• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/arch/unicore32/include/asm/pgtable.h
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef __UNICORE_PGTABLE_H__
13 #define __UNICORE_PGTABLE_H__
14 
15 #include <asm-generic/pgtable-nopmd.h>
16 #include <asm/cpu-single.h>
17 
18 #include <asm/memory.h>
19 #include <asm/pgtable-hwdef.h>
20 
21 /*
22  * Just any arbitrary offset to the start of the vmalloc VM area: the
23  * current 8MB value just means that there will be a 8MB "hole" after the
24  * physical memory until the kernel virtual memory starts.  That means that
25  * any out-of-bounds memory accesses will hopefully be caught.
26  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
27  * area for the same reason. ;)
28  *
29  * Note that platforms may override VMALLOC_START, but they must provide
30  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
31  * which may not overlap IO space.
32  */
33 #ifndef VMALLOC_START
34 #define VMALLOC_OFFSET		SZ_8M
35 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) \
36 					& ~(VMALLOC_OFFSET-1))
37 #define VMALLOC_END		(0xff000000UL)
38 #endif
39 
40 #define PTRS_PER_PTE		1024
41 #define PTRS_PER_PGD		1024
42 
43 /*
44  * PGDIR_SHIFT determines what a third-level page table entry can map
45  */
46 #define PGDIR_SHIFT		22
47 
48 #ifndef __ASSEMBLY__
49 extern void __pte_error(const char *file, int line, unsigned long val);
50 extern void __pgd_error(const char *file, int line, unsigned long val);
51 
52 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
53 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
54 #endif /* !__ASSEMBLY__ */
55 
56 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
57 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
58 
59 /*
60  * This is the lowest virtual address we can permit any user space
61  * mapping to be mapped at.  This is particularly important for
62  * non-high vector CPUs.
63  */
64 #define FIRST_USER_ADDRESS	PAGE_SIZE
65 
66 #define FIRST_USER_PGD_NR	1
67 #define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
68 
69 /*
70  * section address mask and size definitions.
71  */
72 #define SECTION_SHIFT		22
73 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
74 #define SECTION_MASK		(~(SECTION_SIZE-1))
75 
76 #ifndef __ASSEMBLY__
77 
78 /*
79  * The pgprot_* and protection_map entries will be fixed up in runtime
80  * to include the cachable bits based on memory policy, as well as any
81  * architecture dependent bits.
82  */
83 #define _PTE_DEFAULT		(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)
84 
85 extern pgprot_t pgprot_user;
86 extern pgprot_t pgprot_kernel;
87 
88 #define PAGE_NONE		pgprot_user
89 #define PAGE_SHARED		__pgprot(pgprot_val(pgprot_user | PTE_READ \
90 								| PTE_WRITE))
91 #define PAGE_SHARED_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \
92 								| PTE_WRITE \
93 								| PTE_EXEC))
94 #define PAGE_COPY		__pgprot(pgprot_val(pgprot_user | PTE_READ)
95 #define PAGE_COPY_EXEC		__pgprot(pgprot_val(pgprot_user | PTE_READ \
96 								| PTE_EXEC))
97 #define PAGE_READONLY		__pgprot(pgprot_val(pgprot_user | PTE_READ))
98 #define PAGE_READONLY_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \
99 								| PTE_EXEC))
100 #define PAGE_KERNEL		pgprot_kernel
101 #define PAGE_KERNEL_EXEC	__pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))
102 
103 #define __PAGE_NONE		__pgprot(_PTE_DEFAULT)
104 #define __PAGE_SHARED		__pgprot(_PTE_DEFAULT | PTE_READ \
105 							| PTE_WRITE)
106 #define __PAGE_SHARED_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
107 							| PTE_WRITE \
108 							| PTE_EXEC)
109 #define __PAGE_COPY		__pgprot(_PTE_DEFAULT | PTE_READ)
110 #define __PAGE_COPY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
111 							| PTE_EXEC)
112 #define __PAGE_READONLY		__pgprot(_PTE_DEFAULT | PTE_READ)
113 #define __PAGE_READONLY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
114 							| PTE_EXEC)
115 
116 #endif /* __ASSEMBLY__ */
117 
118 /*
119  * The table below defines the page protection levels that we insert into our
120  * Linux page table version.  These get translated into the best that the
121  * architecture can perform.  Note that on UniCore hardware:
122  *  1) We cannot do execute protection
123  *  2) If we could do execute protection, then read is implied
124  *  3) write implies read permissions
125  */
126 #define __P000  __PAGE_NONE
127 #define __P001  __PAGE_READONLY
128 #define __P010  __PAGE_COPY
129 #define __P011  __PAGE_COPY
130 #define __P100  __PAGE_READONLY_EXEC
131 #define __P101  __PAGE_READONLY_EXEC
132 #define __P110  __PAGE_COPY_EXEC
133 #define __P111  __PAGE_COPY_EXEC
134 
135 #define __S000  __PAGE_NONE
136 #define __S001  __PAGE_READONLY
137 #define __S010  __PAGE_SHARED
138 #define __S011  __PAGE_SHARED
139 #define __S100  __PAGE_READONLY_EXEC
140 #define __S101  __PAGE_READONLY_EXEC
141 #define __S110  __PAGE_SHARED_EXEC
142 #define __S111  __PAGE_SHARED_EXEC
143 
144 #ifndef __ASSEMBLY__
145 /*
146  * ZERO_PAGE is a global shared page that is always zero: used
147  * for zero-mapped memory areas etc..
