);
273 
274 	for (i = 1; i < order; ++i) {
275 		__free_page(p+i);
276 		dec_zone_page_state(p+i, NR_PAGETABLE);
277 	}
278 }
279 
__pgtable_free_tlb(struct mmu_gather * tlb,struct page * pte,unsigned long address,int order)280 void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
281 			unsigned long address, int order)
282 {
283 	int i;
284 
285 	pgtable_page_dtor(pte);
286 	tlb_remove_page(tlb, pte);
287 
288 	for (i = 1; i < order; ++i) {
289 		tlb_remove_page(tlb, pte + i);
290 		dec_zone_page_state(pte + i, NR_PAGETABLE);
291 	}
292 }
293 
294 #ifndef __tilegx__
295 
296 /*
297  * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
298  * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
299  */
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)300 int ptep_test_and_clear_young(struct vm_area_struct *vma,
301 			      unsigned long addr, pte_t *ptep)
302 {
303 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
304 # error Code assumes HV_PTE "accessed" bit in second byte
305 #endif
306 	u8 *tmp = (u8 *)ptep;
307 	u8 second_byte = tmp[1];
308 	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
309 		return 0;
310 	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
311 	return 1;
312 }
313 
314 /*
315  * This implementation is atomic vs hypervisor writes, since the hypervisor
316  * always writes the low word (where "accessed" and "dirty" are) and this
317  * routine only writes the high word.
318  */
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)319 void ptep_set_wrprotect(struct mm_struct *mm,
320 			unsigned long addr, pte_t *ptep)
321 {
322 #if HV_PTE_INDEX_WRITABLE < 32
323 # error Code assumes HV_PTE "writable" bit in high word
324 #endif
325 	u32 *tmp = (u32 *)ptep;
326 	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
327 }
328 
329 #endif
330 
331 /*
332  * Return a pointer to the PTE that corresponds to the given
333  * address in the given page table.  A NULL page table just uses
334  * the standard kernel page table; the preferred API in this case
335  * is virt_to_kpte().
336  *
337  * The returned pointer can point to a huge page in other levels
338  * of the page table than the bottom, if the huge page is present
339  * in the page table.  For bottom-level PTEs, the returned pointer
340  * can point to a PTE that is either present or not.
341  */
virt_to_pte(struct mm_struct * mm,unsigned long addr)342 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
343 {
344 	pgd_t *pgd;
345 	pud_t *pud;
346 	pmd_t *pmd;
347 
348 	if (pgd_addr_invalid(addr))
349 		return NULL;
350 
351 	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
352 	pud = pud_offset(pgd, addr);
353 	if (!pud_present(*pud))
354 		return NULL;
355 	if (pud_huge_page(*pud))
356 		return (pte_t *)pud;
357 	pmd = pmd_offset(pud, addr);
358 	if (!pmd_present(*pmd))
359 		return NULL;
360 	if (pmd_huge_page(*pmd))
361 		return (pte_t *)pmd;
362 	return pte_offset_kernel(pmd, addr);
363 }
364 EXPORT_SYMBOL(virt_to_pte);
365 
virt_to_kpte(unsigned long kaddr)366 pte_t *virt_to_kpte(unsigned long kaddr)
367 {
368 	BUG_ON(kaddr < PAGE_OFFSET);
369 	return virt_to_pte(NULL, kaddr);
370 }
371 EXPORT_SYMBOL(virt_to_kpte);
372 
set_remote_cache_cpu(pgprot_t prot,int cpu)373 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
374 {
375 	unsigned int width = smp_width;
376 	int x = cpu % width;
377 	int y = cpu / width;
378 	BUG_ON(y >= smp_height);
379 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
380 	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
381 	BUG_ON(!cpu_is_valid_lotar(cpu));
382 	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
383 }
384 
get_remote_cache_cpu(pgprot_t prot)385 int get_remote_cache_cpu(pgprot_t prot)
386 {
387 	HV_LOTAR lotar = hv_pte_get_lotar(prot);
388 	int x = HV_LOTAR_X(lotar);
389 	int y = HV_LOTAR_Y(lotar);
390 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
391 	return x + y * smp_width;
392 }
393 
394 /*
395  * Convert a kernel VA to a PA and homing information.
396  */
va_to_cpa_and_pte(void * va,unsigned long long * cpa,pte_t * pte)397 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
398 {
399 	struct page *page = virt_to_page(va);
400 	pte_t null_pte = { 0 };
401 
402 	*cpa = __pa(va);
403 
404 	/* Note that this is not writing a page table, just returning a pte. */
405 	*pte = pte_set_home(null_pte, page_home(page));
406 
407 	return 0; /* return non-zero if not hfh? */
408 }
409 EXPORT_SYMBOL(va_to_cpa_and_pte);
410 
__set_pte(pte_t * ptep,pte_t pte)411 void __set_pte(pte_t *ptep, pte_t pte)
412 {
413 #ifdef __tilegx__
414 	*ptep = pte;
415 #else
416 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
417 #  error Must write the present and migrating bits last
418 # endif
419 	if (pte_present(pte)) {
420 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
421 		barrier();
422 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
423 	} else {
424 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
425 		barrier();
426 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
427 	}
428 #endif /* __tilegx__ */
429 }
430 
set_pte(pte_t * ptep,pte_t pte)431 void set_pte(pte_t *ptep, pte_t pte)
432 {
433 	if (pte_present(pte) &&
434 	    (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
435 		/* The PTE actually references physical memory. */
436 		unsigned long pfn = pte_pfn(pte);
437 		if (pfn_valid(pfn)) {
438 			/* Update the home of the PTE from the struct page. */
439 			pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
440 		} else if (hv_pte_get_mode(pte) == 0) {
441 			/* remap_pfn_range(), etc, must supply PTE mode. */
442 			panic("set_pte(): out-of-range PFN and mode 0\n");
443 		}
444 	}
445 
446 	__set_pte(ptep, pte);
447 }
448 
449 /* Can this mm load a PTE with cached_priority set? */
mm_is_priority_cached(struct mm_struct * mm)450 static inline int mm_is_priority_cached(struct mm_struct *mm)
451 {
452 	return mm->context.priority_cached != 0;
453 }
454 
455 /*
456  * Add a priority mapping to an mm_context and
457  * notify the hypervisor if this is the first one.
458  */
start_mm_caching(struct mm_struct * mm)459 void start_mm_caching(struct mm_struct *mm)
460 {
461 	if (!mm_is_priority_cached(mm)) {
462 		mm->context.priority_cached = -1UL;
463 		hv_set_caching(-1UL);
464 	}
465 }
466 
467 /*
468  * Validate and return the priority_cached flag.  We know if it's zero
469  * that we don't need to scan, since we immediately set it non-zero
470  * when we first consider a MAP_CACHE_PRIORITY mapping.
471  *
472  * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
473  * since we're in an interrupt context (servicing switch_mm) we don't
474  * worry about it and don't unset the "priority_cached" field.
475  * Presumably we'll come back later and have more luck and clear
476  * the value then; for now we'll just keep the cache marked for priority.
477  */
update_priority_cached(struct mm_struct * mm)478 static unsigned long update_priority_cached(struct mm_struct *mm)
479 {
480 	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
481 		struct vm_area_struct *vm;
482 		for (vm = mm->mmap; vm; vm = vm->vm_next) {
483 			if (hv_pte_get_cached_priority(vm->vm_page_prot))
484 				break;
485 		}
486 		if (vm == NULL)
487 			mm->context.priority_cached = 0;
488 		up_write(&mm->mmap_sem);
489 	}
490 	return mm->context.priority_cached;
491 }
492 
493 /* Set caching correctly for an mm that we are switching to. */
check_mm_caching(struct mm_struct * prev,struct mm_struct * next)494 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
495 {
496 	if (!mm_is_priority_cached(next)) {
497 		/*
498 		 * If the new mm doesn't use priority caching, just see if we
499 		 * need the hv_set_caching(), or can assume it's already zero.
500 		 */
501 		if (mm_is_priority_cached(prev))
502 			hv_set_caching(0);
503 	} else {
504 		hv_set_caching(update_priority_cached(next));
505 	}
506 }
507 
508 #if CHIP_HAS_MMIO()
509 
510 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t home)511 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
512 			   pgprot_t home)
513 {
514 	void *addr;
515 	struct vm_struct *area;
516 	unsigned long offset, last_addr;
517 	pgprot_t pgprot;
518 
519 	/* Don't allow wraparound or zero size */
520 	last_addr = phys_addr + size - 1;
521 	if (!size || last_addr < phys_addr)
522 		return NULL;
523 
524 	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
525 	pgprot = PAGE_KERNEL;
526 	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
527 	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
528 
529 	/*
530 	 * Mappings have to be page-aligned
531 	 */
532 	offset = phys_addr & ~PAGE_MASK;
533 	phys_addr &= PAGE_MASK;
534 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
535 
536 	/*
537 	 * Ok, go for it..
538 	 */
539 	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
540 	if (!area)
541 		return NULL;
542 	area->phys_addr = phys_addr;
543 	addr = area->addr;
544 	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
545 			       phys_addr, pgprot)) {
546 		free_vm_area(area);
547 		return NULL;
548 	}
549 	return (__force void __iomem *) (offset + (char *)addr);
550 }
551 EXPORT_SYMBOL(ioremap_prot);
552 
553 /* Unmap an MMIO VA mapping. */
iounmap(volatile void __iomem * addr_in)554 void iounmap(volatile void __iomem *addr_in)
555 {
556 	volatile void __iomem *addr = (volatile void __iomem *)
557 		(PAGE_MASK & (unsigned long __force)addr_in);
558 #if 1
559 	vunmap((void * __force)addr);
560 #else
561 	/* x86 uses this complicated flow instead of vunmap().  Is
562 	 * there any particular reason we should do the same? */
563 	struct vm_struct *p, *o;
564 
565 	/* Use the vm area unlocked, assuming the caller
566 	   ensures there isn't another iounmap for the same address
567 	   in parallel. Reuse of the virtual address is prevented by
568 	   leaving it in the global lists until we're done with it.
569 	   cpa takes care of the direct mappings. */
570 	p = find_vm_area((void *)addr);
571 
572 	if (!p) {
573 		pr_err("iounmap: bad address %p\n", addr);
574 		dump_stack();
575 		return;
576 	}
577 
578 	/* Finally remove it */
579 	o = remove_vm_area((void *)addr);
580 	BUG_ON(p != o || o == NULL);
581 	kfree(p);
582 #endif
583 }
584 EXPORT_SYMBOL(iounmap);
585 
586 #endif /* CHIP_HAS_MMIO() */
587