148  */
149 extern struct page *empty_zero_page;
150 #define ZERO_PAGE(vaddr)		(empty_zero_page)
151 
152 #define pte_pfn(pte)			(pte_val(pte) >> PAGE_SHIFT)
153 #define pfn_pte(pfn, prot)		(__pte(((pfn) << PAGE_SHIFT) \
154 						| pgprot_val(prot)))
155 
156 #define pte_none(pte)			(!pte_val(pte))
157 #define pte_clear(mm, addr, ptep)	set_pte(ptep, __pte(0))
158 #define pte_page(pte)			(pfn_to_page(pte_pfn(pte)))
159 #define pte_offset_kernel(dir, addr)	(pmd_page_vaddr(*(dir)) \
160 						+ __pte_index(addr))
161 
162 #define pte_offset_map(dir, addr)	(pmd_page_vaddr(*(dir)) \
163 						+ __pte_index(addr))
164 #define pte_unmap(pte)			do { } while (0)
165 
166 #define set_pte(ptep, pte)	cpu_set_pte(ptep, pte)
167 
168 #define set_pte_at(mm, addr, ptep, pteval)	\
169 	do {					\
170 		set_pte(ptep, pteval);          \
171 	} while (0)
172 
173 /*
174  * The following only work if pte_present() is true.
175  * Undefined behaviour if not..
176  */
177 #define pte_present(pte)	(pte_val(pte) & PTE_PRESENT)
178 #define pte_write(pte)		(pte_val(pte) & PTE_WRITE)
179 #define pte_dirty(pte)		(pte_val(pte) & PTE_DIRTY)
180 #define pte_young(pte)		(pte_val(pte) & PTE_YOUNG)
181 #define pte_exec(pte)		(pte_val(pte) & PTE_EXEC)
182 #define pte_special(pte)	(0)
183 
184 #define PTE_BIT_FUNC(fn, op) \
185 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
186 
187 PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
188 PTE_BIT_FUNC(mkwrite,   |= PTE_WRITE);
189 PTE_BIT_FUNC(mkclean,   &= ~PTE_DIRTY);
190 PTE_BIT_FUNC(mkdirty,   |= PTE_DIRTY);
191 PTE_BIT_FUNC(mkold,     &= ~PTE_YOUNG);
192 PTE_BIT_FUNC(mkyoung,   |= PTE_YOUNG);
193 
pte_mkspecial(pte_t pte)194 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
195 
196 /*
197  * Mark the prot value as uncacheable.
198  */
199 #define pgprot_noncached(prot)		\
200 	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
201 #define pgprot_writecombine(prot)	\
202 	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
203 #define pgprot_dmacoherent(prot)	\
204 	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
205 
206 #define pmd_none(pmd)		(!pmd_val(pmd))
207 #define pmd_present(pmd)	(pmd_val(pmd) & PMD_PRESENT)
208 #define pmd_bad(pmd)		(((pmd_val(pmd) &		\
209 				(PMD_PRESENT | PMD_TYPE_MASK))	\
210 				!= (PMD_PRESENT | PMD_TYPE_TABLE)))
211 
212 #define set_pmd(pmdpd, pmdval)		\
213 	do {				\
214 		*(pmdpd) = pmdval;	\
215 	} while (0)
216 
217 #define pmd_clear(pmdp)			\
218 	do {				\
219 		set_pmd(pmdp, __pmd(0));\
220 		clean_pmd_entry(pmdp);	\
221 	} while (0)
222 
223 #define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
224 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
225 
226 /*
227  * Conversion functions: convert a page and protection to a page entry,
228  * and a page entry and page directory to the page they refer to.
229  */
230 #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
231 
232 /* to find an entry in a page-table-directory */
233 #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
234 
235 #define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))
236 
237 /* to find an entry in a kernel page-table-directory */
238 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
239 
240 /* Find an entry in the third-level page table.. */
241 #define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
242 
pte_modify(pte_t pte,pgprot_t newprot)243 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
244 {
245 	const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
246 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
247 	return pte;
248 }
249 
250 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
251 
252 /*
253  * Encode and decode a swap entry.  Swap entries are stored in the Linux
254  * page tables as follows:
255  *
256  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
257  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
258  *   <--------------- offset --------------> <--- type --> 0 0 0 0 0
259  *
260  * This gives us up to 127 swap files and 32GB per swap file.  Note that
261  * the offset field is always non-zero.
262  */
263 #define __SWP_TYPE_SHIFT	5
264 #define __SWP_TYPE_BITS		7
265 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
266 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
267 
268 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT)		\
269 				& __SWP_TYPE_MASK)
270 #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
271 #define __swp_entry(type, offset) ((swp_entry_t) {			\
272 				((type) << __SWP_TYPE_SHIFT) |		\
273 				((offset) << __SWP_OFFSET_SHIFT) })
274 
275 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
276 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
277 
278 /*
279  * It is an error for the kernel to have more swap files than we can
280  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
281  * is increased beyond what we presently support.
282  */
283 #define MAX_SWAPFILES_CHECK()	\
284 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
285 
286 /*
287  * Encode and decode a file entry.  File entries are stored in the Linux
288  * page tables as follows:
289  *
290  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
291  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
292  *   <----------------------- offset ----------------------> 1 0 0 0
293  */
294 #define pte_file(pte)		(pte_val(pte) & PTE_FILE)
295 #define pte_to_pgoff(x)		(pte_val(x) >> 4)
296 #define pgoff_to_pte(x)		__pte(((x) << 4) | PTE_FILE)
297 
298 #define PTE_FILE_MAX_BITS	28
299 
300 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
301 /* FIXME: this is not correct */
302 #define kern_addr_valid(addr)	(1)
303 
304 #include <asm-generic/pgtable.h>
305 
306 #define pgtable_cache_init() do { } while (0)
307 
308 #endif /* !__ASSEMBLY__ */
309 
310 #endif /* __UNICORE_PGTABLE_H__ */
311